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Abstract: Data from Chicago confirm the end of flu season coincides with the beginning of pollen
season. More importantly, the end of flu season also coincides with onset of seasonal aerosolization of
mold spores. Overall, the data suggest bioaerosols, especially mold spores, compete with viruses for
a shared receptor, with the periodicity of influenza-like illnesses, including COVID-19, a consequence
of seasonal factors that influence aerosolization of competing species.

Keywords: influenza-like illness (ILI); COVID-19; SARS-CoV-2; pollens; mold spores; bioaerosols;
innate immunity; Toll-like receptor; TLR4; fibrin(ogen) D-domain

1. Introduction

Influenza-like illnesses (ILIs) attributable to influenza viruses and to coronaviruses
are sharply seasonal [1,2]. Importantly, recent data from the Netherlands indicate there
exists an inverse relationship between the seasonal incidence of ILIs, including COVID-19,
and pollen count [3,4]. To discern whether such a relationship might be the case generally,
pollen count in Chicago was related to ILIs reported by local emergency departments. In
Chicago, as in the Netherlands, ILIs fall as total pollen count rises.

Because bioaerosols measured in Chicago include not only pollens but also mold
spores, ILIs were related to counts of the two measured species. Just as they do for pollens,
ILIs fall as mold spores rise. In contradistinction to their temporal relationship with pollens,
however, ILIs remain low when mold spores are high, rising again when mold spores fall.

Perusal of the various measured pollens and mold spores reveals many are echinulated,
having protuberances reminiscent of those of influenza and SARS-CoV-2 virions [5–11].
In addition, although interactions of viral ‘spikes’ with other host proteins have been
documented [12,13], such protuberances seem ideally suited to interacting especially with
Toll-like receptors in a fashion akin to ‘hook-and-loop’ adhesives. Indeed, such interactions
are well described for a number of pollens and mold spores, and there is no reason to believe
viruses, despite their smaller size, interact differently. Implicating Toll-like receptors, Toll-
like receptor 4 (TLR4) in particular, seems appropriate on phenomenological grounds as
well: (1) engagement of TLR 4 can account for the inflammatory signaling characteristic
of severe COVID-19 [14,15], (2) TLR4 is intimately involved in the inflammation elicited
both by sharply seasonal respiratory viruses and by multiple species of fungi [16–20],
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(3) COVID-19 prognosis correlates with radiographic involvement of alveoli [21,22], the
epithelial cells of which are rich in TLR4 [23], (4) age-dependent hyper-responsiveness of
TLR4 [24], especially in the context of TLR5 [25,26], can account for the age dependent
severity of COVID-19, and (5) fibrinogen D-dimers, composites of TLR4 ligands [27], are
markedly elevated in persons with severe COVID-19 [28].

In this report, inverse relationships between seasonal expression of pollens and sea-
sonal presentations of ILIs and COVID-19 are confirmed. More importantly, it is shown
that mold spores, which over a season constitute the dominant bioaerosol, also have an
inverse relationship with the respiratory illnesses. As to what accounts for the inverse rela-
tionships, it appears certain bioaerosols—especially mold spores—compete with viruses
for an effector of innate immunity, likely TLR4, thereby limiting viral engagement and,
consequently, ILIs.

2. Materials and Methods
2.1. Collection and Counting of Pollens and Mold Spores

A volumetric spore trap (Burkard Manufacturing, Hertfordshire, England) equipped
with a 24 h sampling head was used to collect pollens and mold spores. The trap was fixed
~70 feet above ground, on a roof in Melrose Park, Il, USA. A standard glass microscope slide
coated with grease was placed in a carriage that moved at a rate of 2 mm/h past the trap
orifice (14 mm × 2 mm). Air was drawn through the orifice at a rate of 10 L/min, thereby
impacting airborne particles against the greased slide. Slides so exposed were stained
with glycerin jelly supplemented with basic fuchsin. After applying a coverslip, a slide
was evaluated microscopically for both pollens and mold spores, Table 1. The quantities
of the various pollens and mold spores are available in Supplementary Tables S1 and S2,
respectively. A new slide was placed in the trap daily and the carriage was re-oriented to
its start position. Counts were made Monday through Friday, between mid-March and
mid-October, the only time during which the measured bioaerosols are quantifiable.

