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Abstract: Rumen flukes (Calicophoron daubneyi) represent a growing threat to the animal health,
productivity and welfare of ruminants. The present study aimed to assess the spatial distribution of
C. daubneyi infections in ruminants and to develop a predictive model of the environmental suitability
for rumen flukes in a Mediterranean area. A cross-sectional coprological survey was conducted in 682
sheep, 73 goat and 307 cattle farms located in the Basilicata region (southern Italy). Faecal samples
collected were analysed using the FLOTAC technique. Geographical Information Systems (GIS) and
statistical models were developed to determine environmental risk factors and to delimitate the areas
at highest risk of infections in small ruminants. The results showed 7.9% (95% CI 6.05–10.27) of
sheep farms, 2.7% (95% CI 0.48–10.44) of goat farms and 55.0% (95% CI 49.62–60.99) of cattle farms
were infected by C. daubneyi. The areas with high predicted risk were situated in the western part
of the region. The soil texture, land use and the presence of streams and brooks were the variables
statistically significant (p < 0.05) in explaining the C. daubneyi distribution in the study area. The
study confirms the importance of geospatial technology in supporting parasite control strategies in
livestock and demonstrates that a combined use of different geostatistical techniques can improve
the prediction of the C. daubneyi infection risk in ruminants.

Keywords: Calicophoron daubneyi; ruminant; spatial pattern; prediction; southern Italy

1. Introduction

Calicophoron daubneyi (rumen fluke or paramphistomes), the causative agent of param-
phistomosis, is a ubiquitous Trematoda that resides in the digestive tract of ruminants. This
pathogen has traditionally been considered of low clinical significance, causing a subclinical
pathology, when livestock animals are maintained in their best nutritional and health status,
as is usual in Europe [1], e.g. France [2,3] and the UK [4–6], thus representing a potential
impact on ruminant health, productivity and welfare. Heavy parasite burdens commonly
compromise livestock production through reduced feed conversion efficiency, weight loss
and decreased milk yield, thus incurring economic losses with elevated morbidity and
mortality [2,5].

Increased prevalence of this infection has been reported in various European coun-
tries [3,7–10]. Ruminants become infected by the ingestion of encysted metacercariae on
pasture. The higher rate of prevalence may reflect an increased risk of infection, possibly
triggered by changes in climatic conditions (i.e., increased temperatures and rainfalls)
favoring higher transmission rates of these parasites [11]. The life cycle of C. daubneyi
needs an intermediate snail host (e.g. Galba truncatula) to be completed [12] which is also
the predominant intermediate host of the liver fluke (Fasciola hepatica). For this reason,
the transmission of C. daubneyi is associated with the presence of freshwater gastropods,
in which the parasites multiply. The amplifying efficiency of the intra-molluscan cycle
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determines the number of metacercariae produced and the associated risk of infection in
grazing animals [1].

Recent studies on the spatial distribution of C. daubneyi explain the geographical
heterogeneity in the probability of livestock infection due to environmental factors in-
fluencing the parasite’s life cycle [7,8,13]. However, as environmental conditions in the
Mediterranean area are very varied, such as the orographic/hydrographic characteristics
and the coverage of soil, the risk of infection also varies. For this reason, the environmental
parameters must be considered in epidemiological studies. Therefore, geospatial health
represents the ideal approach for infection risk detection and consequent spatial distri-
bution monitoring activities through regular parasitological diagnosis. Compared with
F. hepatica, there is limited scientific knowledge about the spatial distribution of C. daubneyi
especially in the Mediterranean area. For these reasons, this study aimed to analyse the
spatial distribution of C. daubneyi infection in cattle, sheep and goats in southern Italy
in order to identify the main environmental conditions favorable for the development
of rumen flukes and their intermediate hosts. The results also allowed us to develop a
predictive model of the geographical distribution of rumen flukes in small ruminants in
the study area.

2. Results

The results showed 7.9% (95% CI 6.05–10.27) of sheep farms, 2.7% (95% CI 0.48–10.44)
of goat farms and 55.0% (95% CI 49.62–60.99) of cattle farms infected by C. daubneyi.
Regarding the C. daubneyi eggs per gram (EPG) of faeces, the mean value was 109.1
(minimum = 10.0; maximum = 1405.0) in cattle farms, 76.0 (min = 2.5; max = 565.0) in sheep
farms and 45.0 (min = 30.0; max = 60.0) in goat farms (Figure 1).
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Figure 1. Variability of C. daubneyi egg counts in cattle, sheep and goat farms: mean (blue), maxi-
mum (grey) and minimum (orange) eggs per gram (EPG) of faeces and standard errors. 

