Supplementary Material

(1) Sample description and survey non-response rates

The DLHE longitudinal survey is a survey based on graduates who responded to the DHLE early survey which took place approximatively 6 months after graduation ($\mathrm{N}=354,730$, valid responses, representing 75.3 \% of all eligible student population). THE DHLE longitudinal sample used in our paper consisted of two sub-samples: sub-sample A which oversampled certain groups and sub-sample B which was a random sample. Out of 80,835 graduates who were selected to be part of sub-sample A, 33,640 responded (42% response rate) and out of 192,745 graduates who were included in the subsample B (who had a valid e-mail address) 28,565 graduates responded (15% response rate). Therefore, in total 62,205 graduates answered the longitudinal DHLE survey (3.5 years after graduation), resulting in an overall survey response rate of 23%. For more information about the sample design please see HESA's webpage for the 2008-2009 cohort DHLE longitudinal: https://www.hesa.ac.uk/data-and-analysis/publications/long-destinations-2008-09/definitions

We recognise that the low response rate is an important limitation of the data. However, this is not unusual for graduates' surveys. Similar response rates were achieved by the 'Research into Employment and Professional Flexibility' (REFLEX) survey (for the UK, it was 23 \% ; see Allen and Van der Velden 2007: 4) and by the study "The Class of '99: A Study of the Early Labour Market Experiences of Recent Graduates' (24\%; see Purcell et al. 2005: 213).

The HESA technical report for the 2008-2009 cohort (HESA, 2013) provides more details about the non-response rate showing some descriptive statistics by certain socio-demographic and higher education characteristics. Although there are some slight differences in the non-response rate by certain groups (e.g. ethnicity, age), we include these variables in our analysis, and hence we minimize the potential bias related to this. Moreover, MacMillan, Tyres \& Vignoles (2015) who analysed the 20062007 HESA cohort compare percentages based on full early and longitudinal DHLE samples (Table A1) and they show very small differences by parental background, type of area, private schooling in the composition of the two samples, indicating that the non-response is not biased towards certain social backgrounds. We are unable to produce a similar table since we have no access to the full early and longitudinal DHLE data to assess differences in the distributions of our sample and these two samples on key variables. However, we do not have reasons to believe that there exist specific biases which may affect the data for the cohort 2008-2009 but not previous cohorts.

For descriptive analysis, we use weights provided by HESA to correct for non-response, oversampling of sub-groups and the two different sampling strategies (sub-sample A and sub-sample B above). We do not use weights in the multilevel models since they are not compatible with MCMC and discrete responses in MLwiN (the software used for data analysis). Moreover, our models already include most of the variables used to construct the weights.

References:

Allen, Jim, and Rolf Van der Velden. 2007. The Flexible Professional in the Knowledge Society: General Results of the REFLEX project. Maastricht University: Research Centre for Education and the Labour Market.
Purcell, K., P. Elias, R. Davies, and N. Wilton. 2005. The Class of'99: A study of the early labour market experiences of recent graduates. Warwick Institute for Employment Research.
Macmillan, Lindsey, Claire Tyler, and Anna Vignoles. 2015. Who gets the top jobs? The role of family background and networks in recent graduates' access to high-status professions. Journal of Social Policy 44: 487-515.
(2) Missing information

Comparing the distributions of our variables in the sample of excluded cases and in the completecase sample (Table S1), it emerges that graduates in the latter sample are slightly more advantaged (slightly higher percentage in top jobs, graduating at age 21-22, from old universities, with first and upper second class of degree, holding a postgraduate diploma). They are also slightly more likely to be white graduates and females. Also Table S2 shows that the distribution by social class of destination of those with missing information for parental social class is very similar to the NS-SEC at the bottom of the class schema, suggesting that those who are missing are more likely to come from more disadvantaged backgrounds.

