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Abstract: This study presents a novel Janthinobacterium strain, SNU WT3, isolated from the kidney of
rainbow trout. A phylogenetic study using 16S rRNA sequences indicated that the strain is closely
related to Janthinobacterium svalbardensis JA-1T. However, biochemical analysis found differences
in D-xylose adonitol, N-acetylglucosamine, arbutin, and cellobiose. As for genome-to-genome
distance and average nucleotide identity values calculated between strain SNU WT3 and other
related strains such as J. lividum EIF1, J. svalbardensis PAMC 27463, and J. agaricidamnosum BHSEK
were all below the cutoff value between species. DNA-DNA hybridization between strain SNU WT3
and other close relatives indicated the results of J. lividum DSM 1522T (47.11%) and J. svalbardensis
JA-1T (38.88%) individually. The major fatty acid compositions of strain SNU WT3 were cylco-C17:0

(41.45%), C16:0 (33.86%) and C12:0 (5.87%). The major polar lipids were phosphatidylethanolamine,
phosphatidylcholine, phosphatidylglycerol, and diphosphatidylglycerol. The quinone system was
composed mainly of ubiquinone Q-8. The genome of strain SNU WT3 consists of 6,314,370 bp with a
G + C content of 62.35%. Here, we describe a novel species of the genus Janthinobacterium, and the
name Janthinobacterium tructae has been proposed with SNU WT3T (=KCTC 72518 = JCM 33613) as
the type strain.

Keywords: Jantinobacterium; Jantinobacterium tructae; rainbow trout; Oncorhynchus mykiss

1. Introduction

Members of the genus Janthinobacterium are Gram-negative, rod-shaped, psychrotoler-
ant bacteria normally found in environments such as soil, water, and the Arctic glaciers [1,2].
Janthinobacterium lividum, one of the earliest discovered Janthinobacterium species, was re-
ported in 1978, and the species is found frequently in our nearest environment, including
green onions, salad mix, water, and soil [3,4]. Since the discovery of J. lividum, only a few
more Janthinobacterium species have been reported. Jantinobacterium agaricidamnosum was
isolated in 1999 and is known to cause soft rot disease of the mushroom Agaricus bisoporus [5].
Janthinobacterium svalbardensis was identified in 2013, isolated from ice samples of the island
Spitsbergen in the Arctic [6]. Janthinobacterium psychrotolerans S3-2T, isolated from a fresh-
water pond near Aarhus, Denmark, was described in 2017 [7]. Three more species were de-
scribed in 2020 from tropical and subtropical rivers of China: Janthinobacterium violaceinigrum
FT13WT, Janthinobacterium aquaticum FT58WT, and Janthinobacterium rivuli FT68WT [8].
Only a few studies have described Janthinobacterium species as a pathogen. The species
was considered nonpathogenic to humans until the first report of septicemia in Thailand in
1992 [9]. Some studies also describe Janthinobacterium as a fish pathogen, mostly affecting
the rainbow trout (Oncorhynchus mykiss) [10,11].
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Since not many Janthinobacterium species have been identified, only a few studies
have been published about them. Despite this, the violacein complex of the Janthinobac-
terium that consists of the genes vioA, vioB, vioC, vioD, and vioE has been the focus of
considerable research [12,13]. J. lividum is well known for producing pigment [2,14].
As the compound violacein, which induces purple pigmentation, has distinctive antivi-
ral, antibacterial, and antifungal properties, J. lividum has been used for the treatment
of Batrachochytrium dendrobatidis infection in amphibians [15]. Among the strains which
were described in 2020, Janthinobacterium violaceinigrum FT13WT and Janthinobacterium
rivuli FT68WT produce violacein [8]. However, not all Janthinobacteria produce viola-
cein. J. agaricidamnosum is a non-pigmented soft rot pathogen [5]. J. svalbardensis produces
dark red-brown to black pigmentation, which was designated as a violacein-like pigment,
different from the purple pigment of J. lividum [6]. J. psychrotolerans S3-2T lacks the abil-
ity to produce violacein but shows antibiotic resistance, incomplete denitrification, and
fermentation [7].

