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Abstract: Social networking has been a feature of human society. From the early hunter-gatherer
tribes, medieval guilds, the twentieth century workplaces, up to online entities like Facebook and
Twitter, it is difficult to think of a time or place where all people did not belong to at least one
cooperative group. It follows that social network formation has been studied extensively in the past
decades and will continue to be a popular area of research. Past research has primarily confined
itself to considering cases in which new members are introduced into the networks by making a
constant number of connections to those who are already present in the networks. Our study aims to
fill the glaring gap in the variety of network formation modelling. Most notably, we want to consider
scenarios in which the number of connections new members make to those already present in the
networks is determined by chance. More specifically, the number of connections made to existing
members when a new one is introduced into the network is characterized by a positive integer-valued
random variable. The objective of the study is to determine the distribution of degree of a node in this
kind of social networks. It is determined that the node degree distribution is a mixture of geometric
distributions. Three numerical examples are provided in the study to demonstrate the validity of
our findings.
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1. Introduction

Over the past decades, scholars are eager to understand and exploit the structural properties of
networks such as social, ecological, disease, transportation, biological, information networks, and
so on. Apparently, the better we understand the features of these networks, the more benefits we
will obtain by applying these features in real world practices. The modern study of networks is
fundamentally concerned with defining complex networks that occur in reality, in the hopes of better
understanding their properties. Incidentally, since networks may be defined to represent a multitude
of different scenarios, the study of networks has implications across a broad range of research interests.
According to Jackson (2010b), the interdisciplinary application of network structure is what makes
the scientific study of networks possible. Even further, Jackson (2010b) claims that the profound
impact that networks have on the behavior dynamics of a system is what makes the study of networks
a necessity.

A brief synopsis of the major areas of application for the study of networks may be found in
(Chakrabarti and Faloutsos 2012). Among others, social networks are perhaps most prevalent today in
terms of online networks such as Facebook, Twitter, LinkedIn, etc. From a standpoint of modelling,
within a society, social networks may be depicted to represent any collection of human entities and
their associated connections. Cyber-security utilizes network analysis to identify abnormal behavior
or anomalies within the system as a way to enhance protection. Website organization, the linking of
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websites to other websites first examined by Barabasi et al. (2000), can be represented as a complex
network. Moreover, search engines must be able to navigate these networks efficiently. Influence
propagation is a type of network study related to increasing the spread of information and/or ideas.
On the other hand, this is also the area of interest concerned with stopping the spread of negative
entities such as diseases or computer viruses. Finally, protein–protein interactions in biology have
become a well-documented case for the application of complex networks.

This paper is concerned with modelling and simulation of the formation of networks. Simulation
studies are commonly conducted to investigate into the dynamics of complex networks (Zeng et al.
2013). Chakrabarti and Faloutsos (2012) refer to work of this kind as the simulation of synthetic graphs,
along with the identifying certain properties within such networks. Synthetic graphs are generally
constructed to give new insight regarding the properties of a specific network type. According to
Watts and Strogatz (1998), real-world networks are neither completely ordered nor are they completely
random, but rather lie somewhere along the spectrum between these two extremes. Therefore, the
application of synthetic networks to reality may not be clearly defined until some realistic network
is shown to share properties that align with that of the synthetic. We may only operate under the
condition that such research will be used in the motivation for further network study.

