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Abstract: Clinical epidemiological studies have reported that viral infections cause autoimmune
pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry
cause autoreactive T cells to cross-activate. The aim of the current study was to implement im-
munoinformatics approaches to infer sequence- and structure-based molecular mimicry between
viral and human proteomic datasets. The protein sequences of all the so far known human-infecting
viruses were obtained from the VIPR database, and complete human proteome data were retrieved
from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence
analyses, 24 viral proteins were identified with significant sequence similarity to human proteins.
PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with
a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were
predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular
docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA
and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides
belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and
3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and
poxvirus infection-mediated autoimmune disorders in humans.

Keywords: molecular mimicry; autoimmune disorders; cross-reactive epitopes; viral infection;
sequence and structural homology

1. Introduction

The human immune system defends against various diseases by recognizing and
eliminating pathogens and damaged cells. If this approach is unsuccessful, an elicited im-
mune response is initiated against the body’s healthy cells and tissues, resulting in various
autoimmune illnesses (AIDs) [1,2]. Over 100 million individuals worldwide are infected
with over 80 distinct types of deadly AIDs [1,3–5]. AIDs are caused by a combination of
factors, including age, genetics, environment, and microbial infections [6]. Understand-
ing the underlying molecular mechanisms responsible for autoreactive T cells and the
pathophysiology of AIDs is critical. The human immune system maintains a delicate
equilibrium to distinguish between self- and non-self-antigens. Most autoreactive T cells
are normally destroyed. However, only a small fraction survive, and are assumed to be the
cause of autoimmune diseases. Although the human immune system has well-established
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mechanisms for removing or tolerating the autoreactive T and B cells, nonetheless, these
cells are commonly activated and cause devastating AIDs [7–9]. The T-cell-specific au-
toimmune illnesses identified in the literature include multiple sclerosis (MS), human
type-1 diabetes, type-2 autoimmune hepatitis, meningitis, primary biliary cirrhosis, and
autoimmune arthritis [2,10,11]. However, the molecular mechanisms underlying these
diseases remain unclear.

One of the key mechanisms that causes autoimmune disorders is molecular mimicry,
in which the pathogenic antigens exhibit sequence and structural resemblance to host
self-antigens. Viruses are hypothesized to contain antigens that are structurally similar
to self-antigens and activate B and T cells, resulting in a cross-reactive response against
both self-and non-self antigens, which leads to autoimmunity [12–14]. Several viral species
have been associated with AIDs. For instance, the herpes simplex virus (HSV) has been
reported to be associated with stromal keratitis, while the coxsackie virus has been reported
to cause autoimmune myocarditis. Similarly, Theiler’s murine encephalomyelitis virus
causes demyelinating illness in animals. Furthermore, diabetic complications are linked to
viral infections [15–18].

In addition to molecular mimicry, there is a mechanism of “bystander activation,”
where a non-specific and highly reactive antiviral immune response in a localized pro-
inflammatory milieu causes the release of self-antigens from injured tissue. These self-
antigens activate autoreactive T lymphocytes, which induce inflammatory responses and
contribute to autoimmunity [19,20]. A viral infection triggers the development of new
self-antigens and autoreactive T or B cells, which then disseminate to target additional
self-epitopes [21,22]. The spread of such epitopes has been described in individuals with
rheumatic fever (RF), an autoimmune disease [23].

Bystander activation as well as molecular mimicry pathway involvement have been
reported in autoimmune encephalomyelitis (EAE) models of MS, TMEV-IDD, and myasthe-
nia gravis (MG) mediated by West Nile virus (WNV) [24–26]. Furthermore, T-cells that react
to immune-dominant myelin basic protein (MBP) epitopes may cross-react with certain
viral antigens, boosting the possibility of MS [27,28]. Serotype 4 of the Coxsackie B virus
(CVB4) infection has been linked to T-cell specific autoimmune type 1 diabetes [29]. In
CVB4-induced type 1 diabetes, both bystander activation and molecular mimicry mecha-
nisms have been demonstrated [30,31]. Several studies in human and animal models have
examined the role of rotaviruses in the development of autoimmune diabetes, suggesting
that autoimmunity may be caused by bystanders [32,33]. Clinical studies have linked
influenza infection to diabetes and other pancreatic diseases [34–39]. Herpesvirus and
Epstein-Barr virus (EBV) infections are reported to be associated with the development of
systemic autoimmune diseases (SADs). MS, RA, and Sjögren’s syndrome (SS) are caused
by EBV- and HSV-induced autoimmunity [2,40]. Other viruses, including measles, mumps,
and rubella, are associated with the development of type 1 diabetes. Some of these viruses
can infect and multiply in beta cells, causing autoimmune disorders [41,42].