In this study, we isolated a novel pathogen, SNU WT3, from the swollen kidney of
diseased rainbow trout (Oncorhynchus mykiss) that exhibited abnormal swimming behavior
from a farm in the Republic of Korea. The identification of the bacterium was performed
using 16S rRNA gene-based phylogenetic analysis, biochemical analysis, chemotaxonomic
characteristics, and complete genome analysis. We present the genome of strain SNU WT3
as well as its phenotypic features and classification.

2. Results
2.1. Bacterial Characteristics
2.1.1. Histopathology

Intensive necrotic changes in hematopoietic tissues of the kidney and spleen were
observed. Karyolysis, pyknosis, karyorrhexis, and hydropic and vacuolar degeneration
occurred to interstitial hematopoietic cells of the kidney (Figure 1A). In renal tubules,
epithelial cell pyknosis and eosinophilic droplet accumulation existed. Hyperemia and
melanomacrophage accumulation in the interstitium could also be observed. Hematopoi-
etic tissue of the spleen showed eosinophilic staining and the features of karyorrhexis,
karyolysis, and pyknosis, indicating a wide range of tissues are in the process of necrosis
(Figure 1B).
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Figure 1. Histopathology of kidney and spleen of a moribund rainbow trout with Janthinobacterium tructae strain SNU WT3
infection. (A) Histopathology of the kidney showed hyperemia and melanomacrophage accumulation in the interstitium
(blue arrow). Karyolysis, pyknosis, karyorrhexis, and hydropic and vacuolar degeneration of interstitial hematopoietic cells
can also be observed (yellow arrows). Epithelial cell pyknosis (black arrow) and eosinophilic droplet accumulation (green
arrow) existed in renal tubules. (B) Histopathology of the spleen showed a wide range of necrotizing hematopoietic cells
with eosinophilic color change. Karyolysis, pyknosis, and karyorrhexis can also be observed (yellow arrows). Slides were
stained with hematoxylin and eosin. Scale bars = 40 µm.
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2.1.2. Growth Characteristics

Strain SNU WT3 was isolated from the kidney of diseased rainbow trout from a trout
farm in the Republic of Korea. The bacteria were cultured on cytophaga agar for 48 h
at 25 ◦C and then subcultured on tryptic soy agar (TSA) (BD Difco, Detroit, MI, USA)
for pure isolation, under the same conditions. Circular colonies with a convex surface
and nontransparent whitish color formed on the agar. The bacteria were aerobic and
psychrotolerant, as they were able to grow in temperatures ranging from 2 ◦C to 30 ◦C and
were unable to grow in anaerobic conditions. The pH tolerance was also wide, ranging
from 4 to 7. NaCl tolerance was estimated as up to 6% on both TSA and cytophaga agar.

2.1.3. Morphology

SNU WT3 bacteria were Gram-negative and had a rod-shaped appearance under the
optical microscope. In the morphological analysis using transmission electron microscopy
(TEM; JEM 1010, Akishima, Japan), cells of the strain SNU WT3 showed slightly curved
rod shapes 1–2 µm in width and 2–3 µm in height (Figure 2).
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Figure 2. Transmission electron microscopy scanning of Janthinobacterium tructae SNU WT3 sp. nov.
The bacteria were negatively stained with 0.5% uranyl acetate and scanned at 80 kV. Scale bar =
200 nm.

2.1.4. Molecular Configuration

The major fatty acids of strain SNU WT3 were cylco-C17:0 (41.45%), C16:0 (33.86%),
and C12:0 (5.87%). The concentrations of major fatty acids were different from those of
other Janthinobacterium species in the amount of cyclo-C17:0, which occupy the largest
portion (Table 1) [8,16]. The analysis of respiratory quinones indicated that strain SNU
WT3 contained only ubiquinone Q-8. The polar lipid compositions of strain SNU WT3 were
phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidyl-
glycerol, unidentified phospholipid, and an unidentified lipid.

Table 1. Compositions of cellular fatty acid contents (%) of strain SNU WT3 and six reference strains.