The study of network formation has been actively carried out for the past decades. Considerable
discussion on modelling network formation may be found in the literature (Jackson 2010a; Jackson
2005a; Jackson 2005b; Jiang et al. 2015). Most notably, the majority of the work consider systems of
undirected graphs. We note that our study adopts similar approaches to network formation modelling.
More specifically, the formation of a network is represented by the construction of the network that
typically goes as follows. One assumes that there exists one node at time zero (t = 0) in the network.
A new node is then born into the network corresponding to a discrete date in time, t (t = 1, 2, . . . ).
Consequently, the number of nodes in the network grows by one for every date that passes. Let i
represent an individual node within the network where i is defined to be the time at which the node is
born. Labeling nodes in this manner allows one to index individual nodes by the time at which they
are born. For example, node i (i = 1, 2, . . . ) is born when the network is at time t = i; one may label the
initial node 0 for that matter. Each time when a newborn node has been introduced into the network,
the newborn node may make connections with a number of nodes chosen in accordance with some
pre-specified condition from the nodes that are already present in the network. That is, an edge is
added to the network to connect the newborn node and each chosen node. This construction process
continues indefinitely ( t→ ∞ ). The network grows following typically a slow Markov chain. One
may then be interested in some asymptotic properties of the resulting network. For example, one may
want to investigate into the distribution of degree of a node in the network. The degree of a node refers
to the number of edges (connections) emanating from the node. In a practical sense, the degree of a
node may be thought of as the number of acquaintances an individual has in a friendship network.

Barabasi and Albert develop a model based upon the above-described process (Barabasi and
Albert 1999). In their models, a newborn node leverages a condition called preferential attachment
to make connections with chosen existing nodes. Specifically, the new node forms a fixed number of
edges with existing nodes. An existing node is randomly chosen with a probability proportional to
the number of edges that the existing node currently has. For example, if an existing node has twice
as many edges as does some other node, then this existing node is twice as likely to get connected
with the new node. Employing the notion of mean-field approximation, they determine that the
distribution of degree of a node for their model is a power-law distribution. A node degree distribution
of this kind is typically characterized with a fat tail. Their results are clearly an approximation since
a power-law distribution is a continuous distribution; however, the degree of a node is obviously
discrete, nonnegative integer-valued. More recently, Hamdi and Krishnamurthy (2012) utilize novel
stochastic approximation algorithms to estimate the degree of each node in social networks. We note
that results in this field of study have been all presented in continuous distributions. This is definitely
a glaring deficiency.
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Our study differs from that of Barabasi and Albert in a significant way. In our models, a newborn
node makes a random number of connections with nodes that are already present in the network; every
existing node may be equally likely chosen by the newborn node. As an example, when a node is newly
introduced into the network, the node may then, with probability 0.30, connect with a node chosen
equally likely from the existing pool of nodes; or, with probability 0.70, connect with two nodes chosen
equally likely from the existing pool. The objective of the study is to determine the distribution of
degree of a node in such a network. We note that our results are presented in discrete distributions;
this is a notable step forward in this area of research. To the best of our knowledge, there has not been
any work conducted in this regard. A practical scenario for our models might be that a new member
in a club may make acquaintance with a random number, rather than a fixed number, of existing
members. For example, an individual may tend to more likely (less likely) make acquaintance with
other individuals having similar (dissimilar) backgrounds, ages, interests, personalities, hobbies, and
the likes, on Facebook, Twitter, LinkedIn, etc. As another example, users in trust networks can trust
only the users whom they know and then some sort of randomness on the number of acquaintances
may be assumed (Meo et al. 2017; Golbeck et al. 2003; Yuan et al. 2010). One may then be interested in
gaining insight into the number of acquaintances a member has in the club.

We present the remainder of the paper as follows. Section 2 provides a brief overview of existing
results in related work. Section 3 formally defines our models, finds solutions, and discusses examples.
Finally, concluding remarks are offered in Section 4.

2. A Brief Overview of Existing Results on the Distributions of Node Degree

This section provides a brief overview of how some of the existing work in the literature models
the formation of social networks. We note that researchers in this area of work largely employ the
notion of mean-field analysis (Barabasi and Albert 1999) to derive the distributions of node degree for
generated networks. As a consequence, results are presented in continuous approximations. These
results may not be practical since the degree of a node ought to be nonnegative integers. To resolve
this predicament, we endeavor to convert such results to their discrete analogues.