The density geographical distribution of rumen fluke infection in cattle, sheep and 
goats was calculated using Kernel density analysis and mapped in Figure 2a; it evidenced 
two pronounced spatial patterns at north and at south-west of the study area. 

The Hot Spot analysis of goat and sheep farms revealed that 69 farms represented 
statistically significant hot spots at the 99% upper confidence level (CLU), 17 at the 95% 
CLU and 17 at 90 CLU. None of the farms represented statistically significant cold spots at 
the 99% CLU. Instead, 1 and 38 were significant at the 95% CLU and 90% CLU, respectively 
(Figure 2b). 

Figure 1. Variability of C. daubneyi egg counts in cattle, sheep and goat farms: mean (blue), maximum
(grey) and minimum (orange) eggs per gram (EPG) of faeces and standard errors.

The density geographical distribution of rumen fluke infection in cattle, sheep and
goats was calculated using Kernel density analysis and mapped in Figure 2a; it evidenced
two pronounced spatial patterns at north and at south-west of the study area.

The Hot Spot analysis of goat and sheep farms revealed that 69 farms represented
statistically significant hot spots at the 99% upper confidence level (CLU), 17 at the 95%
CLU and 17 at 90 CLU. None of the farms represented statistically significant cold spots at
the 99% CLU. Instead, 1 and 38 were significant at the 95% CLU and 90% CLU, respectively
(Figure 2b).
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80%. 

Figure 2. Spatial analysis of C. daubneyi distribution in the study area: (a) Kernel density analysis of sheep, goat and cattle
farms examined; (b) Hot Spot analysis for clusters of small ruminant farms positive to rumen flukes.

The spatial distribution of C. daubneyi generated by the RF algorithm is presented in
Figure 3. The map shows the predicted presence/absence of the parasite in sheep and
goats for each 100 × 100 m cell of the raster. In the RF model implemented, infection
by C. daubneyi can be identified using predictors of hydrology, topography, land use and
soil texture. A table showing the importance of variables detected to be significant was
generated by the algorithm (Table 1). In addition, predicted values were compared with
the observed values of positivity by the Forest-based model, and the accuracy in prediction
was 80%.

Overall, the findings of the Kernel density, the Hot Spot analysis and the RF spatial
predictive model identified areas with high predicted risk in the western part of the region.

Regarding the statistical analysis, the Spearman’s (rs) test results were in agreement
with the ANOVA test results and both showed that areas with loamy soil texture located
at an elevation between 500 and 1500 masl with a slope of less than 15◦ were positively
correlated with the presence of C. daubneyi. In these areas emerged an extended presence
of broad-leaved forest, transitional woodland-shrub and pastures. The Spearman’s rho
correlation coefficients and the F-statistic values from the one-way ANOVA test are listed
in Table 2.
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Figure 3. The predicted spatial distribution of C. daubneyi generated by the supervised Forest-based machine learning
algorithm.

Table 1. Top variable importance table. The values in the Importance column are the sum of the Gini
coefficients from all the trees for each variable listed. The values in the % column are the percentage
of the total sum of Gini coefficients.

Variable Importance %

Soil texture 1.52 21
Land use 1.45 20

Hydrographic network 1.42 19
Aspect 1.41 19
Slope 0.79 11

Elevation 0.79 11

Only three variables positively correlated with the presence of C. daubneyi were
included in the best-performing model generated by the logistic regression analysis: the
average elevation, the presence of streams and brooks, and the clayey over fragmental soil
texture (Table 3).
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Table 2. Results of the Spearman’s correlation analysis and one-way ANOVA test. The values in the
column rs indicate the correlation between the positive farms and the environmental variables. In the
column F value are the results of the F-statistic test. The statistical significance of results is shown by
the values in the column p value.

