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Abstract: Fusarium verticillioides is a plant pathogenic fungus affecting a wide range of crops world-
wide due to its toxigenic properties. F. verticillioides BIONCL4 strain was isolated from stored maize
grain samples in India, and produces high amount of fumonisin B1 (FB1). We report a compara-
tive genomic analysis of F. verticillioides, covering the basic genome information, secretome, and
proteins involved in host–pathogen interactions and mycotoxin biosynthesis. Whole-genome se-
quencing (WGS) was performed using the Illumina platform with an assembly size of 42.91 Mb, GC
content of 48.24%, and 98.50% coverage with the reference genome (GCA000149555). It encodes
15,053 proteins, including 2058 secretory proteins, 676 classical secretory proteins, and 569 virulence
and pathogenicity-related proteins. There were also 1447 genes linked to carbohydrate active enzymes
(CaZymes) and 167 genes related to mycotoxin production. Furthermore, F. verticillioides genome
comparison revealed information about the species’ evolutionary history. The overall study helps in
disease prevention and management of mycotoxins to ensure food safety.

Keywords: Fusarium verticillioides; whole-genome sequencing; secretome; comparative genomics;
plant-pathogen interaction; mycotoxin biosynthesis

1. Introduction

Fusarium is a fungal genus that includes plant pathogenic species able to infect a
variety of cereal crops, and causes diseases such as bakanae in rice; kernel, ear, and stalk
rot in maize; and crown rot and head blight in wheat; all of which result in significant
economic losses [1]. Fusarium fujikuroi species complex (FFSC) is a well-known group of
plant pathogenic fungus that has the potential to produce mycotoxins in different agri-
cultural products [2]. The FFSC contains phylogenetically distinct species, F. verticillioides
(teleomorph, Gibberella moniliformis), F. fujikuroi, F. proliferatum, and F. subglutinans, that can
infect agriculturally important crops such as maize, rice, sorghum, and beet [3], wheat and
barley [4], cowpea [5], and a variety of ornamental crops [6].

F. verticillioides, F. fujikuroi, and F. proliferatum are the major contaminants of food grains
in India and have the ability to produce different mycotoxins [7–11]. Divakara et al. [12]
also reported sorghum samples contaminated with fumonisins (FUMs) producing
F. verticillioides (33%) in Karnataka, Tamil Nadu, Maharashtra, and Rajasthan states, India.
In addition, these species can cause various diseases to humans and livestock, such as
keratitis, onychomycosis, sinusitis, invasive fusariosis and fusarial pneumonia [13,14].
Tupaki-Sreepurna et al. [15] also reported six species, including F. verticillioides, F. sacchari,
F. proliferatum, F. thapsinum, F. andiyazi, and F. pseudocircinatum, from clinical isolates from
southern India.

Focusing the attention on F. verticillioides, it is considered a major contaminant of a
wide range of cereal crops and a producer of potent mycotoxins that adversely impact
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the supply chain [2]. F. verticillioides revealed a wide range of polymorphic nature and are
randomly distributed throughout agricultural products [16]. Due to their heterogeneity,
and pathogenic and toxigenic potential, the exact molecular mechanisms remain unknown.
As a result, genome sequencing and comparative studies are crucial for the scientific
community to understand pathway genes. Unfortunately, fungal research is a neglected
area of research worldwide, especially in developing nations such as India [17]. Moreover,
a range of patho-/sub-variants of fungi/microbes are evolving in the environment, causing
various unanticipated diseases in different lifeforms [18]. In such a scenario, WGS is critical
since it can aid in understanding the virulence of fungi.