Table 1. Bioaerosols of this study. The measured bioaerosols of this study are those listed here. They
were collected and quantified as described in the text.

Tree Pollens

Acer, Alnus, Betula, Carya, Cupressaceae, Cyperaceae, Fagus, Fraxinus, Juglans, Morus, Olea, Quercus,
Pinaceae, Platanus, Populus, Salix, Tilia, Ulmus

Weed Pollens

Ambrosia, Artemisia, Asteraceae (excluding Ambrosia and Artemisia), Chenopodiaceae/Amaranthaceae,
Liquidambar, Plantago, Rumex, Typha, Urticaceae

Grass Pollen

Gramineae/Poaceae

Mold Spores

Alternaria, Botrytis, Cercospora, Chaetomium, Cladosporium, Coprinus-type, Curvularia, Diatrypaceae,
Dreshlera/Helminthosporium, Epicoccum, Fusarium, Ganaderma, Leptosphaeria-type, Nigrospora,

Oidium/Erysiphe, Penicillium/Aspergillus, Periconia, Peronospora, Pithomyces, Pleospora, Polythrincium,
Rusts, Smuts/Myxomycetes, Stemphylium, Torula, undifferentiated Ascospores, undifferentiated

Basidiospores, other fungi

2.2. ILI and COVID-19 Data

ILI data pooled from 23 large hospitals in Chicago over the period 9 January 2015
through 18 July 2020 were obtained from the Chicago Department of Public Health (CDPH).
The 23 hospitals were chosen because they alone of Chicago-area hospitals consistently
reported ILI presentations over the entirety of the study interval. In Chicago, the des-
ignation of ILI by emergency departments is based on fever (≥100 ◦F) and respiratory
symptoms, i.e., cough and/or sore throat, not on any specific diagnosis. The data are
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included in Supplementary Table S3. COVID-19 data from all Chicago hospitals were
obtained through portals of the CDPH, https://www.chicago.gov/city/en/sites/covid19/
home/covid-dashboard.html (accessed on 18 July 2020) and https://data.cityofchicago.
org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19 (accessed on 18 November
2020). Those data are also included in Supplementary Table S4.

2.3. Data Analysis

Time- or dose-dependent data were paired with the corresponding time or dose and
fit to equations described in the text. The best values for the parameters of the equations,
as well as their corresponding 95% confidence intervals, were then determined using the
paired data and a nonlinear least squares regression method [29].

3. Results
3.1. Kinetics of Presentations to Emergency Departments

As shown in Figure 1A, ILI presentations to emergency departments in Chicago are
cyclical in nature, with a periodicity of ~1 year. The peak incidence occurs approximately
during February, with the annual nadir occurring approximately during August. Over
the entirety of a seasonal cycle, ILI presentations never reach zero. Although there are
subtleties associated with the kinetics of ILIs for each of the individual years 2015 through
2020, the annual increase in ILI presentations for each season is characterized by a leading
‘bump,’ followed thereafter by a major rise. The relevance of the bump is addressed below,
under both Results and Discussion. As for the major rise, it is approximated empirically
by a first-order process, ILIobs = ILI0ekt + C, where ILIobs is the number of observed ILIs
during the growth phase of a cycle; ILI0 is the number of ILI presentations at the start
of a cycle; t is time, in d; k is a first-order rate constant, in d−1; and C is the number of
background presentations ‘masquerading’ as ILIs (Table 2 and Figure 2A). The rate of
decrease from any yearly maximum also fits reasonably well a first-order process (Table 2
and Figure 2B). Taken at face value, the data suggest: (1) a not insignificant number of ILI
presentations are due to pathogens other than influenza virus, e.g., parainfluenza virus,
respiratory syncytial virus, measles, mumps, etc., and (2) the annual rate of change in
influenza cases is due to change in ambient concentration of influenza virus.