Numerous hypotheses have been proposed to better understand the underlying pro-
cesses of virus-induced autoimmunity; however, in most cases, a well-defined specific
mechanism remains unclear. Despite the absence of a clear molecular explanation, multiple
epidemiological and animal model experiments have shown that a broad spectrum of
viruses may cause an autoimmune response. The emergence of autoimmune diseases
after viral infection is a complicated process that is affected by several variables, including
immune response, infectious dosage, and infection duration [43].

The viral and human proteins and their corresponding epitopes that share sequence
and structural homology as well as exhibiting biochemical interactions with major histocom-
patibility complex (MHC) molecules may activate autoreactive T-cells, which eventually
provoke autoimmune diseases. Currently, bioinformatics and immunoinformatics tools
have gained considerable attention. These platforms facilitate the understanding of the
complexity of peptide binding to different MHC molecules, forecasting cytokine release,
and identifying the lead T- and B-cell epitopes [44,45]. We utilized the entire proteome
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sequences of known human pathogenic virus species from different families, and the data
were thoroughly examined in the context of the human proteome to identify potential
sequence and structural homologs to prioritize virus-associated autoimmunity candidates.
Several viral peptides have shown significant sequence and structural similarities to human
peptides, and some of these homologs have been identified as promising T-cell epitopes
that may be cross-reactive during the immune response. Knowledge of viral-human ho-
mologous proteins and peptides may be useful for understanding the molecular basis of
virus-induced autoimmune diseases.

2. Results
2.1. Non-Paralogous Viral and Human Proteome Sets

The complete proteome sequences of the human pathogenic viruses available in the
ViPR database were retrieved. These include viruses belonging to Paramyxoviridae, Caliciviri-
dae, Phenuiviridae, Flaviviridae, Hantaviridae, Pogaviridae, Hepeviridae, Filovirdae, Herpesviridae,
nairoviridae, Arenaviridae, Peribunyaviridae, Poxviridae, Rhabdoviridae, Reoviridae, Coronaviri-
dae, Dengue viruses, Ebola viruses, Enteroviruses, Lassa viruses, and hepatitis C viruses.
The compiled dataset is comprised of 129,191 protein sequences. In total, 74,468 non-
redundant human proteins were retrieved from the NCBI database [46]. The viral protein
sequences were subjected to CD-Hit clustering to remove paralogous sequences, with a
threshold of 0.6. The resultant 68,322 non-paralogous viral protein sequences were utilised
for downstream analysis.

2.2. Sequence Similarity Search

The BLASTp program was used to compare 68,322 non-paralogous viral proteins with
the human proteome. A total of 24 viral-human homolog proteins were identified using
comparative sequence analysis based on a bit-score ≥100, query coverage ≥60, percent
identity ≥50, and an E-value of 1 × 10−6 (Table 1).

Table 1. The top viral and human homolog proteins hits acquired from comparative proteome
sequence analysis.