Mycotoxins such as fumonisins (FUMs), fusaric acid (FA), beauvericin (BEA), and
moniliformin (MON) are produced by FFSC members. These species can infect different
food crops, produce mycotoxins, and cause chronic and acute toxicity to humans and
animals [19,20]. However, FUMs toxin chemotypes produced by F. verticillioides are a major
contaminant of maize globally, causing significant yield loss and posing a hazard to food
safety [21,22]. Furthermore, FUMs have also been identified as a substantial contaminant of
cereal crops, with disproportionately high concentrations in maize and rice [23]. Fumonisin
B1 (FB1) leads to systemic toxicities such as hepatotoxicity, nephrotoxicity, neurotoxicity,
and cytotoxicity [24]. FB1 and FB2 have been identified as potential carcinogens for humans
and animals [25]. The consumption of FUMs-contaminated food increases the occurrence
of esophageal and liver cancer [26]. Further, it has been found that FUMs also cause
renal and hepatic toxicity and lead to tumor progression in rats. It acts as a ceramide
synthase inhibitor, disrupts sphingolipid metabolism, and disturbs cell signaling and
regulation [27,28].

Advancement in sequencing techniques has facilitated the development of reference
genomes for identification, characterization, variation, and comparative studies [29]. The
whole-genome sequencing (WGS) of fungi is also valuable for diagnosing diseases, pre-
venting disease-causing fungi, and determining evolutionary relationships between fungal
species. Illumina, Nanopore, and PacBio are some of the WGS technologies that yield high-
quality sequencing data. Genome sequencing aids in advancing various fields, including
medicine, agriculture, and other biotech sectors. Fusarium WGS also aids in the under-
standing of genome-wide variations, pathogenicity mechanisms, and genes involved in
the secondary metabolite pathway [30]. The secretome of F. verticillioides and carbohydrate-
active enzymes (CAZymes) assisted in identifying 166 proteins [31]. Only a few extensive
studies are available on F. verticillioides in mycotoxin biosynthesis and pathogenesis [32,33].
However, there has been no detailed research on the complete secretome, repetitive ele-
ments (REs), and proteins involved in host–pathogen interactions in the F. verticillioides
genome. To date, only six WGS of F. verticillioides are available at NCBI, and there are
no reports from Indian subcontinents. To the best of our knowledge, only one report is
available on the functional genome of F. fujikuroi from in India [10].

In our previous study, the F. verticillioides BIONCL4 strain isolated from a maize
sample showed a more polymorphic nature, high FB1 production, and moderate-to-high
pathogenicity (data not shown). However, there are no reports available on F. verticillioides
WGS of Indian origin. Considering the above facts, the current study was conducted to
understand the F. verticillioides genome and functions through genome-wide analysis. This
study will help to understand the pathogenic and toxigenic behavior of the endanger F.
verticillioides. In addition, it assists in developing disease resistance breeding programs by
developing resistance genotypes against the pathogen.

2. Results
2.1. Genome Sequence, Assembly, Statistics, and Annotation

In our previous investigation, 60 strains of F. verticillioides were isolated from stored
maize samples from 10 states in India, and their genetic diversity was studied using inter
simple sequence repeats (ISSR) fingerprint. The selected F. verticillioides BIONCL4 strain
produces a high amount of FB1, and showed moderate-to-high pathogenicity on root, shoot,
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and seed germination inhibition to maize genotypes (data not shown). Furthermore, to
extend our previous study, WGS was performed to understand the molecular mechanisms
of toxigenic and pathogenic potentials of the BIONCL4 strain. Based on the FB1 production
and pathogenic potency of BIONCL4, WGS was performed using the Illumina NovoSeq
platform; 1.3 Gigabases of HQ raw reads were obtained. Draft genome assembly using
SOAPdenovo followed by assembly amelioration using Ragtag resulted in 42.91 Mb of
the draft genome being submitted to the NCBI database under Bio-project PRJNA761025.
BUSCO evaluation of draft genome completeness showed 98.50% coverage with the ref-
erence genome F. verticillioides 7600 (GCA000149555). Notably, the sequenced genome
consists of 638 scaffolds, with a roughly N50 size of the scaffold being 4.23 Megbases
(Table 1).

Table 1. Whole genome sequence features of Fusarium verticillioides BIONCL4 strain.

Measurement Details

HQ filtered raw data 8.6 Million reads
HQ filtered raw data (read count × read length) 1.3 Gb

Draft genome size (Mb) 42.91 Mb
Coverage 98.50%

Number of scaffolds 638
Largest contig 6.2 Mb

Average scaffold size 0.07 Mb
N50 4.23 Mb
Gaps 1198

(G + C) content 48.24%
Repeats 0.88%

Protein-coding genes 15,053
Average gene length (bp) 3.72 kb

Gene density 37 gene/100 kb
Secretory proteins 2058

HQ filtered raw data—high quality filtered raw data, Mb—megabases, Gb—gigabases, kb—kilobases.