Table 2. Kinetics of ILI presentations to emergency departments in Chicago. Both the rate of appearance and the rate of
disappearance of ILI presentations to Chicago emergency departments are approximately first-order. Using the boundaries
indicated, data were fit to first-order rate equations, which, for each year, were then solved for the parameters given in the
table. See text for additional details and definitions of parameters. R2 is the coefficient of determination.

Appearance

Year Date of
Assigned Min.

Date of
Assigned Max.

ILI0, Presentations
(95%) k, d−1 (95%) Half-life, d C, Presentations

(95%) R2

2014 1/9/2015 3/30/2015 5 (3–7) 0.033 (0.028–0.042) 21 36 (33–39) 0.761
2015 10/27/2015 2/22/2016 1 (1–2) 0.035 (0.029–0.043) 20 40 (39–42) 0.699
2016 10/22/2016 2/19/2017 2 (1–6) 0.029 (0.022–0.038) 24 35 (28–40) 0.747
2017 10/9/2017 1/28/2018 19 (12–22) 0.021 (0.019–0.025) 34 0 (0–11) 0.882
2018 10/28/2018 3/20/2019 39 (36–42) 0.004 (0.003–0.005) 185 0 (0–0) 0.346
2019 11/11/2019 1/27/2020 49 (41–56) 0.016 (0.014–0.019) 43 0 (0–0) 0.673
2020 - - - - - - -

Median 12 0.025 29 18

Disappearance

Year Date of
Assigned Max.

Date of
Assigned Min.

ILI0, Presentations
(95%) k, d−1 (95%) Half-life, d C, Presentations

(95%) R2

2014 - - - - - - -
2015 3/30/2015 8/4/2015 66 (61–72) 0.041 (0.034–0.049) 17 29 (26–31) 0.820
2016 2/22/2016 8/4/2016 113 (107–118) 0.031 (0.027–0.035) 22 18 (16–21) 0.899
2017 2/19/2017 9/3/2017 105 (99–110) 0.019 (0.017–0.022) 36 13 (9–16) 0.881
2018 1/28/2018 8/3/2018 155 (148–161) 0.028 (0.026–0.031) 24 20 (18–23) 0.935
2019 3/20/2019 8/20/2019 63 (59–68) 0.024 (0.020–0.029) 29 16 (13–19) 0.839
2020 3/18/2020 7/18/2020 145 (136–154) 0.026 (0.021–0.030) 27 10 (1–7) 0.897