However, the differences presented in table S1 are small and although we found that the missingness/complete cases indicator is significantly associated with the outcome variable (i.e. social class of destination), this indicator is not significant when including our control variables (with the exception of the contrast 'intermediate jobs vs. top jobs'). We decide to apply listwise deletion since this strategy is considered a valid way to deal with missing data when the missingness indicator is (conditionally) independent in relation to the outcome variable (e.g. White \& Carlin, 2010). We acknowledge though that we might underestimate the parental social class gap.

We do not employ multiple imputation due to the limited number of variables available. Given that parental background is a key predictor for graduates' destinations and HE variables are key mediators, we avoid imputing the missing values based on these variables as this would create a circular bias. Similarly, we consider that substituting missing values with sample mean values would not overcome this issue and might introduce further biases.

Reference

White, Ian R., and John B. Carlin. 2010. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Statistics in Medicine 29: 2920-31.

Table S1. Sample description comparing the distribution of excluded cases due to missing data, complete cases and total sample (column \%), sub-sample of those who were in employment).

Variable	Excluded cases	Complete cases	Total
Social class 3.5 years since graduation			
Higher manag \& profesionals	27	29	29
Lower manag \& professionals	45	45	45
Intermediate	21	19	19
Semi-routine and routine	7	6	6
Parental social class			
Higher manag \& profesionals	31	27	27
Lower manag \& professionals	31	32	32
Intermediate	24	25	25
Semi-routine and routine	14	16	16
Gender			
Male	45	42	43
Female	55	58	57
Graduation age	4	3	3
20	74	79	77
$21-22$	20	17	18
$23-24$	3	1	1
$25+$		80	84
Race	10	7	84
White	3	3	3
Asian	6	6	6

Disability status			
Not disabled	89	90	90
Disabled	11	10	10
Country of domicile (GB)			
England	82	85	85
Scotland	9	9	9
Wales	9	6	7
Field of study			
Medicine\&Veterinary	3	3	3
Subjects allied to medicine	6	6	6
Biological sciences, Agriculture, Physics, Maths, Computer science	25	28	27
Engineering and architecture	10	9	9
Social studies, Languages, Historical \& Philosophical studies, Arts \& design	34	33	33
Law	4	4	4
Business and mass communication	15	14	14
Education	3	3	3
Combined	suppressed	<1	<1
Higher education institution			
Ancient universities	8	8	8
Old uniersities	26	31	30
Newer uniersities	20	21	21
Post-92 and other uniersities	46	40	42
Class of degree			
First class	15	17	17
Upper-second class	50	53	53
Lower-second class	25	22	23
Third class	4	3	3
Unclassified	5	4	4
Further studies			
No further qualifications	55	55	55
Higher degree by research	1	1	1
Higher degree by taught course	13	12	12
Postgraduate diploma	9	12	11
First degree	1	1	1
Other diploma or certificate	9	8	8
Professional qualification	9	10	10
Other qualification	3	3	3
Not aiming for a qualification	suppressed	<1	<1
Industry job 3.5 years since graduation			
Primary	1	1	1
Secondary	9	9	9
Tertiary	12	12	12
Finance,insurance \& real estate	6	7	7
Professional, scientific and technical	15	18	17
Public administration, defence and compulsory social security	5	5	5
Education	19	19	19
Human health and social work	12	14	13
Other quaternary	21	16	17
Geographic mobility status			
No	30	28	29
Yes	70	72	71

[^0]Table S2. Parental social class (including separate category for missing values) and social class of dest ination.

	Social Class 3.5 Years Since Graduation			
Parental Social Class	 profesionals	 professionals	Intermediate	Semi-routine and routine
Higher manag \& profesionals	35	43	17	4
Lower manag \& professionals	30	45	19	6
Intermediate	27	46	21	7
Semi-routine and routine	24	46	21	9
Missing parental social class	25	47	20	8

Table S3. Parental social class and social class of destination (row \%, restricted GB sample: only those in employment and with valid information on all variables used in our analysis, $\mathrm{N}=18,940$)

| Unweighted Percentages | Class of Destination | | |
| :---: | :---: | :---: | :---: | :---: |
| Parental Social Class | $\begin{array}{c}\text { Higher manag \& } \\ \text { profesionals }\end{array}$ | $\begin{array}{c}\text { Lower manag \& } \\ \text { professionals }\end{array}$ | Intermediate | \(\left.\begin{array}{c}Semi-routine

and routine\end{array}\right]\)| 4 |
| :---: |
| Higher manag \& profesionals |

Table S4. Great Britain NUTS 3 areas in the top decile of percentage of professionals, indicators merg ed from the ONS Annual population Survey (Oct 2009-Sept 2010).