The protein-coding genes predicted from the assembled genome using the Glimmer
and Genmark tools resulted in the identification of 15,053 protein-coding genes, conforming
to the average gene density in the BIONCL4 genome of 37 genes per 100 kb to an average
gene length of 3.72 kb. The total estimated GC content of the BIONCL4 genome was 48.24%.
All the protein-coding genes CDS obtained by BLASTP were further processed for gene
ontology prediction, resulting in 8845 genes annotated with gene ontology association
(Figure 1, Supplementary Table S1).

2.2. Identification of Repetitive Elements (REs) and Simple Sequence Repeats (SSRs)

The BIONCL4 genome was analyzed for the presence of REs. A total of 378,085 bp of
the sequence was identified, representing approximately 0.88% of the total genome. Differ-
ent types of REs were also identified in the BIONCL4 genome, such as simple sequence
repeats (SSR), which represent approximately 90.38%; small elements, 3.60%; retro-elements
(SINE, LINE), 5.14%; DNA transposons (hAT-Charlie and TcMar-Tigger), 0.75%; and long
terminal repeat (LTR) elements, 0.05%, respectively (Figure 2). Furthermore, 56 bp unclas-
sified DNA elements, 20,823 bp total interspersed repeats, and 276 small RNA elements
were observed (Table 2).
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Table 2. Identification of repetitive elements in Fusarium verticillioides BIONCL4 strain.

Repetitive Elements Number of Elements Length of
Sequence (bp)

Percentage of
Sequence (%)

Retroelements 391 27,767 0.06
Simple repeats 6873 290,113 0.68

DNA Transposons 49 3674 0.01
Small RNA 276 25,751 0.06
hAT-Charlie 6 442 0.001

TcMar-Tigger 5 399 0.001
Unclassified 1 56 -

LTR elements 3 213 -
ERVL-MaLRs 1 97 -

Total interspersed repeats 0 20,823 0.05
Low complexity 826 41,634 0.10

hAT-Charlie and TcMar-Tigger are DNA transposons, LTR—long terminal repeats, ERVL-MaLRs are long terminal
repeats, bp—base pair.

2.3. Secretome Prediction and Host–Pathogen Interaction Analysis

The secretion of fungal proteins mediates host–pathogen interactions by allowing the
fungus to interact with its environment and host, and plays a critical role in its virulence.
Out of 15,053 protein-coding genes, 2058 proteins could be identified as classical secretory
proteins based on SignalIP v4.1 and targetP version 1.1 (Supplementary Table S2). Further-
more, gene ontology was used for the identified secretory proteins, which characterized
them into three categories, biological process (91), molecular function (471), and cellular
component (114) (Figure 2). The proteins involved in biological processes such as cellular
metabolism and catabolism, cellular secretory pathways, chaperon-mediated protein fold-
ing, cell division, regulation of cellular processes, organelles compartmentalization, and
cellular communications have highly corresponded to these categories. Proteins catego-
rized in molecular functions allied with enzymatic activity, membrane transporter function,
metal and iron-binding activity, complex macromolecules binding activity, and oxidation-
reduction activity were mainly abundant. Proteins categorized in cellular components were
part of a cell, organelle, and membrane, the structure of complex biomolecules, and their
processing were more abundant.

Further, proteins involved in host–pathogen interaction were analyzed by the PHI
database; among 2058 secretory proteins, 569 proteins have shown identity to the PHI-
database belonging to different categories. Out of them, 39.72% proteins related to reduced
virulence, 1.9% related to hyper-virulence, 4.09% proteins were loss pathogenicity, 3.83%
were lethal proteins, 0.72% proteins related to plant virulence determinants, and 49.23%
proteins were related to unaffected pathogenicity (Figure 3, Supplementary Table S3).