Median 109 0.027 26 17

https://www.chicago.gov/city/en/sites/covid19/home/covid-dashboard.html
https://www.chicago.gov/city/en/sites/covid19/home/covid-dashboard.html
https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19
https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19
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Figure 1. Seasonal time courses, 2015–2020, of measured variables of this study. (A) ILI presentations to emergency
departments of hospitals in Chicago. Red arrow indicates the leading seasonal ‘bump’ in ILI presentations. (B) Total
bioaerosol count as a function of time. (C) Total pollen count as a function of time. (D) Total mold spore count as a function
of time. See text for additional details.
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Figure 2. Kinetics of ILI presentations to hospitals in Chicago during a representative flu season, 2017–2018. Both the rate
of appearance (A) and the rate of disappearance (B) of ILI presentations are approximately first-order. The dashed lines
displayed in the primary plots are the theoretical fits of the data (Figure 1A) to a first-order rate equation, the parameters of
which are given in Table 2. The inset shows the expected linearity of the same data when plotted according to the method of
Kézdy [30], in this case ILI presentationsday n vs. ILI presentationsday n+1.
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Figure 3A shows the time course of the 7-day moving average of COVID-19 presen-
tations to emergency departments of all Chicago hospitals. Because reporting was not
uniformly rigorous before 1 May 2020, COVID-19 presentations prior to that date have
been excluded from analyses. As shown in Figure 3B, the fall in presentations for the
period 5 May 2020 through 27 September 2020 was roughly first-order, with parameters
k = 0.065 d−1 (t1/2 ~ 10.6 d), COVID-190 = 875 presentations and C = 262 presentations.
Inasmuch as masks and physical-distancing were mandated in Chicago on 1 May 2020,
the rate of fall in COVID-19 presentations, i.e., the shape of the curve, after that date was
influenced to some extent by those measures, as discussed elsewhere [31].
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Figure 3. Time course and kinetics of COVID-19 presentations to all Chicago hospitals, March 2020–
November 2020. (A) COVID-19 presentations to all hospitals in Chicago, 7-day moving average,
1 March 2020 to 14 November 2020. (B) Disappearance of COVID-19 presentations, 5 May 2020
to 13 September 2020. The dashed line displayed in the primary plot is the theoretical fit of the
data to a first-order rate equation, the parameters of which are given in the text. For more refined
analysis, see [31]. (C) Appearance of COVID-19 presentations, 14 September 2020 to 14 November
2020. The dashed line displayed in the primary plot is the theoretical fit of the data to a first-order rate
equation, the parameters of which are given in the text. The insets show expected linearities of the
data when plotted according to the method of Kézdy [30], in these cases COVID-19 presentationsday n

vs. COVID-19 presentationsday n+1.
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Starting in late September 2020, COVID-19 cases in Chicago surged in first-order fash-
ion (Figure 3C), the parameters of which are k = 0.053 d−1 (t1/2 ~ 13 d), COVID-190 = 96 pre-
sentations and C = 117 presentations. Taken at face value, the data suggest: (1) some of the
individuals for whom a diagnosis of COVID-19 was made did not have COVID-19 and (2)
changes in the number of COVID-19 presentations in Chicago were due to changes in the
ambient concentration of SARS-CoV-2.

3.2. Kinetics of Pollen and Mold Spore Counts

Pollens are fertilizing elements of flowering plants whilst mold spores are reproductive
elements of fungi. In published studies [3,4], pollens alone were counted and related to ILIs.
Left uncounted were mold spores, important seasonal contributors to the total bioaerosol
burden. For the studies reported herein, both pollens and mold spores were counted. Those
counts were then analyzed, in aggregate and individually.

In Chicago, pollens and mold spores are monitored from approximately mid-March
to approximately mid-October, the only time during which the bioaerosols are easily
measurable and also the time most problematic for persons suffering from seasonal allergies.
As expected, the data indicate bioaerosol expression is cyclical with a periodicity of ~1 year
(Figure 1B). The total bioaerosol count peaks during approximately mid-September and
falls sharply thereafter. Data following the peaks are somewhat limited, their collection
being truncated on an arbitrary end date, i.e., approximately mid-October.

In the case of pollens, the seasonal distribution is bimodal, with a dominant first
mode that peaks in approximately mid-May and a smaller second mode that peaks in
approximately late August (Figure 1C). The pollens that constitute the second mode, here
termed ‘late pollens’, are predominantly Ambrosia and the other Asteraceae. Importantly,
the peak of the second mode always coincides with the leading bump in ILI presentations
(Figures 1A and 4). The potential relevance of this is addressed in the Discussion. In
the case of mold spores, which constitute the bulk of the measured bioaerosols (Figure 1B,D
and Table 3), the peak count, which occurs during approximately late September, falls
precipitously by approximately mid-October, with an empiric half-life of ~10 d, Table 4.
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Figure 4. Late pollens signal the start of the flu season. Data shown in red are solely the counts of late pollens, most of which
are Ambrosia and other Asteraceae. Superimposed on them are the ILI data of Figure 1A. As if a switch, the peak in the count
of late pollens always occurs coincident with onset of the bump in seasonal ILI presentations. See text for additional details.