2.1. The Distribution of Degree of a Node in a Social Network

Consider a scenario in which a new member joining a club would randomly make acquaintance
with a number of members who are already present in the club. One may be interested in gaining
insight into the number of other members with whom a club member is acquainted in the club.
From the network formation modelling perspective, such is equivalent to a newborn node making
connections to a number of randomly chosen existing nodes in the network. One may then want to
study the distribution of degree of a node in this network. We take a closer look at the degree growth
process of a node in the network.

The degree growth process of a node in a network as the network grows may be divided into
two parts. When a node is newly born into the network, the node makes a number of connections to
nodes randomly chosen from the existing pool of nodes in the network. We term this process the initial
process, and the number of connections the node makes at birth is considered as the initial degree
of the node. Thereafter, this node may or may not be randomly chosen by a subsequent newborn
node in the course of the network growth. If this node is chosen by a newborn node, this node now
receives a connection from the newborn node and hence increases the number of connections (edges)
by one; the number of connections of this node does not increase if this node is not chosen. We term
this process the random process, and the number of connections this node receives in this random
process is considered as the random degree. As a consequence, the (total) degree of this node in the
network is essentially the sum of its initial degree and its random degree.
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Bishop establishes the distribution of degree of a node in a network when the network grows
sufficiently large (Jackson 2005a). Specifically, let n be the constant number of connections a newborn
node makes to (n) equally likely chosen nodes that are already present in the network. Bishop
approximates, using the notion of mean-field analysis, that the random degree a node receives in the
random process is exponentially distributed with mean equal to µ0. In this case, one may obtain that
µ0 = n. To see this, recall that each node is introduced into the network at a point in time, by time t in
the network, there are a total of t existing nodes and there are a total of nt edges (since n edges are
added to the network each time a new node is introduced); therefore, the average number of edges
a node in the random process may acquire in the long run is µ0 = limt→∞(nt/t) = n. Bishop further
determines that incorporating the initial degree given to a node in the initial process, in this case,
n, into the above-mentioned exponential distribution results in a shift to the right by n units of the
exponential distribution. Such is true in that each node in the network has at least degree n, the initial
degree, and that the degree of each node grows as the node may be chosen by a newborn node in
the random process. In sum, letting K be the degree (initial degree plus random degree) of a node
in the network, Bishop has found that K is a shifted exponential random variable with the following
probability density function,

f (k) =
1
n

e−
k−n

n , k ≥ n. (1)

The above result may not be practical since the degree of a node ought to be a nonnegative integer.
However, such is usually considered as an approximation to the distribution of node degree and left
as it is in the literature. To make a better sense of Equation (1), we therefore endeavor to convert it
to a geometric distribution since it is common knowledge that the discrete analog of the exponential
distribution is the geometric distribution.

2.2. The Discrete Analog of the Exponential Distribution

This subsection deals with converting the exponential distribution to its discrete analog.
Consider a nonnegative real-valued random variable X. Assume that X has the following

probability density function and cumulative density function, respectively,

f (x) =
1

µ0
e−

x
µ0 , x ≥ 0,

and
F(x) = 1− e−

x
µ0 , x ≥ 0.

As such, X is simply an exponential random variable with mean E(X) = µ0. Let us imagine slicing
the area under the graph of f (x) into vertical bars of width a such that the area of the first bar is equal

to F(a) − F(0) = 1− e−
a

µ0 ; the area of the second bar, F(2a) − F(a) = e−
a

µ0 − e−
2a
µ0 ; the area of the third

bar, F(3a) − F(2a) = e−
2a
µ0 − e−

3a
µ0 ; and so on (Teague 2015; Bain and Engelhardt 1992). In general, the

area of the nth bar, n = 0, 1, 2, . . . , is given by (note that we use n = 0 to mean the first bar, n = 1 to
mean the second bar, etc.)

F((n + 1)a)− F(na) = e−
na
µ0 − e−

(n+1)a
µ0

= e−
na
µ0

(
1− e−

a
µ0

)
.