2.4. Identification of Carbohydrate-Active Enzymes (CAZymes) and Mycotoxin Biosynthetic Genes

It is well known that fungi cope with host-cell-wall polymers and access the sac-
charides that they use as a carbon source, which largely depends on the secretion of
carbohydrate-active enzymes (CAZymes). Analysis of protein-coding genes using the
CAZy database revealed 1447 genes related to the CAZy group. Apart from these en-
zymes, BIONCL4 secretome also consists of diverse types of oxidoreductases, transferases,
hydrolases, and lyases. Based on the obtained data, it was found that the BIONCL4 se-
cretome consists of a diversified nature of proteins which might play an important role
in fungal colonization, nutrient acquisition, inactivation of host defense, and pathogenic-
ity (Figure 4). Analysis of protein-coding genes and their potential role in mycotoxin
biosynthesis resulted in identifying 167 genes associated with the biosynthesis pathway
(Supplementary Tables S4 and S5).
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2.5. Comparative Draft Genome Analysis of BIONCL4 Strain

The phylogenetic tree, constructed by WGS of the selected isolates using ParSNP
and visualized using the iTOLL web-based tool, showed clustering of BIONCL4 with F.
verticillioides 7600 reference genome (GCA000149555) as compared to all the other isolates
taken for genome comparison (Figure 5). However, the F. verticillioides strain isolated
from maize (Italy) with genome assembly (GCA020882315) showed more distance with
BIONCL4, when compared with different strains selected in this analysis. Interestingly, all
the species’ WGS compared in this study were isolated from maize samples. Hence, our
finding positively correlates the other studies reported on the genome of F. verticilliodies.
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3. Discussion

India is primarily an agrarian nation, with a large rural population that depends on
agriculture. However, various species of Fusarium infect agricultural commodities, and
produce biothreat toxins that endanger both human and animal health. In the present inves-
tigations, F. verticillioides WGS was performed for understanding the functional genome for
mycotoxins biosynthetic genes and virulence genes for the pathogenesis. To the best of our
knowledge, only six F. verticillioides WGS are available at NCBI. However, there has been
no detailed research on the F. verticillioides genome reported from an Indian origin [10,34].
This reveals a scientific chasm that may lead to significant plant and animal diseases. For
example, F. oxysporum f. spp. cubense is the most severe tropical race 4 (TR4) that infects
the Cavendish (AAA) group of bananas from the subtropical region of India [34]. Further,
detailed phylogenetic relationships, virulence-associated effector genes, and race-specific
molecular mechanisms of infection based on the presence of unique genes were stud-
ied [35]. Similarly, another draft genome was also published for the chickpea and chili
anthracnose fungus, Colletotrichum truncatum, which helps to understand the molecular
mechanisms and virulence genes and new genes responsible for disease development [36].
Unfortunately, no such efforts have been made in India to comprehend the disease severity
and mycotoxin pathway study using WGS of F. verticillioides. This is the first report of
F. verticillioides WGS from stored maize grains. In addition, the WGS obtained was com-
pared to available WGS from the United States of America (USA), Australia, and others
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(Table 3). The WGS of the Indian isolate exhibits more sequence similarity to the strain
from the American continent (GCA000149555). In the present study, F. verticillioides strain
from Indian maize were processed for WGS. Further assembly and annotation were carried
out using a hybrid approach, continued with Ragtag, BUSCO, and non-redundant (NR),
Uniprot databases [33]. The obtained assembly size was 42.91 Mb, closer to the reference
strain of F. verticillioides 7600 (41.84 Mb).

Table 3. Comparative genome sequence features of Fusarium verticillioides strains from different
geographic origins.