S. No Query Sequence
IDs Subject Sequence IDs Score Query

Coverage
Percent-
Identity E-Value

1 gb:AXN75085 sp|P23921|RIR1_HUMAN 3148 98 75.297 0

2 gb:AST09466 sp|P23921|RIR1_HUMAN 3130 100 73.106 0

3 gb:AEV80548 sp|P35354|PGH2_HUMAN 2452 98 73.729 0

4 gb:AAY97564 sp|P49916|DNLI3_HUMAN 1700 98 55.124 0

5 gb:AST09563 sp|P49916|DNLI3_HUMAN 1594 99 51.852 0

6 gb:AZY90656 sp|P31350|RIR2_HUMAN 1412 95 80.625 0

7 gb:AST09433 sp|P31350|RIR2_HUMAN 1399 99 80.312 0

8 gb:QCA43223 sp|P04818|TYSY_HUMAN 1162 95 71.579 2.94 × 10−161

9 gb:BBA90853 sp|P04818|TYSY_HUMAN 1153 89 69.333 2.63 × 10−159

10 gb:AQY16903 sp|Q9H2F3|3BHS7_HUMAN 834 99 50.559 9.70 × 10−110

11 gb:ADZ29327 sp|Q9HC24|LFG4_HUMAN 833 100 71.849 1.56 × 10−113

12 gb:AZT86284 sp|P07203|GPX1_HUMAN 831 83 84.153 6.52 × 10−114

13 gb:AXN75107 sp|P04183|KITH_HUMAN 656 97 69.006 1.45 × 10−87

14 gb:AST09487 sp|P04183|KITH_HUMAN 625 98 64.205 6.60 × 10−83

15 gb:QCF48225 sp|P22301|IL10_HUMAN 599 95 81.287 6.42 × 10−80

16 gb:ABD28857 sp|P00374|DYR_HUMAN 498 86 50 9.21 × 10−64

17 gb:AAY97032 tr|H0YNW5|H0YNW5_HUMAN 477 90 64.964 7.74 × 10−62

18 gb:AUL80434 tr|A0A0C4DGL3|A0A0C4DGL3_HUMAN 394 92 55.882 1.42 × 10−49
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Table 1. Cont.

S. No Query Sequence
IDs Subject Sequence IDs Score Query

Coverage
Percent-
Identity E-Value

19 gb:AUL80132 sp|Q8IV08|PLD3_HUMAN 377 85 50.595 6.87 × 10−43

20 gb:AAY97407 sp|Q9HC24|LFG4_HUMAN 367 97 63.248 9.72 × 10−45

21 gb:AUL80484 sp|P23921|RIR1_HUMAN 306 86 57.143 2.35 × 10−33

22 gb:AUL80431 tr|A0A3B3ITT3|A0A3B3ITT3_HUMAN 235 86 54.167 2.36 × 10−25

23 gb:AEV80662 sp|P09341|GROA_HUMAN 208 71 65.079 1.00 × 10−22

24 gb:AEV80661 sp|P19875|CXCL2_HUMAN 180 60 55.932 2.11 × 10−18

2.3. Pathway Enrichment Analysis

The 24 viral protein sequences homologous to human proteins were subjected to path-
way enrichment analysis using the PathDIP v4.0.7.0 database [47] for functional annotation.
The metabolic pathways were manually compared to identify the proteins involved in
the host and virus-shared pathways as well as virus-specific pathways. These pathways
were filtered based on a p-value of <0.001 to identify significant hits (Table S1). Thirteen
viral proteins were found to share pathways with nine human proteins, whereas eleven
viral proteins were involved in virus-specific pathways. Most of the proteins are found
to be involved in the autoimmune disease pathways, including cells and molecules in-
volved in the local acute inflammatory response, TNF-related weak inducer of apoptosis
(TWEAK) signaling, interleukin-11 signaling, p53 signaling, and inflammation mediated
by chemokine and cytokine signaling.