Inner London - West	29.7
Edinburgh, City of	27.5
Oxfordshire	27.1
South Nottinghamshire	25.1
Brighton and Hove	25.1
Cambridgeshire CC	24.9
Bristol, City of	24.6
York	24.4
Outer London - South	24.2
Inner London - East	24.0
Surrey	24.0
diff and Vale of Glamorgan	23.6

Table S5. Great Britain NUTS 3 areas in the bottom decile of percentage of professionals, indicators merged from the ONS Annual population Survey (Oct 2009-Sept 2010).
Gwent Valleys
Cornwall and Isles of Scilly
Dumfries \& Galloway
Leicester
Stoke-on-Trent 13.3
East Ayrshire and North Ayrshire Mainland 13.013.0
Orkney Islands 13.0
North and North East Lincolnshire 12.8
North Lanarkshire 12.6
Blackpool 12.5
Kingston Upon Hull, City of 12.4
Thurrock 12.4
North Nottinghamshire 11.6

Figure S1. Graduates' social class by social class of origin and by percentages of managers, directors and senior officials in the employment area (NUTS 3). Predicted median probability from a two-way interaction model.

Figure S2. Graduates' social class by social class of origin and by employment rate in the employment area (NUTS 3). Predicted median probability from a twoway interaction model.

Figure S3. Graduates' probability of attaining a top-level job by social class of origin and by percentages of professional jobs in the employment area (NUTS 3). Predicted median probability estimated in Figure 4, M2: Higher managerial and professional and Routine \& semi-routine parental social classes.

Figure S4. Graduates' probability of attaining a top-level job by social class of origin and by percentages of professional jobs in the employment area (NUTS 3). Predicted median probability estimated in Figure 4, M4: Higher managerial and professional and Routine \& semi-routine parental social classes.

Figure S5. Graduates' probability of attaining a top-level job by social class of origin and by percentages of professional jobs in the employment area (NUTS 3). Subsample of graduates who did NOT study Medicine \& Veterinary. Predicted median probability.

Gross interaction model (no controls)

Figure S6. Graduates' probability of attaining a top-level job by social class of origin and by percentages of professional jobs in the employment area (NUTS 3). Subsample of graduates who did NOT study Medicine \& Veterinary. Predicted median probability. Higher managerial and professional and Routine \& semi-routine parental social classes.

Figure S7. Distribution of class of degree by parental background by quartiles of professionals in the employment area (left: bottom quartile, right: top quartile): movers

Note: third class of degree and unclassified class of degree were combined to avoid counts in the cells smaller than the threshold recommended by HESA (22.5).

Figure S8. Graduates' social class by social class of origin and by percentages of professionals in the employment area (NUTS 3). Predicted median probability from a two-way interaction model (control variables included: gender, age at graduation, ethnicity, country of domicile and disability).

Figure S9. Graduates' social class by social class of origin, by percentages of professionals in the employment area (NUTS 3) and by geographic mobility. Predicted median probability from a three-way interaction model (control variables included: gender, age at graduation, ethnicity, country of domicile and disability).

Table S6. Full multilevel binary logistic models estimating graduates' probability of entering a top-level job 3.5 years from graduation. Movers.

