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Abstract

:

Wild animals may act as efficient antimicrobial-resistance reservoirs and epidemiological links between humans, livestock, and natural environments. By using phenotypic and genotypic characterization, the present study highlighted the occurrence of an antimicrobial-resistant (i.e., amoxicillin, amoxicillin–clavulanic acid, cephalothin, and colistin) Enterobacter hormaechei subsp. steigerwaltii strain in wild boar (Sus scrofa) from France. The molecular analysis conducted showed non-synonymous mutations in the pmrA/pmrB and phoQ/phoP operons and the phoP/Q regulator mgrB gene, leading to colistin resistance. The present data highlight the need for continuous monitoring of multidrug-resistant bacteria in wild animals to limit the spread of these threatening pathogens.
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1. Introduction


Multidrug-resistant (MDR) pathogens, such as carbapenem-resistant Gram-negative bacteria (i.e., Klebsiella pneumoniae, Acinetobacter baumannii, Salmonella enterica, and Enterobacter cloacae complex bacterium), constitute a worldwide health threat [1]. Increased occurrence of infections caused by Gram-negative MDR bacteria, and a lack of new antibiotic drugs has led to the reevaluation of old antibiotics. As a result, colistin has become the last-line drug against serious bacterial infections, since it is effective against the majority of all multidrug-resistant Gram-negative bacteria [2]. However, a gradual increase in the prevalence of colistin resistance has been observed in various genera, including Escherichia, Klebsiella, Salmonella, Shigella, and Enterobacter, leading to a serious health threat [3].



Nowadays, two colistin resistance mechanisms are known in Gram-negative bacteria. One involves structural modifications of bacterial lipopolysaccharide, including the addition of 4-amino-4-deoxy-l-arabinose or phosphoethanolamine, following chromosomal mutations in genes encoding the two-component systems (phoP/Q and pmrA/B, or in the mgrB, a negative regulator of the PhoPQ system [4]). The other mechanism involves the phosphoethanolamine transferase mcr genes, a recently identified horizontally transferable plasmid-mediated colistin-resistance gene [5].



Enterobacter cloacae complex (ECC) is a member of the ‘ESKAPE’ group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) [1]. These pathogens are described as the leading cause of resistant nosocomial infections [1,6,7,8]. Among the Enterobacter genus, Enterobacter cloacae complex (ECC), including E. cloacae, E. asburiae, E. hormaechei, E. kobei, E. ludwigii, E. mori, E. nimipressuralis, E. roggenkampii, and E. bugandensis, are the most important clinically encountered pathogens with natural and/or acquired resistance to many antibiotics [2].



Previous studies demonstrated the presence of antimicrobial-resistance (AMR) genes in bacteria from a large variety of wildlife [9,10,11] and domestic [12,13] animals throughout Europe, including resistance to third generation cephalosporins, fluoroquinolones, carbapenems, and even colistin [9,10]. Due to intensive contact between humans and domestic and wild animals, the transmission of antimicrobial-resistant Gram-negative bacteria and/or interbacterial exchanges of AMR genes between bacteria from different niches is frequent [12,13]. In addition, some studies have highlighted the role of wild animals as bioindicators or sentinels for the propagation of resistant bacteria in the environment [14,15,16]. Consequently, the implementation of a “One Health” approach is timely for studying all underlying economic, social, political, environmental, and biological factors involved in the biology of bacteria carrying AMR genes, in order to identify key priorities for combating AMR pathogens [17,18,19]. Thus, the aim of this study was to investigate the origin of colistin resistance in Enterobacter hormaechei subsp. steigerwaltii isolated from fecal samples of French wild boar.




2. Results


2.1. Antimicrobial Susceptibility Testing


One bacterium from the E. cloacae complex (ECC) was isolated. The antimicrobial susceptibility test revealed that the isolated strain was susceptible to cefepime, piperacillin-tazobactam, ceftriaxone, ertapenem, imipenem, trimethoprim–sulfamethoxazol, ciprofloxacin, and gentamycin, while the strain was resistant to two antimicrobial classes represented by the β-lactams (i.e., amoxicillin, amoxicillin–clavulanic acid, and cephalothin) and polymyxins (i.e., colistin). The minimum inhibitory concentration of colistin was determined by broth microdilution, with an MIC = 4 mg/L.




2.2. Molecular Analysis


All PCR reactions yielded the amplification of the chromosomal genes of interest (i.e., phoQ/phoP, pmrA/pmrB, and mgrB) and housekeeping genes (i.e., dnaA, fusA, gyrB, leuS, pyrG, rplB, and rpoB). However, despite several attempts, none of the plasmid-mediated mobile colistin-resistance genes (mcr) were amplified.



The maximum likelihood phylogeny based on the chromosomal housekeeping genes (Figure 1) showed evidence that the isolated strain from wild boar is an integral part of Enterobacter cloacae complex bacteria and it clustered with the reference E. hormaechei subsp. steigerwaltii strain (GenBank accession number: CP017179, ST906). The MLST analysis performed on PubMLST server (https://pubmlst.org/ecloacae/, accessed on 15 July 2022) yielded the identification of this isolate as a new strain submitted under the accession ST1042.