Features Fusarium verticillioides Strains
BIONCL4 7600 BRIP14953 BRIP53590 NRRL20984 Fv10027_t1

Geographic origin India USA Australia Australia USA Italy
Isolation source Maize Maize Maize Maize Maize Maize
Assembly level Scaffold Chromosome Chromosome Chromosome Scaffold Contig

Gene bank assembly
accession —— GCA_000149555.1 GCA_003316975.2 GCA_003316995.2 GCA_013759275.1 GCA_020882315.1

Sequencing Method Illumina
HiSeq

shotgun
sequencing

Illumina
HiSeq

Illumina
HiSeq

Illumina
MiSeq

Illumina; Oxford
Nanopore

Draft genome size (Mb) 42.91 Mb 41.84 42.54 42.29 41.92 44.65
Coverage 98.0x - 90.0x 100.0x 50.0x 60.0x

Number of scaffolds 638 37 255 258 857 21
ScaffoldsN50(Mb) 4.23 1.95 4.02 4.02 0.10 2.91

GC content (%) 48.24% 48.68 48.15 48.26 48.80 47.90
Protein-coding genes 15,053 20,574 13,769 13,508 - -

REs are mobile units that can propagate and expand in different regions of the genome;
some of them are transposed with RNA intermediates known as retrotransposons, whereas
some elements are directly transposed as DNA, called DNA transposons [37]. The REs
present in the genome of F. verticillioides play an essential role in pathogenicity evolution
due to variability in their sequence. Compared to other members of FFSC, F. verticillioides
contains a low frequency of REs and agrees with reported Fusarium strains [38]. SSR plays
a vital role in studying the polymorphism in Fusarium species [39]. In the BIONCL4 strain,
0.88% of REs represent the total genome. We analyzed SSR (90.38%), which is present and
abundant in the BIONCL4 genome, followed by small elements, retro-elements, and DNA
transposons, respectively, studied using RepeatMasker v4.0.9. The secretome plays an im-
portant role in understanding the mechanism of pathogenicity and interaction with the host.
The abundance of proteins secreted by pathogens helps to understand the infection rate and
severity. In the F. fujikuroi secretome, 1336 proteins were forecasted [40]. In F. verticillioides
secretome, 151 proteins were reported, among which, 57 proteins are involved in cell wall
degradation, and residual proteins take part in other cellular activities such as proteolysis,
metabolism, defense, and response to various stresses generated at the cellular level [31].
In the current study, we predicted 2058 proteins in the BIONCL4 secretome; among them,
676 were predicted as classical secretory proteins based on SignalIP and TargetP. Further-
more, gene-ontology-based analysis showed the involvement of these proteins in cellular,
molecular, and biological processes. The obtained results specified that the secretome of
BIONCL4 strain comprised the diversification of proteins and their prearranged actions
against plant defense to infect and cause disease effectively. Fusarium can produce different
types of mycotoxins, ZEA, TRI, FUM, MON, and BEA [41,42]. F. verticillioides is well known
for FUM production, in which 16 genes are involved, which code for proteins that lead to
FUM biosynthesis and regulation, such as regulatory proteins, enzymes, and transporter
proteins [43]. Researchers also reported that species of Fusarium are capable of producing
FUMs in various food crops in India [10,12]. FUM biosynthetic genes with more than 97%
identity were observed in the BIONCL4 genome, except three genes (FUM 10, 11, and 17),
which suggests each species/strain may acquire an independent gene cluster [44]. Further-
more, ZEA is a polyketide mycotoxin produced by Fusarium species, and the genes ZEA1
and ZEA2 encode polyketide synthases involved in ZEA biosynthesis [45]. Surprisingly,
ZEA1 and ZEA2 genes with more than 30% similarity were shown in the BIONCL4 genome,
indicating that further validation may be required (Table 4). Thus, the CAZy database, PHI,
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and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene ontology and homology
findings may be used to analyze and explore the in-depth study linked to the pathogenicity
and toxigenicity of Fusarium species (Table 4).

Table 4. FUMs biosynthesis genes involved in Fusarium verticillioides BIONCL4 strain.