Fatty Acid J. tructae SNU
WT3T

J. lividum
CCUG2344T [16]

J. svalbardensis
JA-1T [8]

J. agaricidamnosum
CCUG43104T [16]

J. violaceinigrum
FT13WT [8]

J. aquaticum
FT58WT [8]

J. rivuli
FT68WT [8]

cylco-C17:0 41.45 25.0 ND 34.2 ND ND ND
C16:0 33.86 30.6 33.9 34.8 31.3 29.3 35.1
C12:0 5.87 3.9 3.8 3.0 8.1 5.6 6.2

ND: not detected, T: Type strain.
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2.1.5. Biochemical Analysis

Using analytical profile index (API) CH test strips (bioMérieux, Seoul, Korea), re-
actions were positive for glycerol, L-arabinose, ribose, D-xylose, galactose, D-glucose,
D-fructose, D-mannose, inositol, mannitol, sorbitol, esculine, cellobiose, maltose, lactose,
saccharose, trehalose, xylitol, D-lyxose, and D-arabitol. The test results were negative
for erythritol, D-arabinose, L-xylose, adonitol, β-methyl xyloside, L-sorbose, rhamnose,
dulcitol, α methyl-D-mannoside, α methyl-D-glucoside, N-acetylglucosamine, amygdalin,
arbutin, salicin, melibiose, inulin, melezitose, D-raffinose, amidon, glycogen, β gentio-
biose, D-turanose, D-tagatose, D-fucose, L-fucose, L-arabitol, gluconate, 2-Keto-gluconate,
5-keto-gluconate, β-galactosidase, arginine dihydrolase, lysine decarboxylase, ornithine
decarboxylase, citrate utilization, H2S production, urease, tryptophan deaminase, indole
production, acetoin production, and gelatinase. In API 20NE test strips (bioMérieux),
the reactions were positive for reduction of nitrates to nitrites, esculin hydrolysis, and
assimilation of glucose, arabinose, mannitol, N-acetyl-glucosamine, citrate, phenyl-acetate,
and cytochrome oxidase. The test was negative for indole production, glucose acidifica-
tion, arginine dihydrolase, urease, gelatin hydrolysis, assimilations of mannose, maltose,
gluconate, caprate, and malate (Table 2).

Table 2. Biochemical details compared between strain SNU WT3 and its close relatives identified using API 20NE and API
50CH kits.

J. tructae
SNU

WT3T

J. lividum
DSM

1522T [6]

J. svalbardensis
JA-1T [6]

J. agaricidamnosum
DSM 9628 T [6]

J. violaceinigrum
FT13WT [8]

J. aquaticum
FT58WT [8]

J. rivuli
FT68WT

[8]

J. psychrotol-
erans S3-2T

[7]

D-arabinose − + − − − + + −
L-arabinose + + + − + + W +

D-xylose + + − − + + + NP
Adonitol − − + − NP NP NP NP
Galactose + + + − − + + +
Sorbitol + + + − − + + −

N-acetylglucosamine − − + − NP NP NP −
Arbutin − + + − NP NP NP NP
Salicin − + − − NP NP NP +

Cellobiose + + − − − + − +
Maltose + + + − − − + −

Trehalose + − + + − − - −
Xylitol + − + − NP NP NP NP

β gentiobiose − − − + NP NP NP NP
D-lyxose + + + − − + - NP
L-fucose − + − − − + + +

2-ketogluconate − + − − NP NP NP +
Rhamnose − − − − NP NP NP +

Inulin − − − − NP NP NP NP
D-raffinose − − − − NP NP NP +

NP: not performed, W: weakly positive, T: Type strain, −: Negative, +: Positive.

2.1.6. DNA-DNA Hybridization Test

In DNA-DNA hybridization tests, the similarities of DNA-DNA between SNU WT3
and J. lividum DSM 1522T, and SNU WT3 and J. svalbardensis JA-1T were 47.11% and 39.88%,
respectively, which were clearly below the recommended threshold value of 70% [17].