(2)

The above discussion underlies a geometric distribution. Suppose that Y is a nonnegative
integer-valued random variable. Further suppose that P(Y = 0) is equal to the area of the first bar;
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that P(Y = 1), the area of the second bar, that P(Y = 2), the area of the third bar; and so forth. Then,
Equation (2) yields

P(Y = y) = F((y + 1)a)− F(ya)

= e−
ya
µ0

(
1− e−

a
µ0

)
= qy p,

(3)

where q = e−
a

µ0 , p = 1− e−
a

µ0 , and y = 0, 1, 2, . . . It is now obvious that Y is a geometric random variable

whose probability of success is p = 1− e−
a

µ0 and probability mass function is Equation (3). It follows

that the mean of Y is E(Y) = q/p = e−
a

µ0 /(1− e−
a

µ0 )

We want random variable Y to closely trail random variable X. To this end, we equate the means
of the two random variables, resulting in

E(Y) = E(X)

e−
a

µ0

1− e−
a

µ0

= µ0.

Solving the above equation for a gives rise to

a = µ0ln
(

1 + µ0

µ0

)
.

Such suggests that in order for Y to share the same mean as that of X, one should set the width a
of each bar equal to µ0 ln((1 + µ0)/µ0). By so doing, the probability of success for Y is now

p =
1

1 + µ0
, (4)

and q = µ0/(1 + µ0). In a nutshell, the discrete analogue, sharing the same mean, of an exponential
distribution with mean µ0 is the geometric distribution with probability of success 1/(1 + µ0).

2.3. The Discrete Distribution of Degree of a Node in a Social Network

We are now in a position to determine a discrete analog of Equation (1).
Let us visit the results established by Bishop (2014) and discussed in Section 2.1. The random

degree of a node acquired in the random process is exponentially distributed with mean n,
as approximated by Bishop. Drawing upon the results from Section 2.2, one may now infer that
the discrete random degree (say, Y), having the same mean n (hence, µ0 = n) for the discrete random
degree associated with the same random process, is geometrically distributed with probability of
success 1/(1 + n). Furthermore, adding the initial degree n obtained in the initial process to the node
moves the geometric distribution to the right by n units. Therefore, if K is the total degree of the
node in the network, we now have that K (K = Y + n) is a shifted geometric random variable with the
following probability mass function,

P(K = k) = qk−n p, (5)

where p = 1/(1 + n), q = n/(1 + n), and k = n, n + 1, n + 2, . . . In summary, one may now readily
conclude that Equation (5) is a practically meaningful distribution of degree of a node in a network in
which a newborn node makes connections to n equally chosen nodes that are already present in the
network. On the other hand, Equation (1) is an approximation to the said distribution.
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A close reading of the literature reveals that the study of network formation has thus far primarily
been focused upon that a newborn node makes connections to a constant number of randomly chosen
existing nodes in the network. However, more practically, it may not be unusual that a new member
joining a club may wish to make acquaintance with a random number of randomly chosen existing club
members. Under such circumstances, one may wish to gain insight into the number of other members
with whom a club member is acquainted in the club. Such is equivalent to determining the distribution
of degree of a node in a network in which a node makes at-birth connections to a random number of
randomly chosen nodes that are already present in the network. To the best of our knowledge, no
work to date has been conducted with such network formation scenarios. In the sequel, we seek to
find the distribution of degree of a node in a network built under these scenarios.

3. Social Network Formation with a Random Number of Initial Connections

This section delves into the distribution of degree of a node in a network formed with a random
number of initial connections from a node when the node is first introduced into the network. For
example, new club members, more realistically, may want to make acquaintance with a varying
number, rather than a fixed number, of randomly chosen members who are already present in the club.
Such may be true in that an individual may tend to more likely (less likely) make acquaintance with
other individuals having similar (dissimilar) backgrounds, ages, interests, personalities, hobbies, and
the likes, on Facebook, Twitter, LinkedIn, etc. As another example, one is more likely (less likely) to
connect with someone whom they trust more (less). Specifically in this section, Section 3.1 formally
presents our models; Section 3.2 seeks to find solutions to our models. Then, in Section 3.3, we will
provide numerical examples to verify results established in Section 3.2.