	M1	Bayesia n-p	M2	$\begin{aligned} & \text { Bayesia } \\ & \mathrm{n}-\mathrm{p} \end{aligned}$	M3	$\begin{aligned} & \text { Bayesia } \\ & \mathrm{n}-\mathrm{p} \end{aligned}$	M4	Bayesia n-p	M5	$\begin{aligned} & \text { Bayesia } \\ & \mathrm{n}-\mathrm{p} \end{aligned}$	M6	$\begin{aligned} & \text { Bayesia } \\ & \mathrm{n}-\mathrm{p} \end{aligned}$	M7	$\begin{aligned} & \text { Bayesia } \\ & \mathrm{n}-\mathrm{p} \end{aligned}$	M8	Bayesia n-p
Fixed Part																
cons	-0.083	0.27	-0.083	0.317	-1.504	0.000	0.509	0.000	0.014	0.449	-0.149	0.053	0.494	0.002	-0.1	0.313
Lower manag \& profess occup	-0.953	0.000	-0.879	0.000	-0.394	0.004	-0.86	0.000	-0.474	0.021	-0.681	0.000	-0.666	0.002	-0.251	0.118
Intermediate occupations	-0.792	0.000	-0.659	0.001	-0.24	0.122	-0.58	0.002	-0.285	0.032	-0.544	0.001	-0.514	0.011	-0.043	0.398
Semi-routine and routine occupations and other	-1.294	0.000	-1.231	0.000	-0.666	0.019	-1.105	0.000	-0.837	0.000	-1.15	0.000	-1.032	0.000	-0.588	0.009
job2_nuts3_professionals	-0.016	0.000	-0.006	0.234	0.026	0.000	-0.019	0.000	0.009	0.118	-0.006	0.105	-0.004	0.298	0.012	0.12
Lower manag \& profess occup.job2_nuts3_professionals	0.033	0.000	0.031	0.002	0.013	0.049	0.032	0.000	0.015	0.039	0.023	0.004	0.023	0.008	0.009	0.139
Intermediate occupations.job2_nuts3_professio nals	0.022	0.004	0.016	0.093	0.001	0.492	0.018	0.051	0.003	0.427	0.012	0.076	0.011	0.145	-0.004	0.335
Semi-routine and routine occupations and other.job2_nuts3_professionals	0.038	0.000	0.032	0.008	0.014	0.1	0.035	0.002	0.019	0.021	0.03	0.001	0.028	0.003	0.018	0.06
female			-0.606	0.000	-0.521	0.000	-0.607	0.000	-0.696	0.000	-0.573	0.000	-0.565	0.000	-0.442	0.000
20			-0.249	0.015	-0.247	0.016	-0.23	0.018	-0.338	0.002	-0.228	0.024	-0.24	0.018	-0.191	0.065
23-24			0.556	0.000	0.056	0.159	0.56	0.000	0.236	0.000	0.567	0.000	0.499	0.000	0.093	0.054
25+			1.368	0.000	0.25	0.127	1.359	0.000	0.731	0.000	1.364	0.000	1.206	0.000	0.35	0.056
Asian			0.349	0.000	0.049	0.273	0.295	0.000	0.308	0.000	0.302	0.000	0.295	0.001	0.033	0.35
Black			-0.43	0.001	-0.63	0.000	-0.345	0.004	-0.321	0.005	-0.458	0.000	-0.458	0.001	-0.425	0.000
Other (including mixed)			0.003	0.481	-0.179	0.019	0.001	0.487	-0.025	0.379	-0.001	0.493	-0.017	0.419	-0.119	0.095
disabled			-0.28	0.000	-0.229	0.000	-0.239	0.000	-0.252	0.000	-0.249	0.000	-0.245	0.000	-0.136	0.027
Scotland			0.169	0.015	0.011	0.446	0.056	0.254	0.018	0.42	0.171	0.014	0.073	0.174	-0.111	0.103
Wales			-0.032	0.345	-0.061	0.246	-0.107	0.124	0.012	0.444	0.000	0.493	-0.024	0.406	-0.022	0.403
Medicine\&Veterinary					5.233	0.000									4.882	0.000
Subjects allied to medicine					0.872	0.000									1.076	0.000
Biological sciences,agriculture,physics, maths, computer science					0.861	0.000									0.852	0.000
engineering and architecture					1.497	0.000									1.214	0.000