2.4. Epitope Prediction

The immunogenic nature of proteins and peptides gives them the potential to bind to
the MHC molecules with high binding affinities. MHC-I molecules are found in virtually
all nucleated cells and precisely represent endogenous proteins or antigens processed
by the cytosolic pathway, which represents cytotoxic T lymphocytes (CTLs). Exogenous
antigens, usually the surface proteins of pathogens, are processed by endocytic processes
and presented to T lymphocytes or CD4+ T cells [48]. Several algorithms and computa-
tional biology resources are available for predicting antigenic epitopes. In silico analysis
revealed that pathogenic peptides exhibiting homology with their human counterparts
have a significant binding capacity to MHC class-II molecules. Human host proteins with
sequence homology to viral peptides may increase the susceptibility to autoimmunity.
Epitopes with a binding score of IC50 ≤ 500 nM were defined as HLA binders. The 23 most
common HLA-DP, HLA-DQ, and HLA-DR alleles were utilized to predict the promiscu-
ity of the mimicking peptides. Peptides with IC50 values ≤ 50 nM were speculated to
be strong HLA-binders [45]. The epitopes with 15-mer peptide length and 9-mer core
residues were prioritized downstream based on IC50 values ≤ 50 nM (Figure 1). The
analyses eventually identified several promiscuous MHC class-II binding epitopes that
demonstrated high binding affinity for all HLA alleles, with an IC50 < 50 nM. Several
of these homolog epitopes were found to bind promiscuously to several HLA alleles, in-
cluding HLA-DPA1*02:01/DPB1*05:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DRB1*01:01,
HLA-DPA1*01:03/DPB1*03:01, and HLA-DQA1*05:01/DQB1*03:01. The human leuko-
cyte antigen DPB1 (HLA-DPB1) allele has been shown to influence the susceptibility and
severity of rheumatoid arthritis. Numerous autoimmune diseases have been linked to
HLADRB1-DQA1-DQB1 haplotype components encoded by HLA class-II alleles, including
type-1 diabetes, Graves’ disease, and RA [49]. Likewise, the DRB1*01:01 allele has been
associated with autoimmune diseases such as rheumatoid arthritis [50]. The ability of
the conserved regions to bind to class-II HLA alleles was assessed by docking the lead
epitopes in the binding groove of HLA-DRB1, an allele known to predispose individuals to
rheumatoid arthritis [51]. SLE and SS are associated with the DRB1*03:01 allele, whereas
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autoimmune hepatitis (AIH) and RA are reported in association with the DRB1*04:05
allele [52].
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Figure 1. The viral-human mimicking epitopes’ binding potential against HLA alleles, (A) HLA-DP;
(B) HLA-DQ; and (C) HLA-DR. The plot represents the total number of binders for each allele. Strong
binders (IC50 ≤ 50), weak binders (IC50 ≤ 500), and non-binders (IC50 > 500) were assigned to each
fragment based on their expected IC50 values. The y-axis represents the IC50 values.

2.5. Molecular Mimicry Prediction of Viral-Human Homolog Epitopes

The trRosetta server [53] was used to estimate the three-dimensional structures of
the viral-human homologous peptides. The resultant 3D structure’s root mean square
deviation (RMSD) was determined using the TM-Sore web server with a threshold of 0–1.
Viral-human homologous peptides with low RMSD values depicted a significant degree of
structural mimicry. These homologous peptides were predicted to be the top candidates
that may induce autoimmune diseases. Some peptides exhibited higher RMSD values than
the set threshold; nevertheless, their structural resemblance was observed and prioritized.

2.6. Molecular Docking

Molecular docking analysis was performed to evaluate the MHC-II binding promis-
cuity of human and virus-mimicking peptides. Protein-protein rigid body docking was
performed using the ClusPro server based on sampling billions of confirmations, RMSD-
based clustering, and energy minimization-based structural refinement [54]. Human and
virus-mimicking peptides were subjected to molecular docking with human HLA (PDB ID:
5JLZ) and TLR4 (PDB ID: 3FXI) with default parameters. The docking results revealed that
the homologous peptide epitopes interact feasibly with HLA and TLR4 receptor epitope-
binding sites and develop multiple molecular interactions. The overall docking scores
of these peptides within the immune receptors’ antigen-binding sites were found to be
significant (Figure 2; Table 2). Peptide fragments with the lowest energy scores showed the
highest binding affinities (Supplementary Figures S1–S4). The molecular interactions of the
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top prioritized viral-human identical epitope with the receptor protein-interacting residues
are shown in Table S3.
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Figure 2. Molecular docking of the viral-human identical epitope (mentioned in S. No. 1, Table 2)
with HLA (A) and TLR4 (B) receptors based on lowest binding energy. The purple colour indicates
the top-prioritized peptide epitope, and the orange colour indicates the receptor proteins.
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Table 2. Molecular docking scores of human and virus-mimicking peptides docked with the human HLA and TLR4 receptors. Viral-human homolog epitopes
capable of binding to human host MHC class-II (“:” denotes the distance between residue pairs).