Although these data substantiate the claim of an inverse relationship between the
onset of pollen season and the end of flu season, pollen count declines rapidly and is not
elevated when ILI presentations (Figure 5A) and COVID-19 presentations (Figure 6A) are
low. Mold spores, on the other hand, increase continuously in first-order fashion (Table 4
and Figure 7), beginning just prior to or coincident with the fall in ILI (Figure 5B) and
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COVID-19 presentations (Figure 6B), and across the entirety of the summer months, when
influenza and COVID-19 cases are low.

Table 3. Contribution of pollens and mold spores to bioaerosol burden in Chicago. The pollens and
mold spores of this study contribute variously to bioaerosol burden in Chicago. Pollens are listed in
red. Particle Count is the number of pollen or mold spore particles counted over the period of the
study, ~6 years. % Total is the percentage of all the particles counted.

Bioaerosol Particle Count % Total

Cladosporium 6,064,682 47.287
Undifferentiated Ascospores 3,598,475 28.058

Smuts/Myxomycetes 820,505 6.398
Coprinus-type 600,774 4.684

Ganoderma 368,568 2.874
Alternaria 224,356 1.749
Cercospora 208,950 1.629

Diatrypaceae 116,333 0.907
Penicillium/Aspergillus 109,272 0.852

Epicoccum 97,962 0.764
Undifferentiated Basidiospores 93,886 0.732

Rusts 93,107 0.726
Dreshslera/Helminthosporium 79,746 0.622

Pithomyces 45,102 0.352
Leptosphaeria-type 40,322 0.314

Nigrospora 36,701 0.286
Torula 32,652 0.255
Morus 28,019 0.218

Periconia 26,389 0.206
Chaetomium 14,408 0.112
Curvularia 14,166 0.11

Oidium/Erysiphe 12,012 0.094
Stemphylium 11,304 0.088

Fusarium 10,277 0.08
Polythrincium 9714 0.076

Populus 8034 0.063
Quercus 6792 0.053

Acer 6576 0.051
Ambrosia 5896 0.046

Gramineae/Poaceae 5399 0.042
Peronospora 4676 0.036

Chenopodiaceae/Amaranthaceae 4637 0.036
Cupressaceae 4395 0.034

Betula 4132 0.032
Pinaceae 2607 0.02

Unidentified Fungi 2366 0.018
Urticaceae 2337 0.018
Plantago 1584 0.012
Pleospora 1473 0.011

Salix 1284 0.01
Artemisia 1019 0.008
Fraxinus 823 0.006
Ulmus 822 0.006

Unidentified Pollen 699 0.005
Rumex 483 0.004
Juglans 386 0.003
Alnus 281 0.002

Platanus 231 0.002
Tilia 170 0.001

Carya 147 0.001
Cyperaceae 128 0.001

Fagus 120 0.001
Liquidambar 85 0.001

Typha 38 0
Asteraceae (excl. Ambrosia and Artemisia) 38 0

Olea 18 0
Botrytis 0 0
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Table 4. Kinetics of mold spore expression in Chicago. Because the end date for counting bioaerosols in Chicago is fixed at
approximately mid-October, the rate of disappearance of mold spores can only be approximated by the change in mold spore
count over the interval of time indicated in the table. The rate of appearance of mold spores in Chicago is approximately
first-order. Using the boundaries indicated, i.e., A and B, data were fit to first-order rate equations, which, for each year,
were then solved for the parameters given in the table. See text for additional details. M0 is the calculated starting mold
spore count, in particles/m3, at the beginning of an interval; k is the corresponding first-order rate constant, in d−1, and R2

is the coefficient of determination.