law	1.341	0.000						1.069	0.000
business and mass comunication	0.389	0.000						0.435	0.000
education	-1.379	0.000						-0.75	0.001
combined	0.734	0.014						0.786	0.01
old uni		-0.055	0.254					-0.089	0.15
newer uni		-0.232	0.000					-0.146	0.053
post-92 and other		-0.948	0.000					-0.615	0.000
upper-second class			-0.486	0.000				-0.385	0.000
lower-second class			-0.784	0.000				-0.604	0.000
third class			-1.086	0.000				-0.94	0.000
unclassified			1.853	0.000				0.032	0.422
Higher degree by research				0.788	0.000			0.689	0.000
Higher degree by taught course				0.251	0.000			0.289	0.000
Postgraduate diploma or certificate				-0.425	0.000			-0.3	0.000
First degree				0.194	0.209			-0.147	0.287
Other diploma or certificate				-0.377	0.000			-0.337	0.000
Professional qualification				0.638	0.000			0.265	0.000
Other qualification				-0.434	0.002			-0.362	0.004
Not aiming for qualification				0.359	0.131			0.503	0.088
Primary						-0.235	0.127	-0.331	0.066
Secondary						-0.168	0.014	-0.105	0.092
Tertiary						-1.36	0.000	-1.033	0.000
Finance,insurance \& real estate						-0.66	0.000	-0.504	0.000
Public administration and defence; social security						-0.62	0.000	-0.458	0.000
Education						-1.524	0.000	-1.149	0.000
Human health and social work activities						-0.247	0.000	-0.859	0.000
Other quaternary						-1.097	0.000	-0.806	0.000

Random Part								
Level: job2_nuts3								
Var(cons)	0.031	0.023	0.025	0.025	0.033	0.029	0.022	0.029
Units: job2_nuts3	128	128	128	128	128	128	128	128
Units: idresp	13575	13575	13575	13575	13575	13575	13575	13575
DIC:	$\begin{array}{r} 17273.60 \\ 8 \end{array}$	$\begin{array}{r} 16744.2 \\ 4 \end{array}$	$15209 .$	$\begin{array}{r} 16333 . \\ 4 \end{array}$	$\begin{array}{r} 16039.9 \\ 9 \end{array}$	$\begin{array}{r} 16508.0 \\ 5 \end{array}$	$\begin{array}{r} 15897 . \\ 9 \end{array}$	$\begin{array}{r} 14347.2 \\ 6 \end{array}$
pD:	42.688	46.316	53.045	50.936	55.392	57.942	52.14	76.36
Burnin:	500	500	500	500	500	500	500	500
Chain Length:	5000	5000	5000	5000	5000	5000	5000	5000

Table S7. Full multilevel binary logistic models estimating graduates' probability of entering a top-level job 3.5 years from graduation. Movers, Medicine \& Veterinary excluded.