S. No Human
Proteins Human Peptides

Docking Score
in

Human HLA

Docking Score
in

Human TLR4
Virus Proteins Virus Peptides

Docking
Score in

Human HLA

Docking
Score

in Human
TLR4

Structural Mimicry RMSD Value

1

Ribonucleoside-
diphosphate

reductase
subunit M2

IFFSGSFASIFWLKK −1105.4 −829.4 CPXV051 IFFSGSFASIFWLKK −1105.4 −829.4
IFFSGSFASIFWLKK

:::::::::::::::
IFFSGSFASIFWLKK

0.00

2 Thymidine
kinase, cytosolic STELMRRVRRFQIAQ −864 −689 thymidine

kinase STELIRRVRRYQIAQ −853 −596.4
STELMRRVRRFQIAQ

:::::::::::::::
STELIRRVRRYQIAQ

0.1

3

Ribonucleoside-
diphosphate

reductase large
subunit

RDFSYNYFGFKTLER −854 −659.7
ribonucleotide
reductase large

subunit
RDFSYNYFGFKTLER −854 −659.7

RDFSYNYFGFKTLER
:::::::::::::::

RDFSYNYFGFKTLEK
0.1

4 Prostaglandin
G/H synthase 2 MFAFFAQHFTHQFFK −962 −742.8 prostaglandin

G/H synthase 2 MFAFFAQHFTHQFFK −962 −742.8
MFAFFAQHFTHQFFK

:::::::::::::::
MFAFFGQHFTHQFFR

0.1

5 Thymidylate
synthase TKRVFWKGVLEELLW −962.9 −747 ORF13 TKRVFWRAVVEELLW −117.6 −738

TKRVFWKGVLEELLW
:::::::::::::::

TKRVFWRAVVEELLW
0.2

6 Thymidylate
synthase VPFNIASYALLTYMI −874.7 −613 ORF70 VPFNIASYSLLTYML −867 −745.6

VPFNIASYALLTYMI
::::::::::::

VPFNIASYSLLTYML
0.3

7 Dihydrofolate
reductase RPLKGRINLVLSREL −823 −1070 ORF2 RPLAGRINVVLSRTL −1087 −782

RPLKGRINLVLSREL
:::::::::::::::

RPLAGRINVVLSRTL
0.8

8 DNA ligase 3 FVFDCIYFNDVSLMD −951.7 −861 ATP-dependent
DNA ligase FVFDCIYFNDVSLMD −951.7 −861

FVFDCIYFNDVSLMD
: ::::::::::

FVFDCIYFNDVSLMD
0.9

9 thymidine
kinase LMRRVRRFQIAQYKC −863.6 −691 thymidine

kinase LIRRVKRYQIAKYDC −907 −652
LMRRVRRFQIAQYKC

:::::::::::::::
LIRRVKRYQIAKYDC

1

10

Ribonucleoside-
diphosphate

reductase large
subunit

AGRRAAGASVATELR −875.3 −781.9 ribonucleotide
reductas LMSLIAYCQSATELR −917 −806.5

AGRRAAGASVATELR
::::::::::

LMSLIAYCQSATELR
1.0
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Table 2. Cont.

S. No Human
Proteins Human Peptides

Docking Score
in

Human HLA

Docking Score
in

Human TLR4
Virus Proteins Virus Peptides

Docking
Score in

Human HLA

Docking
Score

in Human
TLR4

Structural Mimicry RMSD Value

11
Growth-

regulated alpha
protein

IIYDRDFSYNYFGFK −661 −602.4 chemokine
vCXCL7 IINDRDFSYNYFGFK −789.5 −580.5

IIYDRDFSYNYFGFK
:::::::::