2.2. Genetic Analysis
2.2.1. 16S-rRNA-Based Phylogenetic Analysis

As a result of EzBioCloud 16S database analysis of the 1452 base pair long 16S rRNA
gene (GenBank accession number: MN524134.1) of SNU WT3, J. svalbardensis JA-1T and
J. lividum DSM 1522T showed 100% and 99.72% similarity, respectively [18]. The phy-
logenetic analysis of related strains, including all Janthinobacterium type strains, was re-
ported. Some of the groupings showed poor bootstrap values. However, both the nodes
where Janthinobacterium species and other clades diverge and the strain SNU WT3 and
other Janthinobacterium strains diverge had values over 80%, indicating reliable clustering
(Figure 3). Strain SNU WT3 showed a close distance with J. svalbardensis JA-1T, J. rivuli
FT68WT, and J. lividum DSM 1522T.
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2.2.2. Complete Genome Sequence

The complete genome of SNU WT3 consists of a circular chromosome of 6,314,370 bp.
Hi-seq raw data consists of 13,414,480 reads with 1,354,862,480 bases. The filtered dataset
showed 98.00% of the bases over Phred quality score 20 and 92.99% over Phred quality
score 30. One circular contig is formed by de novo assembly, of which the total contig
base number is 6,314,370, and the read depth is 136. The genome contains 5459 coding
sequences (CDSs), 5403 coding genes, which produce 850 hypothetical proteins, 8 rRNAs,
93 tRNAs, and 4 ncRNAs, with a 62.35% G + C ratio. Three genes that encode THIN-B
metallo-β-lactamase and a resistance-nodulation-cell division antibiotic efflux pump were
detected, raising the possibility of resistance to the antibiotics beta-lactam, fluoroquinolone,
and tetracycline. A total of 58 virulence factors were detected, and their gene functions
are as follows: 50 related to flagella, 3 related to type IV pili, 2 related to catalase, 1 related
to Zn2+ metalloprotease, 1 related to alternative sigma factor RpoS, 1 related to capsule I.
Seven CRISPR sites and two ambiguous prophages were detected. A schematic circular
plot of the complete genome, reflecting all annotations, is shown in Figure 4. The complete
sequence of strain SNU WT3 was deposited in GenBank under the accession number
CP041185.1.
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2.2.3. Average Nucleotide Identity and Genome-to-Genome Distance Calculator Analysis

Of the reported complete genome data, all Janthinobacterium spp. strains and some
other related species were used for ANI and GGDC analysis of SNU WT3, and the results
indicated that strain SNU WT3 is a novel species. Based on the ANI values, J. svalbardensis



Pathogens 2021, 10, 229 7 of 13

PAMC 27463, Janthinobacterium sp. 17J80-10, and J. lividum EIF1 were the closest strains to
SNU WT3, with ANI values of 95.0%, 91.8%, and 91.7%, respectively, all of which were be-
low the cutoff value of 95% (Table 3) [23]. J. svalbardensis PAMC 27463, Janthinobacterium sp.
17J80-10, and J. agaricidamnosum BHSEK were the three strains with the highest GGDC
values of 60.6%, 46.1%, and 45.9%, which were below the cutoff value of 70% for species
differentiation [24]. To determine the correlation pattern between species and strains based
on their ANI and GGDC values, a heat map was drawn (Figure 5). Some Janthinobacterium
strains showed a relatively stronger correlation, forming a clade (Figure 5).

Table 3. Average nucleotide identity (ANI) values and genome-to-genome distance calculator
(GGDC) values between strain SNU WT3 and other related species.

Janthinobacterium tructae
SNU WT3

(ANI Value)

Janthinobacterium tructae
SNU WT3

(GGDC Value)

Janthinobacterium svalbardensis
PAMC 27463 95.0% 60.6%

Janthinobacterium lividum EIF1 91.7% 45.7%
Janthinobacterium lividum EIF2 91.7% 45.7%

Janthinobacterium
agaricidamnosum BHSEK 91.7% 45.9%

Janthinobacterium sp.
1_2014MBL_MicDiv 89.4% 38.5%

Janthinobacterium sp. 17J80-10 91.8% 46.1%
Janthinobacterium sp. B9-8 67.1% 20.3%
Janthinobacterium sp. LM6 74.5% 20.6%