3.1. Our Models

We consider here a network being constructed in the following fashion. As a new node is
introduced into the network, a number, determined by chance, of nodes that are already present in
the network are equally likely chosen. An edge is then added between the new node and each of
the chosen nodes. This process is repeated indefinitely. As an example, a newborn node, with a 30%
chance, may connect to one equally likely chosen existing node; and, with a 70% chance, may connect
to two equally likely chosen existing nodes. This process may repeat as many times as we wish. The
objective is to determine the distribution of degree of a node in such a network.

We use a positive integer-valued random variable to represent the random number of nodes
equally likely chosen from the pool of existing nodes by a node at the time when it is born into the
network. Let K be this random variable. We may then specifically define the probability mass function
of K in the following Table 1. That is, a newborn node may connect to k1 equally likely chosen existing
nodes with probability p1; to k2 equally likely chosen existing nodes with probability p2; and so on.
We note that ki, with i = 1, 2, . . . , n, are positive integers, and that ∑n

i=1 pi = 1. Of great interest to us
then is the number of other nodes to which a node connects as the network becomes sufficiently large.

Table 1. The probability mass function of random variable K.

K k1 k2 . . . . . . kn

Probability p1 p2 . . . . . . pn

3.2. Determine the Distribution of Degree of a Node with a Random Number of Initial Connections

This section seeks to determine the distribution of degree of a node in the model presented in
the preceding section. To this end, let µ0 = E(K) = k1p1 + k2p2 + . . . ... + knpn. Observe that µ0 is the
average number of edges a node may acquire in the random process. To see this, each new node at
birth adds, on average, (k1p1 + k2p2 + . . . ... + knpn) edges to the network. By time t, there are a total
of t existing nodes and hence there are a total of (k1p1 + k2p2 + . . . ... + knpn) t edges in the network;
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thus, the average number of edges a node in the random process may acquire in the long run is
limt→∞((k1 p1 + k2 p2 + . . . . . . + kn pn)t/t) = k1 p1 + k2 p2 + . . . . . . + kn pn = µ0. Drawing upon
the results presented in Section 2, we are now in a position to further determine the distribution of
degree of a node in the network.

Consider a node chosen at random from the network. Let K0 represent the number of edges
(random degree) the node acquires in the random process. Then, K0 is a geometric random variable,
with probability of success 1/(1 + µ0), having the following probability mass function,

P(K0 = k) = qk p,

where p = 1/(1 + µ0), q = µ0/(1 + µ0), and k = 0, 1, 2, . . . Now assume that this node makes at its birth
ki (i = 1, 2, . . . , n) connections (initial degree) to equally likely chosen existing nodes in the initial
process. Then, if Ki represents the total degree (initial degree plus random degree) the considered node
possesses, Ki (Ki = K0 + ki) is a shifted geometric random variable resulted from moving K0 by ki units
to the right. Consequently, the probability mass function of Ki is

P(Ki = k) = qk−ki p,

where p = 1/(1 + µ0), q = µ0/(1 + µ0), and k = ki, ki + 1, ki + 2, . . .
One may in fact visualize that there are n types of nodes in the network. That is, nodes of Type i

are the nodes whose initial degree is ki (i = 1, 2, . . . , n). Subsequently, the degree of a node of Type i
is represented by Ki. Notably, as the network becomes sufficiently large, one may consider that the
proportion of Type i nodes is approximately pi, and that types of nodes are nearly independent. As it
turns out, our results reflect that this consideration is indeed warranted. Therefore, choosing randomly
a node from the network is not very much unlike drawing at random an individual from a population
comprising multiple subpopulations. Such underlies the basis of determining the distribution of
degree of a node in the network.

The following proposition establishes that the degree of a node in a network as constructed in
accordance with Section 3.1. To this end, we first assume that k′ = min{k1, k2, ..., kn}; that k = k′, k′ + 1, k′

+ 2, ...; and that Ii(k) = 1 if k ≥ ki and Ii(k) = 0 if k < ki (i = 1, 2, . . . , n). Finally, suppose that K represents
the total degree (initial degree plus random degree) of a node in the network. We now state and prove
the proposition as follows.