IINDRDFSYNYFGFK
1.0

12 C-X-C motif
chemokine 2 LLLVAASRRAAGAPL −763 −781 chemokine

vCXCL6 SRLLVATLLGTLLAC −1006.9 −598
LLLVAASRRAAGAPL

:::::::::
SRLLVATLLGTLLAC

1.5

13 DNA ligase 3 CLFVFDCIYFNDVSL −820.4 −742.3 DNA ligase CLFVFDCLYFDGFDM −942 −878
CLFVFDCIYFNDVSL

::: :::::::::
CLFVFDCLYFDGFDM

2.1
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3. Discussion

Autoimmune disorders (AID) are caused by an abnormal immune response that fails
to distinguish between self and non-self antigens [1,2]. Molecular mimicry is based on the
possibility that T- and B-cell antigenic determinants of pathogens may have a counterpart in
the host and potentially cause autoimmunity [55]. We implemented an immunoinformatic
platform to analyze a wide range of human-infecting viral proteins against the human
proteome to prioritize the top hit epitopes that share sequence and 3D structural similarities.
The top viral-human homolog peptide epitopes might be valuable targets to examine in
association with autoimmune disorders, based on the concept of molecular mimicry. The
analysis prioritized 13 viral peptides that showed significant amino acid sequences and
3D structural homologies with various human protein fragments. This includes one viral-
human identical epitope that exhibited the highest docking score within the HLA and
TLR4 immune receptors. Many of these homologous peptides exhibit promiscuous binding
affinities to several MHC class-II molecules, which may provoke autoimmune disorders
in humans.

Among the top viral-human mimic candidates, the human herpesvirus and poxvirus
proteins exhibited significant 3D structural and sequence homology with human host
proteins (Table S2). Several studies have reported that herpes simplex virus (HSV) is found
in active plaques in the postmortem MS brain tissues of patients [56]. Additionally, the
HSV-1 infection causes viral gene products to cause neural progenitor cells to undergo
apoptosis [57]. The current molecular mimicry findings may help explain the molecular
mechanisms underlying the onset of such an autoimmune disorder [54]. A study conducted
by Bradshaw et al. (2015) reported herpes simplex virus 1 (HSV1)-induced encephalitis
in association with voltage-gated calcium channel autoimmunity through a molecular
mimicry mechanism [58].

Herpesvirus infections, particularly Epstein-Barr virus (EBV) infections, have been re-
ported in many studies in association with several major autoimmune diseases [40,59]. We
identified epitopic peptide homology between human interleukin-10 (IL-10) and gamma-
herpesvirus 4 (HHV4). Human IL-10 is a major immune-regulatory cytokine that acts as a
potent anti-inflammatory agent, affects a variety of immune cells, and prevents excessive
tissue damage by inflammation [60]. Cytokines play a crucial role in the pathogenesis
of autoimmune diseases. IL-10 is involved in the pathogenesis of autoimmune diseases,
including RA, diabetes, and SLE [61,62]. We also noticed that the gamma herpesvirus
8 (HHV-8) ORF70 protein showed structural and sequence homology with the human
TS peptide, and the HHV-8 ORF2 peptide is homologous to the human dihydrofolate
reductase (DHFR) peptide. Early studies reported the presence of nine HHV-8 ORF gene
products associated with autoimmunity and shared significant homology with human
cellular proteins, including the HHV-8 TH and dihydrofolate reductase (DHFR) [63]. The
human gammaherpes virus has been reported to be involved in the different systemic
autoimmune diseases (SAD), where antibodies against ORFK8.1 were detected in SLS, SS,
and vasculitis patients [64].

Significant sequence and structural homology was observed between cercopithecine
betaherpesvirus 5 (CHV5) and human peptides in the current study. The prostaglandin
G/H synthase 2 of CHV5 showed homology with the human prostaglandin G/H synthase
2 peptide. Human prostaglandin G/H synthase 2 (PTGS2) is involved in the biosynthesis
of fibrous tissues, which eventually regulate immune responses during inflammation [65].
Likewise, the peptides of chemokine vCXCL7 from CHV5 showed sequence and 3D struc-
tural similarities to the epitopic peptides of the human growth-regulated alpha protein and
C-X-C motif chemokine 2. Chemokines are primarily involved in leukocyte recruitment to
sites of inflammation and have been reported to contribute to angiogenesis, tumor growth,
and organ sclerosis [66].

The current study inferred that various strains of the Poxviridae family share substan-
tial sequence and structural similarities with immunogenic peptides of human proteins.
Viruses secrete an array of virus-encoding soluble cytokine receptors or cytokine analogs
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that act as molecular decoys to inhibit the activity of host cytokines. The variety of poxvirus
gene products systematically sabotage essential components of the inflammatory response
and manipulate various intracellular signal transduction pathways that initiate proinflam-
matory responses. Numerous poxvirus genes that interfere with these pathways exhibit
striking similarities with host immune system genes [67]. In our analysis, NY_014 poxvirus,
monkeypox virus, cowpox virus, akhmeta virus, molluscum contagiosum virus, and vac-
cinia virus epitopes demonstrated striking resemblance to human proteome origin epitopes.