Query ID Identity (%) Gene ID Protein Function (s)

1754_g 98.18 30058694 Acetyltransferase FUM1_Highly reducing polyketide synthase,
fumonisin biosynthesis

1746_g 98.38 30058700 Cytochrome P450
monooxygenase

FUM2_oxidoreductase activity, fumonisin
biosynthesis

1752_g 99.71 30058695 Cytochrome P450
FUM6_Bifunctional_cytochrome_P450/NADPH–

P450_reductase activity, fumonisin
biosynthesis

1751_g 100 30058696 Dehydrogenase FUM7_oxidoreductase activity, fumonisin
biosynthesis

1750_g 98.93 5357319 Aminotransferase FUM8_transferase activity, fumonisin
biosynthesis

7269_g 34.92 30061262 Acyl-CoA_synthetase FUM10_fumonisin biosynthesis

11438_g 55.05 30065034 Tricarboxylate transporter FUM11_integral component of membrane,
fumonisin biosynthesis

1745_g 99.46 30058701 NAD dependent
epimerase/dehydratase

FUM13_oxidoreductase activity, fumonisin
biosynthesis

1744_g 97.45 30058702 Non-ribosomal peptide
synthetase FUM14_ligase activity, fumonisin biosynthesis

1742_g 98.47 30058703 Acyl-CoA_synthetase FUM16_ligase activity, fumonisin biosynthesis

10200_g 50.40 30064824 Sphingosine N-acyltransferase-
like protein

FUM17_ integral component of membrane,
fumonisin biosynthesis

6947_g 30.21 30061525 Non reducing polyketide
synthase ZEA1

ZEA1_3-oxoacyl-[acyl-carrier-protein] synthase
activity

13719_g 30.99 30066158 Highly reducing polyketide
synthase ZEA2

ZEA2_3-oxoacyl-[acyl-carrier-protein] synthase
activity, oxidoreductase activity zearalenone

biosynthesis

4. Materials and Methods
4.1. Culture Conditions and DNA Isolation

The Fusarium verticillioides BIONCL4 strain, isolated from contaminated maize grain
samples collected from Andhra Pradesh, India, was processed for WGS. The culture was
grown in a 250 mL Erlenmeyer flask containing 100 mL of sterile potato dextrose broth (PDB;
pH 5.5) and incubated in a shaker at 150 rpm for seven days at 28 ◦C. After the incubation
period, the vegetative mycelium was harvested by filtration. The obtained mycelium was
ground into a fine powder using liquid nitrogen. About 100 mg of mycelium was used
for the genomic DNA (gDNA) extraction using DNeasy Plant Mini Kit (Qiagen Hilden,
Germany) as per the manufacturer’s instructions. The quality of gDNA was evaluated on a
0.8% agarose gel and was quantified on a Nanodrop spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and stored at −20 ◦C for future studies.

4.2. Genome Sequencing and Assembly

The quality of extracted gDNA of the F. verticillioides BIONCL4 strain was checked
using agarose gel electrophoresis for integrity. Further, the gDNA was subjected to library
preparation for deep sequencing as per Illumina’s recommended kit and protocol. Deep
sequencing of the QC passed library was performed using the Illumina NovoSeq plat-
form (Theomics International Pvt. Ltd., Bengaluru, India). Raw data quality control was
performed using FastQC to check the read quality of the high-quality (HQ) filtered raw
data. HQ reads with a Phred score above Q20 were chosen for further assembly. SOAP-
denovo is a novel short-read assembly method that can build a de novo draft assembly
for the eukaryotic genomes. The program is specially designed to assemble Illumina short
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reads. The assembly method includes the de novo assembly sequenced through a hybrid
approach continued with Ragtag and BUSCO to assess the completeness of genome assem-
bly. Assembly validation was performed using Bowtie-2 for aligning sequencing reads to
long reference sequences and the Samtools package with default parameters. The quality
and integrity of the genome were evaluated using benchmarking universal single-copy
orthologs version 2 (BUSCO v2) with a fungal dataset on all the contigs.

4.3. Gene Prediction and Annotation

The total number of genes present in the genome of the BIONCL4 strain was pre-
dicted using Glimmer and Genmark. The predicted genes of BIONCL4 were functionally
annotated with the help of the tBLASTx search tool against NCBI non-redundant (NR)
and Uniprot databases with >30% identity and <1 × 10−5 cut-off E-values. Functional
annotation of protein-coding genes for gene ontology and pathways was performed using
BLAST2GO [46].