Variable
Spearman’s Test One-Way ANOVA Test
rs p Value F Value p Value

Pastures 0.158 <0.001 6.104 0.014
Broad-leaved forest 0.128 <0.001 7.528 0.060

Transitional woodland-shrub 0.096 <0.001 5.739 0.017
Medium elevation (500–100 masl) 0.074 <0.05 7.429 0.008

High elevation 0.132 <0.001 4.683 0.034
Average elevation 0.151 <0.001 19.654 <0.001

Standard deviation of elevation 0.097 <0.001 6.315 0.012
Low slope (5◦–15◦) 0.087 <0.001 13.373 <0.001

Average slope 0.083 <0.05 17.680 <0.001
Coarse loamy 0.114 <0.001 4.580 0.036

Loamy skeletal 0.137 <0.001 4.788 0.033
Clayey over fragmental 0.081 <0.05 8.597 0.003

Presence of streams and brooks 0.102 <0.001 8.679 0.003

Table 3. Results of stepwise logistic regression.

Variable p Exp (B) 95% CI

Average elevation 0.003 2.78 1.58–4.88
Clayey over fragmental <0.001 1.01 1.00–1.01

Presence of streams and brooks 0.009 1.01 1.00–1.02
* p < 0.05.

3. Discussion

The analysis of the spatial distribution of C. daubneyi conducted in the Basilicata region
(southern Italy) showed that the prevalence of rumen fluke infection was lower in sheep
and goats (7.9% and 2.7%, respectively) than in cattle farms (55.0%), in accordance with
previous findings by Jones et al. [14] and Naranjo-Lucena et al. [15]. Low prevalence and
EPG values in sheep farms were also observed in previous studies conducted in different
areas of southern Italy by Cringoli et al. [7] and Musella et al. [8], with a prevalence of
16.2% (EPG mean = 52.0) and 14.0% (EPG mean = 3.5), respectively. The fluctuations in
prevalence of infection among the different ruminant species could depend on different
factors related to animal behaviour and farm management. The rumen fluke prevalence
in goats was lower than in other ruminants, probably due to the fact that goats tend not
to drink from drying water bodies where the levels of metacercariae tend to increase [16].
Furthermore, the difference in prevalence between sheep and cattle may be due also to
some differences in the farm management such as the intense use of flukicide drugs and
small size of grazing areas in ovine farms compared to cattle farms. Other authors also
suggest that different factors such as production system, breed, animal density and age
group might affect the prevalence and intensity of C. daubneyi infection in cattle, although
the statistical analysis frequently did not show these variables as significantly associated
with rumen fluke infection [9,17].

In the present study, Hot Spot mapping was used as a basic output of infection pre-
diction. It used data on all farms’ infection status to predict where spatial patterns of
parasitosis may occur in the future; nevertheless, it does not provide information about fac-
tors that are considered to cause the phenomenon. However, this technique is consistently
included among the best for predicting spatial patterns of infection (especially in large-scale
study cases where only parasite presence/absence data are available). Conversely, the RF
technique provided a more likely and detailed prediction since the algorithm processed
different forms of explanatory variables for the Forest model construction (Figure 4); how-
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ever, this methodology also showed some limitations. Firstly, information about the feature
of each explanatory variable more correlated to the presence of C. daubneyi was not pro-
vided. Although the variable importance table generated by the RF algorithm was useful
to understand which variables were driving the results [18], the method of determining
variable importance was biased in favor of the variables with more levels, as reported by
Strickland et al. [19]. In addition, the infection prediction map returned as output, showed
some “holes” in the locations at which the categories in the prediction dataset did not exist
in the training dataset.
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The model generated by the logistic regression instead not only considers the signifi-
cant environmental variables derived from the univariate analysis, but also determines the
presence and strength of any relationships between the infection status (positive/negative)
of the farm and each feature of environmental variable. This last predictive technique
differs from the previous two since it uses a not-punctual approach for the extraction of the
variables. More specifically, for sheep and goat farms the buffer zone around each farm
instead of the geographical position to collect the values of environmental variables was
used. The determination of the buffer zone size is not a negligible aspect of this analysis
since the smaller the area in which parasitological and environmental data are collected, the
greater the possibility to make accurate inferences, because averages over large areas can
introduce strong ecological bias in correlation studies with infection occurrence data [20].
Sheep and goat flocks sampled in this study are not housed (i.e., grazing all year round),
therefore the extraction of predictor values using buffer zones around each farm position
resulted the most suitable approach to this case study. However, the reduced grazing area
of small ruminants compared to the largest movements of cattle can represent a factor
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that limits the risk of infection in these farms. Several authors have recently demonstrated
that machine learning techniques outperform the traditional statistical techniques such
as logistic regression. In fact, this technique has successfully been applied to model the
spatial distribution of infectious and parasitic diseases [21–23]. A major advantage of RF
is that input data do not have to adhere to statistical constraints (e.g., homogeneity of
variance, uncorrelated predictor dataset) [24]. In addition, the RF predictive modelling
technique leverages the power of the space by the use of distance features which ensure a
spatial connotation to the algorithm. A variable representing the distance to hydrographic
network could be critical to producing accurate predictions in case studies such as this [18].