Janthinobacterium sp. Marseille 73.0% 31%
Herbaspirillum rubrisubalbicans

DSM 11543 74.0% 20.6%
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2.2.4. Core Genome Phylogeny and Multilocus Sequence Analysis (MLSA)

Phylogenetic tree based on core genome showed separation between SNU WT3T and
J. svalbardensis PAMC 27463 with 100 local support values. The MLSA result using four
housekeeping genes showed that the J. svalbardensis PAMC 27463 with the highest ANI
and GGDC values (95.0% and 60.6%, respectively) had farther evolutionary distance than
other Janthinobacterium species to SNU WT3T (Figure 6). The bootstrap value of the node
that SNU WT3T and other Janthinobacterium species diverge was 100.
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Figure 6. Core genome phylogeny and multilocus sequence alignment (MLSA) tree of Janthinobacterium species. (A) Core
genome phylogenetic tree was constructed using EDGAR 2.0 [25]. Core gene sets were aligned using MUSCLE and
concatenated. An approximately maximum-likelihood phylogenetic tree was constructed with FastTree. Local support
values were shown next to the branches as percentages. (B) An unrooted tree was constructed from four concatenated
housekeeping genes extracted from the complete genome sequences of nine Janthinobacterium strains. The tree was inferred
using the maximum-likelihood method and the Tamura and Nei (1993) model with MEGA X and was drawn to scale [19,20].
The maximum composite likelihood method was used to calculate evolutionary distances [21]. Missing data or gaps were
completely deleted, and the phylogeny was evaluated using 1000 bootstrap replicates. The percentage values of associated
taxa clustered together are indicated next to the branches. Scale bars = 0.010 changes per nucleotide position. Strain SNU
WT3 is indicated with an arrow.
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3. Discussion

The 16S rRNA sequence of strain SNU WT3 was analyzed for species identification and
was identical to that of the J. svalbardensis. However, unlike other related Janthinobacterium,
such as J. svalbardensis and J. lividum, strain SNU WT3 did not show purple pigmentation,
which is known to be produced by violacein [6,14]. This was one of the early clues that led to
the suspicion that strain SNU WT3 may be a separate species, even with the 100% identical
16S rRNA sequence with J. svalbardensis. VioA, VioB, VioC, VioD, VioE, the genes coding for
violacein in Janthinobacterium, was not found in the complete genome of SNU WT3.

Chemotaxonomic analyses showed differences with other Janthinobacteria, as J. aga-
ricidamnosum, J. violaceinigrum, J. aquaticum, J. rivuli and J. svalbardensis do not contain
phosphatidylcholine, one of the main components of strain SNU WT3, in their polar lipid
composition [5,6,16]. The concentrations of major fatty acids were different from those of
other Janthinobacterium species in the amount of cyclo-C17:0, which occupied the largest
portion in SNU WT3 [8,16]. Biochemical analysis showed that strain SNU WT3 could be dif-
ferentiated from its most closely related strain, J. svalbardensis JA-1T, on D-xylose, adonitol,
N-acetylglucosamine, arbutin, and cellobiose. The strain can also be distinguished from
another close relative, J. lividum DSM 1522T, by its levels of D-arabinose, arbutin, salicin,
trehalose, xylitol, L-fucose, and 2-ketogluconate [6]. DNA-DNA hybridization indicated
that strain SNU WT3 does not belong to any groups of J. lividum or J. svalbardensis and is a
novel species of the genus Janthinobacterium.

The only results that did not show distinct differences between SNU WT3 and other
related strains were the respiratory quinone composition and the 16S rRNA sequence. All
Janthinobacteria have only ubiquinone Q-8 as their respiratory quinone, and the 16S rRNA
sequence of J. svalbardensis JA-1T showed 100% identity with the strain SNU WT3 [5,6,8].
However, all other results from core genome phylogeny, MLSA, complete genome, bio-
chemical, and chemotaxonomic analyses showed marked differences between SNU WT3
and other related strains, supporting the conclusion that SNU WT3 is a novel species.
Hereby, we propose that the strain SNU WT3 is classified as a novel species of the genus
Janthinobacterium, designated as Janthinobacterium tructae sp. nov. (truc’tae L. gen. n. tructae
of a trout). The type strain J. tructae SNU WT3 was deposited to Korean Collection for Type
Cultures and Japan Collection of Microorganisms (KCTC 72518; JCM 33613).