Proposition 1. The degree K of a node in a network as constructed in accordance with Section 3.1 is a mixture.
Specifically, K = KI with P(I = i) = pi, i = 1, 2, . . . , n. Furthermore, the probability mass function of K is

P(K = k) =
n
∑

i=1
Ii(k)·pi·qk−ki p where p = 1/(1 + µ0), q = µ0/(1 + µ0), and k = k′, k′ + 1, k′ + 2, . . .

Proof of Proposition 1. The degree K of a node in a network as constructed in accordance with
Section 3.1 is a mixture. To see this, one may visualize that the network is composed of a population of
roughly independent nodes, as the network becomes sufficiently large. Moreover, there are n nearly
independent subpopulations. A subpopulation i is a set of nodes with initial degree being ki; and
designates a node of subpopulation i as a node of Type i (i = 1, 2, . . . , n). The fraction of Type i nodes
in the network is approximately pi; the degree of a Type i node is represented by Ki. Therefore, the
degree K of a node chosen at random from the network is then a mixture K = KI with P(I = i) = pi, i = 1,
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2, . . . , n, since the chosen node is of Type i with probability pi. Now, to determine the probability mass
function of K, we invoke the Law of Total Probability to have

P(K = k) = P(K1 = k | the chosen node is of Type 1)P(the chosen node is of Type 1)+
P(K2 = k | the chosen node is of Type 2)P(the chosen node is of Type 2)+

...
...
...

P(Kn = k | the chosen node is of Type n)P(the chosen node is of Type n)
= I1(k)·qk−k1 p·p1 + I2(k)·qk−k2 p·p2 + ···+ In(k)·qk−kn p·pn

=
n
∑

i=1
Ii(k)·pi·qk−ki p,

where p = 1/(1 + µ0), q = µ0/(1 + µ0), and k = k′, k′ + 1, k′ + 2, . . . The proof has now been completed. �

The above proposition provides us with a theoretical means to approximate the distribution
of degree of a node in a network considered in the study. It does not come as a surprise that such
approximations yield desirable results as the network becomes sufficiently large. The next section
presents three numerical examples to demonstrate the goodness of the proposition.

3.3. Numerical Examples

The section presents three numerical examples to show the goodness of Proposition 1 established
in the previous section. In each example, we conduct the following study. A simulation program
coded in MATLAB is leveraged to build networks of different sizes as our models. The size of a
network refers to the number of nodes in the network. We look into networks with three different sizes.
For each network, a probability histogram (percent of nodes versus degree) is constructed; we dub
this “Simulation” data. One the other hand, another probability histogram (percent of observations
versus observation) is created, only this time around, employing observations randomly drawn from
the mixture established in Proposition 1; we dub this “Approximation” data. These two histograms are
overlaid on each other for comparison. Specifically, blue solid lines represent Simulation data, while
red dotted lines mean Approximation data.

We now look at our first example. Table 2 shows the probability mass function of random variable
K representing the random number of initial connections for a newly born node. Most briefly, when a
new node is introduced into the network, we, with probability 0.30, equally likely choose one existing
node and then connect the new node and the chosen node with an edge (rendering initial degree 1 for
the new node in this case). However, we, with probability 0.70, equally likely pick two existing nodes
and then connect the new node and each of the chosen nodes with an edge (rendering initial degree 2
for the new node in this case). (We have alluded to this example before in the paper.) We note, in this
example, that µ0 = E(K) = 1(0.30) + 2(0.70) = 1.7, and hence that p = 1/2.7 and q = 1.7/2.7. We therefore
have that P(K1 = k) = (1.7/2.7)k−1(1/2.7), k = 1, 2, . . . , and that P(K2 = k) = (1.7/2.7)k−2(1/2.7), k = 2, 3,
. . . Finally, we have, as discussed in Proposition 1, the mixture K = KI with P(I = 1) = 0.30 and P(I =
2) = 0.70.