The development of forecast models is necessary for a thorough understanding of the
spatial components involved in the epidemiology of infection and for a proactive infection
management. In particular spatial predictive models, as RF machine learning, are capable
of distinguishing areas with high probability of exposure from those with intermediate and
low probability [24]. This study is the first attempt to develop a Random Forest predictive
model of C. daubneyi infection in a Mediterranean area. The use of predictive models
moreover allows researchers to take into account not only environmental variables but
also climatic factors by considering an extended variety and range of conditions. The
future climate change, in fact, if not mitigated, will very likely impact the length of the
transmission season and the geographical range of a significant proportion of infectious
and parasitic diseases [25].

The free-living stages of C. daubneyi and the intermediate molluscan hosts need a
temperature range of 10–25 C◦, in addition warmer conditions promote the transmission of
trematode parasites and raise their local abundance [26] since increasing rainfall and tem-
peratures make the climate more suitable for G. truncatula populations [11]. According to
Fox et al. [11], the temperature has the major impact in areas where the mean temperature is
raised above the 10 C◦ threshold and rain is not restrictive, instead where temperatures are
already above the development threshold of 10 C◦, the primary driver becomes changing
rainfall patterns. Recently a study conducted on Welsh farms showed sunshine hours as a
significant positive predictor for C. daubneyi, although the exact reason of this correlation
is still unclear [14]. Given the above, climatic variables as mean sunshine hours, mean
annual temperature and the number of rainy days need to be investigated, along with
environmental variables, for future forecast modelling C. daubneyi prevalence at farm level.

Among the variables worth investigating for a more accurate estimate of the spatial
distribution of C. daubneyi, there are the animal treatments against F. hepatica. Jones et al.,
in a study conducted in UK, showed the regular treatment against F. hepatica as significant
positive predictor for C. daubneyi. In fact, by treating regularly against F. hepatica, the
number of F. hepatica eggs shed onto pasture was reduced, potentially freeing G. truncatula
snails to be infected with C. daubneyi larval stages [14].

The variables positively correlated with the presence of C. daubneyi resulted from the
ANOVA and Spearman’s tests are highly compatible with the life cycle of the trematoda
investigated. Regarding the predictor variables entered into the discriminant model gen-
erated by logistic regression, the significance of “average elevation” indicates that areas
with medium/high elevation have the higher predicted risk of infection. This result agrees
with the significant clusters of infection observed in the western part of the region which is
characterized by mountainous/hilly surfaces. The two positive predictors “clayey over
fragmental” and “presence of streams and brooks”, as the loamy soil texture resulted
from ANOVA and Spearman’s test, could be an indirect measure of the presence of in-
termediate host snail habitats; the life cycle of C. daubneyi in fact involves amphibious
snails as intermediate hosts, and thus has strong environmental determinants and strong
needs of water. Proximity to water bodies and location in wet soils with poor drainage
capacities are considered potential habitats for G. truncatula [27]. In particular, the land
use (i.e., pasture and wood) and geolithological (impermeable soil) types are indicators
of zones where typically there is a presence of water (permanently or temporarily) [8]. In
addition, streams and brooks could be also potential movement corridors for G. truncatula
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as reported by Rondelaud et al. [28]. For this reason, environmental information about
these gastropod populations is required for knowing in detail the epidemiology of rumen
flukes in ruminants.

Furthermore, the extensive farming system of cattle that practice vertical transhu-
mance might influence the parasitic infection transmission patterns. From an epidemio-
logical point of view, this seasonal migration from higher pastures in summer and lower
valleys in winter complicates the determination of the areas in which the animals became
infected and makes the tracing of the origins and routes followed by the flukes likely impos-
sible [29]. The impact of the animal movements on the spatial distribution of the infection
has already been investigated by Ashrafi et al. [30], who established a methodology to
assess the altitude influence on F. hepatica and Fasciola gigantica distribution by grouping
the specimens according to altitude ranges. The data on the exact positions where cattle
became infected were not available for this study conducted in Basilicata region, but further
studies need to be performed to achieve this objective.