	$\begin{gathered} \hline \text { M1_n } \\ \text { o } \\ \text { med } \end{gathered}$	$\begin{aligned} & \text { Bayesia } \\ & \text { n-p } \end{aligned}$	M2	$\begin{aligned} & \text { Bayesia } \\ & \text { n-p } \end{aligned}$	M3_nomedici ne	Bayesia $\mathrm{n}-\mathrm{p}$	M4	$\begin{aligned} & \text { Bayesia } \\ & \text { n-p } \end{aligned}$	M5	$\begin{aligned} & \text { Bayesia } \\ & \text { n-p } \end{aligned}$	M6	$\begin{aligned} & \text { Bayesia } \\ & \text { n-p } \end{aligned}$	M7	$\begin{aligned} & \text { Bayesia } \\ & \text { n-p } \end{aligned}$	M8	$\begin{gathered} \text { Bayesia } \\ \text { n-p } \end{gathered}$
Fixed Part																
cons	-0.999	0.000	-0.646	0.000	-1.489	0.000	-0.227	0.147	-0.258	0.087	-0.66	0.000	0.02	0.434	-0.129	0.237
Lower manag \& profess occup	-0.549	0.000	-0.564	0.000	-0.38	0.107	-0.466	0.000	-0.446	0.017	-0.494	0.000	-0.484	0.005	-0.238	0.093
Intermediate occupations	-0.364	0.052	-0.274	0.162	-0.169	0.306	-0.191	0.19	-0.179	0.183	-0.259	0.095	-0.277	0.074	0.017	0.474
Semi-routine and routine occupations and other	-0.761	0.001	-0.618	0.006	-0.567	0.014	-0.657	0.008	-0.706	0.001	-0.696	0.002	-0.61	0.000	-0.521	0.031
job2_nuts3_professionals	0.018	0.054	0.019	0.01	0.025	0.000	0.009	0.144	0.021	0.000	0.017	0.002	0.017	0.006	0.013	0.005
Lower manag \& profess occup.job2_nuts3_professionals	0.018	0.007	0.02	0.005	0.012	0.166	0.017	0.003	0.015	0.058	0.017	0.002	0.018	0.014	0.009	0.136
Intermediate occupations.job2_nuts3_profess ionals	0.007	0.25	0.003	0.39	-0.003	0.374	0.003	0.397	-0.001	0.505	0.003	0.389	0.004	0.302	-0.007	0.163
Semi-routine and routine occupations and other.job2_nuts3_professionals	0.019	0.069	0.012	0.176	0.009	0.292	0.02	0.054	0.017	0.043	0.016	0.054	0.016	0.09	0.015	0.107
female:female			-0.713	0.000	-0.525	0.000	-0.7	0.000	-0.732	0.000	-0.678	0.000	-0.572	0.000	-0.442	0.000

20	-0.232	0.019	-0.256	0.011	-0.214	0.032	-0.235	0.021	-0.227	0.029	-0.199	0.049	-0.197	0.047
23-24	0.144	0.003	0.05	0.177	0.183	0.000	0.12	0.018	0.164	0.001	0.127	0.01	0.091	0.06
25+	0.368	0.049	0.246	0.145	0.477	0.021	0.372	0.044	0.375	0.042	0.378	0.044	0.339	0.086
Asian	0.188	0.013	0.06	0.228	0.157	0.027	0.246	0.001	0.135	0.049	0.154	0.038	0.041	0.316
Black	-0.532	0.000	-0.646	0.000	-0.456	0.001	-0.368	0.003	-0.532	0.000	-0.492	0.000	-0.427	0.001
Other (including mixed)	-0.148	0.049	-0.184	0.019	-0.138	0.054	-0.091	0.152	-0.151	0.038	-0.147	0.05	-0.122	0.091
disabled	-0.255	0.000	-0.218	0.000	-0.217	0.000	-0.221	0.001	-0.216	0.000	-0.218	0.001	-0.124	0.045
Scotland	0.129	0.052	0.03	0.361	0.046	0.315	0.125	0.063	0.13	0.061	0.051	0.273	-0.087	0.15
Wales	-0.056	0.26	-0.055	0.28	-0.099	0.131	0.017	0.41	-0.029	0.38	-0.036	0.354	-0.014	0.445
Subjects allied to medicine			0.873	0.000									1.094	0.000
Biological sciences,agriculture,physics, maths, computer science			0.863	0.000									0.85	0.000
engineering and architecture			1.493	0.000									1.211	0.000
law			1.341	0.000									1.058	0.000
business and mass comunication			0.392	0.000									0.423	0.000
education			-1.366	0.000									-0.728	0.005
combined			0.729	0.019									0.772	0.011
old uni					-0.027	0.365							-0.076	0.178
newer uni					-0.071	0.191							-0.138	0.039
post-92 and other					-0.729	0.000							-0.599	0.000
upper-second class							-0.472	0.000					-0.381	0.000
lower-second class							-0.761	0.000					-0.599	0.000
third class							-1.114	0.000					-0.957	0.000
unclassified							0.06	0.359					0.026	0.445
Higher degree by research									0.912	0.000			0.672	0.002
Higher degree by taught course									0.307	0.000			0.292	0.000
Postgraduate diploma or certificate									-0.447	0.000			-0.299	0.000
First degree									-0.093	0.361			-0.17	0.255
Other diploma or certificate									-0.407	0.000			-0.336	0.000