Disappearance

Year Date of Assigned
Maximum, A

Mold Spore Count
on A, particles/m3

Date of Last
Measurement, B

Mold Spore Count on B,
particles/m3 Interval (A to B), d

2015 9/2/2015 76,403 10/16/2015 10,344 44
2016 10/6/2016 101,028 10/21/2016 7203 15
2017 9/25/2017 63,929 10/20/2017 10,519 25
2018 9/5/2018 80,759 10/12/2018 22,466 37
2019 9/20/2019 43,414 9/30/2019 12,920 10
2020 9/4/2020 57,100 10/13/2020 5200 39

Median 70,166 10,432 31

Appearance

Year
Date of First

Observed
Appearance

Date of
Assigned
Maximum

Interval, d M0, particles/m3 (95%) k, d−1 (95%) Half-life, d R2

2015 3/16/2015 9/2/2015 170 7350 (5427–9923) 0.008 (0.006–0.011) 84 0.211
2016 3/21/2016 10/6/2016 199 3759 (2788–5081) 0.012 (0.010–0.014) 59 0.478
2017 2/20/2017 9/25/2017 217 2682 (4418–7437) 0.011 (0.006–0.009) 65 0.395
2018 3/1/2018 9/5/2018 188 2256 (1489–3142) 0.015 (0.013–0.018) 45 0.572
2019 4/1/2019 9/24/2019 176 3137 (1399–3632) 0.013 (0.012–0.019) 52 0.634
2020 3/23/2020 9/4/2020 165 4044 (2820–5624) 0.012 (0.010–0.015) 56 0.479

Median 188 3137 0.012 59
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Figure 5. Bioaerosol expression and ILI presentations in Chicago, 2015–2020. In (A), the expression
of pollens, in brown, is superimposed on the time course of ILI presentations. In (B), the expression
of mold spores, in green, is superimposed on the time course of ILI presentations. The expression
of pollens is bimodal, with the onset of the first mode coinciding with the drop in seasonal ILI
presentations. The peak of the second mode coincides with the onset of the leading ‘bump’ in ILI
presentations, the start of flu season. See text and Figure 4 for additional details. The onset of
aerosolization of mold spores also coincides with the drop in seasonal ILI presentations. Thereafter,
mold spore count increases across the entirety of the summer months—during which time ILIs
remain low—and falls precipitously from mid-September to mid-October, at which time ILI cases
begin to rise. See text for additional details.
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Figure 6. Bioaerosol expression and COVID-19 presentations in Chicago, March 2020–November 2020. In (A), the expression
of pollens, in brown, is superimposed on the time course of COVID-19 presentations. In (B), the expression of mold spores,
in green, is superimposed on the time course of COVID-19 presentations. In (C), the expression of late pollens alone,
in red, is superimposed on the time course of COVID-19 presentations. As they do for ILI presentations (Figure 4), late
pollens presage the onset of COVID-19 presentations in the fall. The onset of aerosolization of mold spores coincides
with the drop in COVID-19 presentations in the spring. Thereafter, mold spore count increases across the entirety of the
summer months—during which time COVID-19 presentations remain low—and fall precipitously from mid-September to
mid-October, at which time COVID-19 presentations begin to rise. See text for additional details.
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Figure 7. Kinetics of mold spore expression in Chicago during a representative season, 2019. The rate of appearance of mold
spores in Chicago is approximately first order. The dashed line displayed in the primary plot is the theoretical fit of the data
to a first-order rate equation, the parameters of which are given in Table 4. The inset shows the expected linearity of the same
data when plotted according to the method of Kézdy [30], in this case mold spore countday n vs. mold spore countday n+1.