This study is part of a surveillance project focused on mapping diseases caused by
viral, bacterial and parasitic infections in ruminants in the Basilicata region using GIS.
These maps are intended to be used in control programs to prevent and control infections
in livestock ruminants in southern Italy.

4. Materials and Methods
4.1. Study Area and Study Population

This study was carried out from 2016–2017 in the Basilicata region, southern Italy.
This region comprises an area of 10,073.32 km2 where the provinces of Potenza (40◦38′ N;
15◦48′ E) and Matera (40◦39′ N; 16◦36′ E) are located. It is a predominantly mountainous
and hilly region; very pronounced altitude differences (from sea level to over 2000 m)
and proximity to three different seas (Adriatic to the north-east, Tyrrhenian to the south-
west, Ionian to the south-east) attribute a Mediterranean climate to the area. The average
temperature in the coldest month (January) is about +8 ◦C and the warmest month (August)
is about +28 ◦C, with an annual average of +14 ◦C. Lots of streams and rivers run through
the region. The land use is mainly agricultural and pastoral. Livestock farming has a
remarkable economic importance in this region. In hilly and mountain areas, for a long
time this activity represented a form of use of marginal and uncultivated areas. Currently,
2728 cattle farms (102,984 animals), 5174 sheep farms (183,147.402 animals) and 738 goat
farms (1389 animals) [31] still represent a fundamental economic resource for the population
of the Basilicata region. In addition to the traditional Podolica cattle breed, which was
the only breed bred until the beginning of the last century, others have been added in
recent years such as the Marchigiana and Maremmana breeds. The cattle farms are mainly
characterized by an extensive farming system with the movement between higher pastures
in summer and lower valleys in winter (vertical transhumance).

Sheep and goat farming in the Basilicata region has very ancient origins, representing
a role of primary importance in the local economy. Additionally, the small ruminant farms
are characterized by an extensive farming system that allows the animals to graze on
poor soils with minimal vegetation. Currently, the Merinizzata Italiana, Comisana and
Lacoune breeds and mixed-breed are bred in sheep farms, while in goat farms there are
only mixed-breed. In recent years, limited grazing areas have been available for small
ruminants in this region compared to the past due to the inability of farmers to follow the
flocks in larger areas. Agriculture is mostly located in the hills and the most widespread
crops are cereals.

4.2. Sample Size and Laboratory Procedures

A cross-sectional coprological survey was conducted in 682 sheep, 73 goat and 307 cat-
tle farms distributed in the study area (Figure 5). These farms were randomly selected
through veterinarians of the Regional Farmers’ Association of Basilicata [32] on the basis
of the availability of the farmers. In each farm, individual faecal samples were collected
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directly from the rectum of 20 animals according to two age groups: 5 young (0–12 months)
and 15 adult (>12 months) animals. The collected samples were stored by vacuum pack-
ing [33] and sent refrigerated by courier to the laboratories of the Regional Centre for
Monitoring of Parasitosis (CREMOPAR, Campania region, southern Italy). In the labora-
tory for each farm, four pools of faeces (one for young and three for adults) were prepared,
taking 5 g of each individual faecal sample [34,35]. Pooled samples were analyzed by the
FLOTAC technique (sensitivity = 94% and specificity = 98%) with a detection limit of 6 EPG
using zinc sulphate flotation solution (specific gravity = 1.35) [36,37] (Figure 6).
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whereas C. daubneyi eggshells are clear.
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In addition, in positive faecal samples, a sedimentation technique was used to confirm
the diagnosis of C. daubneyi and F. hepatica based on the color of the eggs [38] (Figure 7).
Farms where at least one rumen fluke egg was observed were considered positive.
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Figure 7. Comparison of Calicophoron daubneyi (a) and Fasciola hepatica (b) eggs in aqueous suspension
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Parasitological results were used to assess the spatial distribution of infection in
cattle, sheep and goat farms, and to develop statistical analysis models to determine
environmental risk factors and to delimitate the areas at highest risk of infections in small
ruminants (Figure 8).

Pathogens 2021, 10, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. Study design: cross-sectional coprological survey conducted in sheep, goat and cattle farms to estimate the prev-
alence of Calicophoron daubneyi and to evaluate its spatial distribution in the Basilicata region of southern Italy; statistical 
and predictive tests were performed in order to determine environmental risk factors of infection only for sheep and goat 
farms. 