Professional qualification						0.585	0.000			0.267	0.000
Other qualification						-0.391	0.001			-0.361	0.005
Not aiming for qualification						0.411	0.113			0.495	0.084
Primary								-0.125	0.275	-0.292	0.086
Secondary								-0.095	0.089	-0.117	0.064
Tertiary								-1.305	0.000	-1.048	0.000
Finance, insurance \& real estate								-0.632	0.000	-0.514	0.000
Public administration and defence; compulsory social security								-0.598	0.000	-0.469	0.000
Education								-1.495	0.000	-1.156	0.000
Human health and social work activities								-0.897	0.000	-0.903	0.000
Other quaternary								-1.075	0.000	-0.817	0.000
Random Part											
Level: job2_nuts3											
Var(cons)	0.052	0.043	0.025	0.043	0.043	0.043		0.034		0.027	
Units: job2_nuts3	128	128	128	128	128	128		128		128	
Units: idresp	13075	13075	13075	13075	13075	13075		13075		13075	
DIC:	$\begin{array}{r} 16181 . \\ 4 \end{array}$	$\begin{array}{r} 15792 . \\ 03 \end{array}$	15093.454	$\begin{array}{r} 15534.2 \\ 35 \end{array}$	$\begin{array}{r} 15598 . \\ 45 \end{array}$	$\begin{array}{r} 15572 . \\ 3 \end{array}$		$\begin{array}{r} 15039 . \\ 78 \end{array}$		$\begin{array}{r} 14217.9 \\ 97 \end{array}$	
pD:	51.781	56.78	52.429	59.103	59.489	63.387		57.803		73.344	
Burnin:	500	500	500	500	500	500		500		500	
Chain Length:	5000	5000	5000	5000	5000	5000		5000		5000	

Table S8. Full multilevel binary logistic models estimating graduates' probability of entering a top-level job 3.5 years from graduation. Stayers.

	M1	$\begin{gathered} \text { Bayesian- } \\ \text { p } \end{gathered}$	M2	$\begin{gathered} \text { Bayesian- } \\ \text { p } \end{gathered}$	M4	$\begin{gathered} \text { Bayesian- } \\ \mathbf{p} \end{gathered}$	M5	$\begin{gathered} \text { Bayesian- } \\ \mathbf{p} \end{gathered}$	M6	$\begin{gathered} \text { Bayesian- } \\ \text { p } \end{gathered}$	M7	Bayesian- \mathbf{p}	M8	$\begin{gathered} \text { Bayesian- } \\ \text { p } \end{gathered}$
Fixed Part														
cons	-1.924	0.000	-1.419	0.000	-1.279	0.000	-1.338	0.000	-1.827	0.000	-0.266	0.21	0.99	0.000
Lower manag \& profess occup	0.037	0.429	0.027	0.553	0.388	0.193	0.616	0.107	0.43	0.152	0.41	0.203	-0.197	0.296
Intermediate occupations	-0.391	0.104	-0.19	0.346	0.253	0.265	0.345	0.232	0.244	0.303	-0.031	0.461	-0.407	0.123