Metabolic pathways control lineage determination and immune system function,
thereby affecting the onset of autoimmune disorders [68]. The majority of host-virus homol-
ogous proteins are involved in some of the most important autoimmune disease pathways,
such as TNF-related weak inducer of apoptosis (TWEAK) signaling, cellular components
involved in local acute inflammatory responses, IL-11 and IL6 signaling pathways, generic
transcription pathways, p53 signaling, ataxia-telangiectasia mutated (ATM) signaling, and
inflammation mediated by chemokine and cytokine signaling pathways.

The findings of the current study are based on immunoinformatic platforms and
constrained prediction methods that may be uncertain due to conventional benchmark-
ing, and a lack of precise datasets. The virus-human molecular mimic candidates prioritized
in the current study, therefore, need additional validation via clinical and
experimental approaches.

4. Materials and Methods

Structural bioinformatics and comparative sequence analysis platforms were followed
in this study. The methodological workflow is shown in Figure 3.

Pathogens 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

4. Materials and Methods 
Structural bioinformatics and comparative sequence analysis platforms were fol-

lowed in this study. The methodological workflow is shown in Figure 3. 

 
Figure 3. Systematic workflow diagram of autoimmune mimicry of viruses with human hosts, fol-
lowed by T-cell epitope prediction, structural analysis, and molecular docking analysis. 

4.1. Non-Paralogous Viral and Human Proteome Sequence Retrieval 
Complete proteome sequences of all human pathogenic viruses were retrieved from 

the Virus Pathogen Database and Analysis Resource (ViPR) [69]. Redundant sequences 
were removed, and non-paralogous sequences were acquired using CD-HIT with a 
threshold of 0.9 (90% sequence similarity) for further analysis. CD-HIT uses a short-read 
filtering approach to cluster protein sequences with low redundancy [70]. Non-redundant 
human proteomic sets were retrieved from the NCBI database. 

4.2. Sequence Similarity Search 
A standalone version of the Basic Local Alignment Search Tool (BLAST) was used to 

compare the viral and human protein sequences [71]. Comparative sequence analyses us-
ing BLASTp were performed based on a cutoff e-value of 10−6 and a threshold of ≥100 bit 
score, ≥60% query coverage, and ≥50% sequence identity. 

4.3. Metabolic Pathway Enrichment 
The Path-DIP server was used for protein pathway enrichment analysis with a p-

value <0.0001 and other default parameters. The Path-DIP database is a curated reference 
of signaling cascades in human and non-human species that includes core pathways from 
major curated pathway databases as well as pathways predicted using orthology and 

Figure 3. Systematic workflow diagram of autoimmune mimicry of viruses with human hosts,
followed by T-cell epitope prediction, structural analysis, and molecular docking analysis.



Pathogens 2022, 11, 1362 11 of 15

4.1. Non-Paralogous Viral and Human Proteome Sequence Retrieval

Complete proteome sequences of all human pathogenic viruses were retrieved from
the Virus Pathogen Database and Analysis Resource (ViPR) [69]. Redundant sequences were
removed, and non-paralogous sequences were acquired using CD-HIT with a threshold
of 0.9 (90% sequence similarity) for further analysis. CD-HIT uses a short-read filtering
approach to cluster protein sequences with low redundancy [70]. Non-redundant human
proteomic sets were retrieved from the NCBI database.

4.2. Sequence Similarity Search

A standalone version of the Basic Local Alignment Search Tool (BLAST) was used to
compare the viral and human protein sequences [71]. Comparative sequence analyses using
BLASTp were performed based on a cutoff e-value of 10−6 and a threshold of ≥100 bit score,
≥60% query coverage, and ≥50% sequence identity.

4.3. Metabolic Pathway Enrichment

The Path-DIP server was used for protein pathway enrichment analysis with a
p-value <0.0001 and other default parameters. The Path-DIP database is a curated ref-
erence of signaling cascades in human and non-human species that includes core pathways
from major curated pathway databases as well as pathways predicted using orthology
and physical protein interactions. The Path-DIP provides access to both computationally
predicted and experimentally confirmed protein–protein interactions (PPIs) [47].