4.3. GIS Construction 
Geographical coordinates and C. daubneyi infection status (positive/negative) of all 

surveyed farms were collected, then a shapefile was created using the Arc-GIS Pro 2.7 
software platform (ESRI, Redlands, CA, USA). Based on the quartic kernel function, a Ker-
nel density analysis was conducted to estimate the density distribution of rumen fluke 
infections in cattle and small ruminants. The density of point features around each output 
raster cell was calculated. 

To analyse the possible influence of environmental factors on the presence of infec-
tion by C. daubneyi, six different variables were evaluated: three orographic variables (al-
titude, slope and aspect), two variables related to the soil coverage (land use and soil tex-
ture) and one hydrographic variable (presence of streams and brooks). The sampled ani-
mals spent most of their time on pasture, so a circular buffer zone [7] with a radius of 1 
km was generated for each small ruminant farm. It was not possible to establish an accu-
rate buffer zone size for cattle farms since grazing seasonality (vertical transhumance) and 
distances differ according to the farming system. For this reason, the statistical and pre-
dictive analyses were conducted only for small ruminant farms in this study. Slope and 
aspect maps were derived from the digital terrain model (elevation data). These data-lay-
ers were reclassified to simplify the information in their raster, by grouping values. The 
elevation was divided in low (0–500 m), medium (500–1000 m), high (1000–1500 m) and 
very high (>1500 m). The slope was divided in flat (0–5°), low (5–15°), medium (15–30°) 
and high (30–60°). Finally, the aspect was divided in north (337.5–360° and 0–22.5°), north-
east (22.5–67.5°), east (67.5–112.5°), south-east (112.5–157.5°), south (157.5–202.5°), south-
west (202.5–247.5°), west (247.5–292.5°) and north-west (292.5–337.5°). For each class of 
these three data layers, the number of cells within the buffer zones, the average and the 
standard deviation were calculated. Subsequently, the number of cells of 34 land cover 
classes within the 755 buffer zones was counted. The same operation was executed for the 
cells of 13 soil texture classes and for hydrographic network data layer. All spatial data-
layers were projected to WGS84_UTM_33N and converted to raster file with a cell size of 
100 m (Figure 9). The environmental variables considered are listed in Table 4. 

  

Figure 8. Study design: cross-sectional coprological survey conducted in sheep, goat and cattle farms to estimate the prevalence
of Calicophoron daubneyi and to evaluate its spatial distribution in the Basilicata region of southern Italy; statistical and predictive
tests were performed in order to determine environmental risk factors of infection only for sheep and goat farms.

4.3. GIS Construction

Geographical coordinates and C. daubneyi infection status (positive/negative) of all
surveyed farms were collected, then a shapefile was created using the Arc-GIS Pro 2.7 soft-
ware platform (ESRI, Redlands, CA, USA). Based on the quartic kernel function, a Kernel
density analysis was conducted to estimate the density distribution of rumen fluke infec-
tions in cattle and small ruminants. The density of point features around each output raster
cell was calculated.

To analyse the possible influence of environmental factors on the presence of infection
by C. daubneyi, six different variables were evaluated: three orographic variables (altitude,
slope and aspect), two variables related to the soil coverage (land use and soil texture)
and one hydrographic variable (presence of streams and brooks). The sampled animals
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spent most of their time on pasture, so a circular buffer zone [7] with a radius of 1 km was
generated for each small ruminant farm. It was not possible to establish an accurate buffer
zone size for cattle farms since grazing seasonality (vertical transhumance) and distances
differ according to the farming system. For this reason, the statistical and predictive
analyses were conducted only for small ruminant farms in this study. Slope and aspect
maps were derived from the digital terrain model (elevation data). These data-layers were
reclassified to simplify the information in their raster, by grouping values. The elevation
was divided in low (0–500 m), medium (500–1000 m), high (1000–1500 m) and very high
(>1500 m). The slope was divided in flat (0–5◦), low (5–15◦), medium (15–30◦) and high
(30–60◦). Finally, the aspect was divided in north (337.5–360◦ and 0–22.5◦), north-east
(22.5–67.5◦), east (67.5–112.5◦), south-east (112.5–157.5◦), south (157.5–202.5◦), south-west
(202.5–247.5◦), west (247.5–292.5◦) and north-west (292.5–337.5◦). For each class of these
three data layers, the number of cells within the buffer zones, the average and the standard
deviation were calculated. Subsequently, the number of cells of 34 land cover classes
within the 755 buffer zones was counted. The same operation was executed for the cells
of 13 soil texture classes and for hydrographic network data layer. All spatial data-layers
were projected to WGS84_UTM_33N and converted to raster file with a cell size of 100 m
(Figure 9). The environmental variables considered are listed in Table 4.
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Table 4. Sources and data-layers included in geographical information system for modelling the spatial distribution of
Calicophoron daubneyi in the Basilicata region of southern Italy.