Janthinobacterium tructae strain SNU WT3T was isolated from the kidney of diseased
rainbow trout from a farm in the Republic of Korea. There are only a few reports of
Janthinobacterium isolated from piscine species, describing the isolation of J. lividum. Both
J. tructae strain SNU WT3 and J. lividum were isolated from rainbow trout, which is one
of the representative cold-water fish [10,11]. J. svalbardensis, the nearest species in the
phylogeny, was isolated from glacier ice samples from Spitsbergen island in the Svalbard
archipelago. As this area is the natural habitat of the Arctic charr, which belongs to the
family Salmonidae, a group that includes the rainbow trout, it is necessary to keep monitor
the interactions between Janthinobacterium and the local piscine species [26].

4. Materials and Methods

Disease diagnosis of rainbow trout fingerlings (20 ± 3 g) was requested by one of
the rainbow trout farms in the Republic of Korea. The fish exhibited abnormal swimming
behavior, and mortality of the trout farm was 12–16%, which was higher than the usual
mortality of 4%. Through postmortem examination, we verified swollen kidneys from
moribund rainbow trout, and the strain SNU WT3 was isolated from the affected organ.
For histopathological examination, the kidney, liver, pancreas, intestine, and pyloric cecum
of moribund fish were sampled in buffered formalin. Histology slides were made and
stained with hematoxylin and eosin.

For the bacterial isolation, the kidney of the moribund fish was sampled and homoge-
nized using 300 µL PBS. The 100 µL homogenized solution was distributed on Cytophaga
and TSA and incubated at 20 ◦C and 25 ◦C for 48 h. Transparent whitish colonies appeared
on the Cytophaga plates, and the colonies were re-streaked for pure isolation on TSA at
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25 ◦C for 24 h. The colonies showed uniform shape, and one of the colonies was chosen
and subcultured for the analysis of the genome, biochemical details, and chemotaxonomic
characteristics. The strain SNU WT3 was stored in tryptic soy broth (TSB) (BD Difco,
Franklin Lakes, NJ, USA) supplemented with 25% glycerol at −80 ◦C.

The growth range and pH tolerance of strain SNU WT3 were tested. The bacteria
were cultured on TSB at 2, 4, 10, 15, 20, 25, 37 and 45 ◦C. For the pH growth test, TSB
medium was used and adjusted with HCl and NaOH to reach values of 4.0–11.0 at intervals
of 1.0 pH unit. For the NaCl tolerance test, the test was performed in 2, 4, 6, 8, and 10%
concentration in TSB, using a shaking incubator. To determine growth under anaerobic
conditions, the strain was cultured in TSB medium with a paraffin blocked tube on top at
25 ◦C.

Analysis of the cellular fatty acid composition was performed by the Korean Culture
Center of Microorganisms (KCCM) identification service, Republic of Korea. The fatty acid
methyl esters were analyzed using gas chromatography in accordance with the protocol
of the Sherlock Microbial Identification System (MIS, Newark, DE, USA). The profiles of
cellular fatty acids were compared using the RTSBA v6.0 library database [27].

For the analysis of respiratory quinone and polar lipids, the strain was cultured in TSB
at 25 ◦C for 24 h. It was then sent to KCCM for identification, and the strain was stained
with molybdophosphoric acid and ninhydrin to show all lipids.

For the identification of biochemical details, the phenotypic characteristics of the
strain were analyzed using API 20 NE and API 50 CH strips, then incubated at 25 ◦C for
24 h. To compare the differences in biochemical characteristics, the results were compared
with data from other Janthinobacterium species; J. lividum DSM 1522T, J. svalbardensis JA-1T,
J. agaricidamnosum DSM 9628 T, J. violaceinigrum FT13WT, J. aquaticum FT58WT, J. rivuli
FT68WT, and J. psychrotolerans S3-2T that were analyzed in prior studies [5–8].