Semi-routine and routine occupations and other	0.226	0.404	-0.044	0.441	0.383	0.265	0.457	0.168	0.37	0.274	0.223	0.31	-0.158	0.373
job2_nuts3_professionals	0.035	0.001	0.026	0.082	0.031	0.022	0.049	0.012	0.044	0.002	0.025	0.055	-0.01	0.234
Lower manag \& profess occup.job2_nuts3_professionals	-0.017	0.168	-0.017	0.246	-0.032	0.076	-0.045	0.038	-0.035	0.023	-0.032	0.085	0.002	0.471
Intermediate occupations.job2_nuts3_professionals	0.001	0.427	-0.01	0.328	-0.028	0.121	-0.033	0.08	-0.03	0.102	-0.013	0.311	0.011	0.294
Semi-routine and routine occupations and other.job2_nuts3_professionals	-0.037	0.124	-0.027	0.131	-0.042	0.046	-0.047	0.026	-0.046	0.066	-0.033	0.074	-0.005	0.443
female:female			-0.609	0.000	-0.603	0.000	-0.687	0.000	-0.577	0.000	-0.479	0.000	-0.524	0.000
20			-0.579	0.004	-0.617	0.003	-0.771	0.001	-0.629	0.001	-0.59	0.008	-0.8	0.000
23-24			0.654	0.000	0.695	0.000	0.556	0.000	0.668	0.000	0.68	0.000	0.592	0.000
25+			1.036	0.002	1.099	0.002	0.868	0.014	0.924	0.003	1.023	0.004	0.868	0.025
Asian			0.294	0.012	0.281	0.013	0.329	0.008	0.254	0.034	0.33	0.009	0.296	0.024
Black			-0.53	0.027	-0.43	0.065	-0.37	0.089	-0.525	0.025	-0.483	0.048	-0.245	0.216
Other (including mixed)			0.1	0.252	0.131	0.199	0.178	0.124	0.105	0.239	0.038	0.402	0.088	0.294
disabled			-0.436	0.001	-0.409	0.000	-0.304	0.007	-0.43	0.000	-0.414	0.003	-0.258	0.035
Scotland			0.006	0.473	-0.093	0.278	-0.233	0.042	0.02	0.44	-0.072	0.287	-0.379	0.013
Wales			-0.618	0.002	-0.808	0.000	-0.527	0.000	-0.594	0.000	-0.673	0.000	-0.723	0.000
old uni					0.096	0.292							-0.023	0.46
newer uni					-0.039	0.406							-0.121	0.271
post-92 and other					-0.733	0.000							-0.685	0.000
upper-second class							-0.474	0.000					-0.317	0.004
lower-second class							-1.053	0.000					-0.767	0.000
third class							-1.79	0.000					-1.516	0.000
unclassified							0.811	0.000					0.99	0.000
Higher degree by research									0.33	0.273			0.23	0.344
Higher degree by taught course									0.018	0.435			-0.187	0.079
Postgraduate diploma or certificate									-0.534	0.000			-0.129	0.203
First degree									-0.241	0.312			-0.251	0.311
Other diploma or certificate									-0.271	0.033			-0.178	0.129
Professional qualification									0.909	0.000			0.6	0.000
Other qualification									-0.522	0.009			-0.369	0.076
Not aiming for qualification									-0.149	0.397			0.488	0.18

Primary						-1.305	0.000	-1.284	0.000
Secondary						-0.724	0.000	-0.615	0.000
Tertiary						-1.952	0.000	-1.753	0.000
Finance,insurance \& real estate						-1.312	0.000	-1.191	0.000
Public administration and defence; compulsory social security						-1.074	0.000	-0.972	0.000
Education						-2.367	0.000	-2.175	0.000
Human health and social work activities						-1.085	0.000	-1.111	0.000
Other quaternary						-1.433	0.000	-1.298	0.000
Random Part									
Level: job2_nuts3									
Var(cons)	0.052	0.037	0.04	0.027	0.035	0.017		0.008	
Units: job2_nuts3	128	128	128	128	128	128		128	
Units: idresp	5365	5365	5365	5365	5365	5365		5365	
DIC:	5081.85	4929.36	4829.4	4767.642	4847.78	4536.28		4337.78	
pD:	33.162	37.116	40.192	36.437	43.538	34.527		44.629	
Burnin:	500	500	500	500	500	500		500	
Chain Length:	5000	5000	5000	5000	5000	5000		5000	

Note: Model controlling for field of study only has encountered convergence issues for the group of stayers and hence models including fields of study are not presented for this grou

[^0]: Note: Complete-case sample: 18,940. The excluded-cases and the total samples vary depending on the missing data on each variable.