4.4. Identification of Repetitive Elements (REs) and Single Nucleotide Polymorphism (SNP)

The presence of repetitive sequences in the BIONCL4 genome, such as simple sequence
repeats (SSRs), DNA transposons, retrotransposons including long terminal repeats (LTRs),
etc., was characterized and identified using Repeat Masker v4.0.9 [47]. Sensitive mode runs
with rmblastn version 2.2.27C RepBase update 20150807, RM database version 20150807
were used to identify repetitive families of repetitive sequences in the F. verticillioides
genome. Mining of SSRs was performed using MISA software and categorized using
standard parameters [48]. Furthermore, SNP in the BIONCL4 genome were studied using
SNIPPY based on a BWA-mem/freebayes pipeline. SNPs (SAM tools) were annotated
using SnpEff software by default parameters [49].

4.5. Secretome Prediction and Functional Genomic Analysis

The secretome analysis for BIONCL4 strain containing a set of 15,053 proteins was
analyzed using SignalP v4.1 [50], TargetP version 1.1 [51], and Phobius [52] to forecast
the secretory signal peptide in the secretome. Primarily, peptides containing more than
30 amino acids, SignalIP D-score = Y, 0.45 for 0 Tm/0.50 for 0.50 Tm as a cut off value, and
TargetPLoc = S were merged. Further, the presence of transmembrane domain proteins
was identified using TMHMM v2.0 [53]. The glycosylphosphatidylinositol (GPI)-anchored
proteins forecasted by PredGPI [54] were processed for further investigations, and WoLF-
PSORT analysis was carried out with the help of “run WoLFPSORT v. 0.2” [55]. The
PHI database was used to find out whether genes were involved directly or indirectly in
pathogenicity and virulence [56]. The candidate pathogenicity and virulence-associated
genes were identified by performing BLASTP searches of the Fusarium genome against PHI
base version 4. The PHI base catalogs containing experimentally curated pathogenicity,
virulence, and effector genes from different pathogens were used. Carbohydrate-active
enzymes and protease families were screened through a local BLASTP search in the CAZy
database [57] and Pfam with a threshold E-value and bitscore of 0.01 and 55, respectively.

4.6. Analysis of Orthologous Gene Families and Mycotoxin Biosynthetic Gene Identification

The comparative orthologous gene identification and analysis of four strains of F.
verticillioides including BIONCL4 were studied using OrthoVenn of UC Davis with 1 × 10−5

and 1.5 as a default E-value and inflation value.

4.7. Comparative Phylogenetic Analysis of Fusarium Genomes

The Fusarium verticillioides BIONCL4 strain along with available F. verticillioides
genomes with accession numbers GCA020882315, GCA017309895, GCA0137592275,
GCA003316975, and GCA000149555 were subjected to comparative genome and phy-
logenetic analysis. The genome sequences of the comparing strains were retrieved from
NCBI. The phylogenetic analysis of the WGS of F. verticillioides BIONCL4 with other phy-
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topathogenic fungi was carried out using the ParSNP tool, and visualization using the
iTOLL web resource.

5. Conclusions

The diverse and polymorphic nature of F. verticillioides is the major contamination of
maize genotypes globally, and it produces various toxins chemotypes, including FBs, affect-
ing the health of humans and animals. The comparative WGS showed that the BIONCL4
genome has the highest sequence similarity with the American continent F. verticillioides
strain, followed by the Australian strain. Analysis of protein-coding genes revealed 1447
genes related to the CAZymes group and 167 genes associated with the mycotoxin biosyn-
thesis. On the other hand, ZEA1 and ZEA2 are the key genes involved in ZEA biosynthesis,
and about 30% sequence similarity was noticed. About 569 pathogenicity-related proteins
were found out of 2058 secretory proteins. The comprehensive study provides valuable re-
sources to design efficient resistant breeding programs against F. verticillioides pathogenicity
in maize, and to manage FBs production in the food chain.
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Table S2: The secretome analysis of BIONCL4 strain containing a set of 15,053 proteins was analyzed
using SignalP v4.1, TargetP version 1.1 and Phobius; Table S3: Functional annotation of F. verticil-
lioides BIONCL4 secretome involved in pathogen–host interactions (PHI-base) database; Table S4:
Analysis of protein-coding genes using the CAZy database; Table S5: Analysis of protein-coding
genes and their potential role in mycotoxin biosynthesis.
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