4.4. Epitope Candidate Prediction

The viral-human homolog protein epitopes bound to the MHC-II were predicted using
the Immune Epitope Database (IEDB) [72]. The NN-align-2.2 (NetMHCII-2.2) approach
predicted binding peptides with multiple human HLA class II alleles, DR, DQ, and HLA-
DP, with half-maximal inhibitory concentration (IC50) cutoff values of less than 50 nM.
Peptides with IC50 values less than 50 nM were considered highly compatible binders. The
enriched proteins in the metabolic pathways and their respective homologs were subjected
to IEDB by selecting HLA class-II binding alleles (Table 3).

Table 3. The HLA class-II binding alleles selected in the current study based on an IC50 value < 50 nM.

S/No HLA-DP HLA-DQ HLA-DR

1 DPA1*01:03-DPB1*02:01 DQA1*01:02–DQB1*06:02 DRB1*03:01

2 DPA1*02:01–DPB1*05:01 -DQA1*04:01–DQB1*04:02 DRB1*04:04

3 DPA1*03:01–DPB1*04:02 DQA1*05:01–DQB1*03:01 DRB1*07:01

4 DPA1*01:03–DPB1*04:01 DQA1*01:01–DQB1*05:01 DRB1*11:01

5 DPA1*01:03-DPB1*03:01-DPB1*04:01 DQA1*05:01–DQB1*03:01 DRB1*13:02

6 DPA1*02:01-DPB1*01:01 DQA1*03:01–QB1*03:02

DRB3*01:01
DRB5*01:01
DRB1*01:01
DRB4*01:01
DRB1*04:01
DRB1*15:01
DRB1*04:05
DRB1*11:01
DRB1*08:02
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4.5. Molecular Modeling and Docking Analyses

The 3D structures of the top viral-human homolog peptide epitopes were docked
against the human leukocyte antigen (HLA) and toll-like receptor 4 (TLR4) immune recep-
tors. The protein 3D structure data for HLA and TLR4 were acquired from the Protein Data
Bank (PDB) via the 5JLZ and 3FXI PDB IDs, respectively. The peptide epitope 3D structures
were modeled using the UCSF Chimera programme [73]. The ClusPro server was used to
calculate the binding potential of the epitopic peptides to human HLA and TLR4 immune
receptors. The ClusPro server generates different models based on binding energies [54].

4.6. Structural Mimicry Prediction

The trRosetta server was used to predict the 3D structures of the peptides. The tr-
Rosetta server (transform-restrained Rosetta) is a web-based tool that accurately predicts
protein and peptide structures. trRosetta is one of the most accurate methods for estimat-
ing the 3D structure of molecules via ab initio-based simulations [74]. The 3D structure
prediction process in trRosetta is based on energy minimization, with constraints derived
from the predicted inter-residue distance and orientations [53]. A template modeling (TM)
score was used to measure the structural similarity of the peptides based on the root mean
square deviation (RMSD).

5. Conclusions

Comparative sequence analyses and immunoinformatics approaches were employed
in the current study to uncover sequence- and structure-based molecular mimics of viral-
human proteins as possible autoimmune candidates. BLASTp analysis identified 24 viral
proteins with significant sequence homology to human host proteins. Biological pathway
enrichment analysis revealed the involvement of viral-human homolog proteins in a variety
of human metabolic pathways. Immune epitope prediction analysis inferred that the viral-
human homolog proteins shared 13 promising T-cell epitopes, suggesting promiscuous
binding to human HLA class II alleles. The experimental validation of these proteins and
their top-hit host-pathogen homolog epitopes may explain the virus-based autoimmune
diseases in humans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11111362/s1, Figure S1: Molecular docking results
of mimicking human peptides docked with HLA receptor; Figure S2: Molecular docking results
of mimicking human peptides docked with TLR4 receptor; Figure S3: Molecular docking results
of mimicking viral peptides docked with HLA receptor; Figure S4: Molecular docking results of
mimicking viral peptides docked with TLR4 receptor; Table S1: Viral-human homologs proteins
metabolic pathways enrichment analysis; Table S2: Viral proteins homologous with human proteins
sharing homologous epitopes. Table S3: The hydrogen bonding interaction between the top ranked
virus-human molecular mimic epitope and HLA and TLR receptors residues. The interactions was
identified by molecular docking of epitope within HLA and TLR4 receptors.
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