For morphological analysis, the strain SNU WT3 was observed using TEM at 80 kV.
For negative staining, a bacterial colony cultured on TSA was suspended in PBS and
negatively stained with an equal volume of 0.5% uranyl acetate. Gram staining was carried
out using Gram staining Kits (bioMérieux, Seoul, Korea).

Total genomic DNA of the strain SNU WT3 was extracted from pure colonies cultured
on TSA. The colonies were suspended in 300 µL Tris-EDTA buffer, heated at 100 ◦C for
20 min, and centrifuged at 8000 g for 10 min. After centrifugation, the pellet was discarded,
and 100 µL of remaining supernatant was used for polymerase chain reaction (PCR) of the
16S rRNA gene. For gene sequencing, universal primers (24 F, 1492R) were used [28,29].
The final PCR product was sequenced using an ABI PRISM 3730XL Analyzer with BigDye®

Terminator v3.1 cycle sequencing kits (Applied Biosystems, Foster, CA, USA) by Macrogen
inc. (Seoul, Korea).

For phylogenetic analysis, the partial sequence of the retrieved 16S rRNA gene was
used. The alignment of the sequences was edited using BioEdit software, and the sequence
of the gene from strain SNU WT3 was compared to those of other strains using NCBI BLAST
and the EzBioCloud server for the identification of subspecies [30–32]. The phylogenetic
tree was constructed using a maximum-likelihood method, using MEGA X software, and
the genetic distances were estimated using a Tamura and Nei (1993) model [19,20]. The
topology of the tree was assessed using bootstrap analysis with 1000 replicates.

DNA-DNA hybridization analysis was carried out by KCCM to confirm the differ-
ences, indicating that strain SNU WT3 was a novel species. The strains used for the
comparative analysis were J. svalbardensis JA-1T and J. lividum DSM 1522T. J. svalbardensis
JA-1T was identified as the closest species by the phylogenetic analysis, followed by J.
lividum DSM 1522T and J. rivuli FT68WT.

The complete genome sequencing of the strain SNU WT3 was performed by Macrogen,
Inc. (Seoul, Republic of Korea) using a hybrid approach with a PacBio RS II system (Pacific
Biosciences, Menlo Park, CA, USA) on the HiSeq 2000 platform (Illumina, San Diego, CA,
USA). Hierarchical Genome Assembly Process (HGAP) v. 3.0 was used for genome de novo
assembly of data with 90.82× coverage [33]. Genome annotation was performed using the
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NCBI’s Prokaryotic Genome Annotation Pipeline with the Best-placed reference protein set
and GeneMarkS-2+ [34,35]. Antibiotic resistance genes were detected using ARG-ANNOT
and Resistance Gene Identifier, with the Comprehensive Antibiotic Research Database,
and virulence factors were identified with VFanalyzer [36–38]. Prophages were detected
using Prophage Hunter, and CRISPR loci were detected using the CRISPR Recognition
Tool [39,40]. The schematic structure of the complete genome was drawn using DNAPlot-
ter [21]. The genome of strain SNU WT3 was compared to those of related strains, including
all Janthinobacterium species with complete genome data available, using the ANI calculator
of the OrthoANIu tool [41], and the intergenomic distance calculator by GGDC v2.1 (DSMZ)
formula 2 [42–44]. Core genome phylogeny was analyzed using EDGAR 2.0 [25]. Core
genes of Janthinobacterium with complete genome sequences were computed, aligned using
MUSCLE, and concatenated for approximately maximum-likelihood phylogenetic tree
construction in the FastTree software (http://www.microbesonline.org/fasttree/ accessed
on 8 February 2021). For MLSA, concatenated sequences were generated by extracting four
housekeeping genes (aroE, gyrB, RecA, rpoB) that were used for MLSA in Janthinobacterium
in a previous study [13]. Phylogenetic tree for MLSA was constructed using the same
method that was used for drawing the tree based on 16S rRNA gene sequence.
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