3.3. Inhibition of ILI and COVID-19 Presentations by Mold Spores

If one assumes ILI and COVID-19 presentations are consequences of the binding of
relevant viruses to specific receptors, then one can treat the presentations as proxies for
those receptors, for which mold spores compete. Toward that end, ILI and COVID-19
presentations were plotted as functions of total mold spore count (Figure 8). Because the
curvatures of the plots suggest true equilibria, the data of each were fit to the equation
P = Po/(1 + C/Kd) + B, where P is the observed number of presentations to emergency
departments; Po is the maximum number of such presentations; C, in mold spores/m3,
is the measured mold spore count; Kd, in mold spores/m3, is the apparent dissociation
constant of the receptor–mold spore complex; and B is a constant representing presentations
not influenced by mold spores. As shown in the figures, the data of each plot fit the
theoretical model reasonably well. From the ILI data, one calculates Po ~ 50 presentations,
Kd ~ 2128 mold spores/m3 and B ~ 16 presentations; from the COVID-19 data, one
calculates Po ~ 1366 presentations, Kd ~ 1668 mold spores/m3 and B ~ 201 presentations.
The most parsimonious explanation for the near equivalence of the apparent dissociation
constants is a shared receptor.
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4. Discussion

The data presented herein are consistent with those presented earlier by others [3,4],
namely, the incidence of ILIs falls as pollen count rises. Because the data of the present
study derive from an urban area in North America (Chicago, IL, USA: latitude 41.85003,
longitude −87.65005) whilst those of the earlier study derive from North Central Europe
(Helmond, the Netherlands: latitude 51.48167, longitude 5.66111), it appears the inverse
relationship may be generally valid.

Made blatantly obvious by these studies are the seasonalities of ILIs, pollens and mold
spores. The annual periodicities of the three indicate the rotation of the earth about the
sun is ultimately responsible. Special note should be made of: (1) the nearness of the onset
of bioaerosol expression to the vernal equinox, i.e., when the lengths of day and night
are nearly equal, (2) the nearness of the peak in pollen count (excepting Ambrosia) to the
summer solstice, i.e., the longest day of the year and (3) the nearness of the peak in mold
spore count to the autumnal equinox. Because light and heat from the sun are drivers
of both natural and agricultural growing seasons, these dates and their relevance to the
expression and dispersal of bioaerosols should come as no surprise.

With special regard to the late pollens, changes in their atmospheric concentration
invariably coincide with the annual leading bump in ILIs. Inasmuch as Ambrosia, the
dominant species, is a major respiratory allergen, the leading bump may represent rag-
weed sensitivities manifesting as ILI. Alternatively, it may just represent enhanced spread
of respiratory viruses by, for example, school openings. Regardless, the peak in late
pollen count—as if a switch—presages the major upswing in ILI (Figure 4) and COVID-19
(Figure 6C) presentations. Thus, aside from any contribution to mechanistic understand-
ing it might provide, the peak in late pollens could be exploited when contemplating an
upcoming ILI season.

From an anthropologic perspective, the potential of mold spores and pollens to inhibit
influenza-like epidemics/pandemics, including COVID-19, certainly has great relevance
and significant consequence. Still, because in comparison to plants, fungi and even viruses,
humans contribute only very little to the biomass on planet Earth [32], it seems likely
some larger purpose is served by interplay between the three bioaerosols. It is tempting to
speculate that any antiviral effect attributable to mold spores and/or pollens is intended
to benefit primarily fungi and plants [33], i.e., the human benefit, albeit perhaps related
mechanistically, is an epiphenomenon. As just one of many possibilities, mold spores and
pollens might protect primarily arthropods, birds and bats, organisms intimately involved
in dissemination of reproductive elements of both fungi and plants [34–41].

Separate and distinct from pollen count, mold spore count in Chicago correlates
inversely with ILIs. Indeed, given their higher atmospheric concentration as well as the
duration of their seasonal expression, mold spores seem more likely than pollens to be
principals in any abatement of ILIs, including COVID-19. Because certain mold spores,
e.g., Aspergillus, can propagate in man if left unattended by innate immune effectors,
it also follows mold spores should be prioritized over pollens. Nonviral bioaerosols
could abate viral activity by either direct or indirect means. By direct means, they might
produce substances that limit viral propagation, or they might complex with viruses,
limiting viral infectivity [42,43]. However, if direct antiviral activity is an attribute of the
bioaerosols themselves, then one would not expect, a priori, significant disparity between
individual susceptibilities to severe flu or COVID-19 [44,45]. As indirect means, others have
proposed pollens stimulate the human immune system in such a way as to either potentiate
endogenous antiviral activity or elicit a protective allergic response [3]. Against these
proposals, asthma does not confer protection against either influenza or COVID-19 [46–48].