Table 2. The probability mass function of random variable K for our first example.

K 1 2

Probability 0.30 0.70

We generate data as follows. First, a MATLAB program simulates the network construction,
creating three networks of different sizes which are, for this example, 100, 1000 and 10,000 nodes.
Then, for each network, the fraction of nodes of a certain degree is determined to establish a
probability histogram; such is indicated as “Simulation” data. In the meantime, we draw randomly
a set of observations, of the same size, from our mixture K. A similar histogram is subsequently
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constructed based upon this set of observations; such is presented as “Approximation” data. Finally,
we superimpose these two histograms for comparison; we use blue solid lines to mean Simulation data
and red dotted lines for Approximation data. Let us now take a look at Figure 1. There are probability
histograms (a), (b) and (c) for networks with 100, 1000 and 10,000 nodes, respectively. Specifically,
Histogram (a) reveals that there are about 10 nodes of degree 1 in the simulated network (blue solid
lines) while there are about 4 nodes of degree 1 in the random observations drawn from K (red dotted
lines), that there are about 38 nodes of degree 2 in simulation while there are about 35 nodes of degree
2 in approximation, etc. We note that Histogram (a) may also be interpreted like this. A random node
chosen from the network has a 10% chance of possessing degree 1 while a 38% chance of possessing
degree 2, and so on, according to the simulation data; on the other hand, the said node has a 4%
chance of possessing degree 1 while a 35% chance of possessing degree 2, and so on, based upon the
approximation data. Lastly, it is evident that the simulation and approximation data match each other
better as the size of the network grows larger from (a) to (c).
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Figure 1. Probability histograms for networks with Table 2. (a) 100 nodes; (b) 1000 nodes; (c)
10,000 nodes.

We next move on to the second example. Table 3 contains the possible options for initial degree
that a node of the considered network may be given. A quick arithmetic returns µ0 = 9.55; such is
employed to establish the desirable mixture K.

Table 3. The probability mass function of random variable K for our second example.

K 3 5 9 10 16

Probability 0.19 0.11 0.37 0.03 0.30

Figure 2 illustrates similar histograms for this second example. Since the initial degree options are
more complex, we simulate three larger networks of sizes 1000, 10,000 and 100,000, respectively. Notice,
as well, that the simulation and approximation data become closer to each other going from (a) to (c).

Let us finally talk about our last example, the third example. The initial degree of a node in this
example is detailed on Table 4. This example is characterized by highly varying initial degree with
average being µ0 = 16.66.
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Table 4. The probability mass function of random variable K for our third example.

K 5 7 11 12 19 23 30

Probability 0.09 0.02 0.08 0.23 0.42 0.05 0.11

Results for this third example are illustrated in Figure 3. The similarity between simulation and
approximation is once again apparent.
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Figure 3. Probability histograms for networks with Table 4. (a) 1000 nodes; (b) 10,000 nodes;
(c) 100,000 nodes.

The above examples clearly verify that the mixture found in Proposition 1 closely approximates
the distribution of degree of a node in networks for which initial degree may be very much random.

4. Conclusions

Researchers have actively studied the formation of networks for the past decades. Their models
typically assume that a newborn node connects with a fixed number of nodes chosen in accordance with
some given rules from nodes that are already present in the network. They determine the node degree
distribution for such networks; they present their results as continuous distributions, which is a glaring
deficiency since node degree is clearly discrete. Our study differs greatly from that of these researchers
in that we assume that a new node makes a random number of connections with equally likely chosen
existing nodes. Not only did we present our results in discrete distributions, we also found that
the node degree distribution of our networks is a mixture of geometric distributions. We provided
three simulation examples to demonstrate that our discrete results reasonably approximate the true
distributions. To the best of our knowledge, no work has been carried out in this regard. We deem that
our work is a significant step forward in this field of research. Future work may look into extending
our work to network formation with preferential attachment.
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