Name Type and Resolution Year Source Description

The Corine Land Cover Vector layer (100 m) 2018 Copernicus Inventory on land cover of EU
(44 classes)

Regional boundaries Vector data 2011 ISAT The regional administrative
boundaries

Hydrographic network Vector data (1:5000) 2015 Geodatabase of region
Basilicata

Representation of natural
watercourses

Elevation (DTM) Raster (100 m) 2016 Geodatabase of region
Basilicata

Digital elevation model of the
region

Slope Raster (100 m) 2016 Geodatabase of region
Basilicata

The rate of change of elevation
for each cell

Aspect Raster (100 m) 2016 Geodatabase of region
Basilicata

The direction of the compass
facing a slope

Soil texture Vector (100 m) 2012 Geodatabase of region
Basilicata

Distribution of the mineral
particles of the soil, according to

the Soil Taxonomy

4.4. Predicted Distribution of C. daubneyi

The Getis-Ord-Gi* statistic [39,40] was used to develop a Hot Spot analysis, in order
to determine whether the observed spatial clustering of rumen fluke-positive farms was
more pronounced than expected in a random distribution scenario. The standard deviation
represented by the Z score was a measure used to represent the intensity of the clustering:
a higher value of the Z score indicated that, rather than a random pattern, the farms
exhibited statistically significant clustering. Different confidence levels (%) and significance
levels (p-value) applied to specific standard deviation values: to z scores <−1.65 or >+1.65
corresponded a 90% upper confidence level (CLU) and a p-value <0.10, to z-scores <−1.96
or >+1.96 corresponded a 95% CLU and a p-value <0.05 and to z-scores <−2.58 or >+2.58
corresponded a 99% CLU and a p-value <0.01 [41].

The prediction of presence/absence of C. daubneyi in the study area was performed
by the development of a supervised machine learning technique of Random Forest (RF).
The model was constructed by using the Forest-based classification and regression tool
(ArcGIS Pro 2.7), which is an adaptation of Leo Breiman’s Random Forest algorithm [42].
Firstly, points data of presence/absence of C. daubneyi were used to train the model,
except for a random subset of input data (10%) which was excluded from the training
and used for the validation. The environmental variables included in GIS were used as
categorical explanatory training variables. Only the hydrographic network was not used
as a categorical training variable but as explanatory training distance feature; since the
ArcGIS tool allowed us to calculate the distance from natural watercourses to the farms.
The decision trees were generated using randomly selected data from the input dataset
and each tree established a relationship between explanatory training variables and the
categorical variable to predict. In the second prediction step, all the outcomes generated
from each decision tree were used by the model to predict the risk of the infection on the
study area and to predict unknown values at other locations characterized by the same
environmental explanatory variables. The importance of the variables was calculated using
Gini coefficients, which can be thought of as the number of times a variable is responsible
for a split and the impact of that split divided by the number of trees. Splits are each
individual decision within a decision tree [18].

4.5. Statistical Analysis

The univariate statistical analysis of Spearman’s (rs) was conducted to assess the
strength of association between the independent variables and the dependent variable
represented by the infection status (positive or negative to C. daubneyi) of each farm
examined. The Spearman’s (rs) was performed since the environmental variables were not
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normally distributed. In addition, a one-way ANOVA univariate analysis was conducted
to compare the average values of the variables and consequently to determine if there
was a statistically significant difference between positive and negative buffer zones. The
variables that showed significance in both Spearman’s (rs) and the one-way ANOVA tests
were used as predictors in a stepwise logistic regression analysis; the forward method
used to select the variables, consisted of an entry test based on the significance of the score
statistic and a removal test based on the probability of the Wald statistic.

5. Conclusions

The findings discussed above suggest that a combined use of different geostatistical
techniques improve the C. daubneyi infection risk prediction in small ruminants.

This study also showed the efficacy of GIS for monitoring the spatial distribution
of rumen flukes in livestock ruminants, providing useful tools to predict the parasitic
infection in the study area and at other locations characterized by the same environmental
explanatory variables.
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