The similarity of the proposed mold spore dose dependencies for abatement of flu
and COVID-19 suggests a shared receptor. Although much attention has been given
to angiotensin-converting enzyme 2 (ACE-2) and its role in COVID-19 [12,13], there are
compelling reasons to believe TLR4, which binds the SARS-CoV-2 spike protein with greater
affinity than does ACE-2 [49], is also operative: 1) TLR4 is implicated in the inflammatory
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response triggered by sharply seasonal respiratory viruses [16–18], 2) TLR4 has a significant
role in innate defense against multiple species of fungi [19,20] and polymorphisms in TLR4
are associated with invasive fungal disease [50,51], 3) COVID-19 prognosis correlates with
radiographic involvement of alveolar spaces [21,22], the epithelial surfaces of which are
poor in ACE-2 [52,53] but rich in TLR4 [23], (4) inflammation of the sort associated with
acute lung injury is mediated by TLR4 [14,54–62], (5) age-dependent hyper-responsiveness
of TLR4 [24], especially in the context of interactions with TLR5 [25,26], can account for the
age-dependent severity of COVID-19 and (6) fibrino(gen) D-dimers are markedly elevated
in persons with severe COVID-19 [28]. That TLR4 may be involved in the processing
of bioaerosols is also expected on phylogenetic grounds: the receptor has been retained
by some fish that breathe air but lost by those that do not [63], and the eponymous Toll
receptor controls the antifungal response of Drosophila [64].

Given these, one can imagine the engagement of TLR4 by aerosols of all sorts and mi-
croscopic/submicroscopic sizes, including, but not limited to, viruses (diam 0.01–0.30 µm),
mold spores (diam 1–50 µm) and pollens (diam 10–1000 µm), in a fashion analogous to
the engagement of hook-and-loop adhesives, i.e., Velcro®. Instead of loops, however,
spinous processes of the various aerosols engage TLR4 ‘hooks,’ effecting an innate immune
response, the nature of which depends on the arrangement and density of the engagement.
The large surface area of the extracellular domain of TLR4, 6000–8500 Å2 ensures accom-
modation of many such protuberances which, in turn, explains the broad specificity of
the receptor [65]. In addition, just as hook-and-loop adhesives can be rendered nonfunc-
tional/dysfunctional by nonspecific adherence of extraneous materials, so too might TLR4
hooks become saturated with one ligand to the exclusion of another. As for the role of
fibrin(ogen) D-domains, their overexpression as endogenous ligands may represent an
attempt by the innate immune system to purge/disengage TLR4 from pathogenic aerosols
of all sorts for, perhaps, restorative purpose.

The data presented herein bring new appreciation and understanding to seasonality
and suggest a remarkable interplay between bioaerosols that influence the health of man.
Indeed, considering that humans have co-existed with plants, fungi and viruses for some
time, it stands to reason that, over the course of evolution, the respiratory system of the
former would have developed means to cope with the significant recurring, i.e., annual,
inhalational exposure to reproductive elements of the latter. As the environment-facing
interface of the respiratory tree, epithelial cells and their entourage of innate immune
effectors seem ideally positioned to provide that coping mechanism. That being the case,
nebulized materials that exploit competition either between the various bioaerosols or
between the bioaerosols and endogenous TLR4 ligands, e.g., C-terminus of the fibrinogen
γ-chain [66–68], might prove therapeutic. Finally, and notwithstanding allergic potential,
the indoor cultivation—including mold-rich fertilization—of pollenating plants might be
exploited to limit occurrence of sharply seasonal ILIs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10091204/s1, Table S1, Pollen Counts; Table S2, Mold Spore Counts; Table S3, ILI
Presentations; Table S4, COVID-19 Presentations.
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