By analogy to the colistin-sensitive-type strain of E. asburiae (E. asburiae, ATCC35953, GenBank accession number: CP011863), 5 non-synonymous mutations, in total, in the phoP, 17 in phoQ, 12 in pmrA, 24 in pmrB, and 2 in mgrB genes were recorded. Of those, two mutations (phoP: V5R and pmrA: D177E) were strain-specific and were considered as mutations affecting protein function according to the result of sorting intolerant from tolerant (SIFT), calculated on (https://sift.bii.a-star.edu.sg, accessed on 15 July 2022) (Figure 1 and Figure 2).



The parsimony tree performed on the mutation’s matrix showed that colistin resistance in ECC strains is related to the presence of intolerant mutations in the two-component systems (phoP/Q and pmrA/B and the mgrB genes), while the resistance profile (low, medium, high) is cluster dependent according to the MLST phylogeny (Figure 1).





3. Discussion


The emergence of new infectious pathogens of zoonotic concern in wildlife has increased general interest in wild animals [22]. However, studies on antimicrobial-resistant bacteria from wild fauna are scant as access to their biological samples is difficult. Here, we report, for the first time, a colistin-resistant strain of E. hormaechei subsp. steigerwaltii isolated from wild boar (Sus scrofa). Phenotypic and genotypic characterizations conducted in the current study emphasize the role of the inactivation in the two-component systems (phoP/Q and pmrA/B and the phoP/Q regulator mgrB gene) in the colistin-resistance mechanism from the E. hormaechei subsp. steigerwaltii strain.



Despite the large sample panel tested herein, only one antimicrobial-resistant ECC strain was isolated in wild boar from Southwest France. The low prevalence of resistant bacterial strains from wild boar was also reported in Germany [23], Spain, and Portugal [24], which may reflect both a low level of antimicrobial-resistant bacteria in these areas and the low exposure of these animals to antimicrobial drugs [25]. Nowadays, several studies using genomics have reported the occurrence of some phoP/phoQ and pmrA/pmrB profiles in ECC strains isolated from both humans and animals in several parts of the world (i.e., Japan, Netherlands, and USA), suggesting an anthropogenic origin for these pathogens. Moreover, wild animals are not treated directly with antimicrobial drugs, while the environmental exposure to antimicrobials could contribute to the selection of resistant bacteria in these animals, as reported in wild boar in Europe [5]. In addition, the expansion of urbanization to the detriment of forests has been reported to be another cause of contamination of wild fauna with antimicrobial-resistant bacteria through food, water, or direct contact with garbage and sewage [26], which may explain the carriage of a colistin-resistant ECC strain by wild boar in the present study.



Available studies have shown that the prevalence of bacteria and the results of the antimicrobial sensitivity analysis vary among wild species and their geographical locations [25]. Further analyses with respect to regional distribution and genetic traits as well as representative animal fauna need to be carried out to examine potential hosts and regional hot spots of AMR in wildlife in France.



Phenotypically, the E. hormaechei subsp. steigerwaltii herein isolated was β-lactams resistant (i.e., amoxicillin, amoxicillin–clavulanic acid, cephalothin). Β-lactam resistance is not new in E. hormaechei strains and has been proven to be linked to chromosomally encoded AmpC β-lactamases [27]. Genotypically, the chromosomal phoP/phoQ and pmrA/pmrB and mgrB genes revealed several non-synonymous mutations, particularly the V5R mutation in the phoP and D177E mutation in pmrA genes. Interestingly, these two mutations were strain specific and were involved in the alteration in protein function. Moreover, the absence of mcr genes from the isolated strain suggests that two-component systems (phoP/Q and pmrA/B and mgrB) are responsible for the observed colistin resistance.



Despite the important number of studies describing colistin-resistance mechanisms in ECC bacteria, there is limited information on the patterns mediating these mechanisms in ECC bacteria [3,12]. Mushtaq and colleagues investigated relationships to species, genome, carbon source utilization, and LPS structure on 1749 ECC strains [3]. Authors reported that colistin resistance is associated with particular genomic and metabolic clusters inducing changes in LPS architectures, which is directly linked to the chromosomal mutations in genes encoding the two-component systems (phoP/Q and pmrA/B or in the phoP/Q regulator mgrB gene) [4]. However, genomic data from this study were not available [3]. On the other hand, and despite the carriage of different mcr variants by the ECC bacteria, only the mcr-10 variants were statistically linked to colistin resistance or reduced susceptibility to colistin [28,29], without a clear confirmation of this statement [30]. The present study highlighted that the colistin-resistance profile in ECC strains is dependent on phylogenetic clusters and to mutations affecting protein function of the two two-component systems (phoP/Q and pmrA/B or in the phoP/Q regulator mgrB gene) as previously reported by using genome-based phylogeny [3]. However, the colistin-resistance mechanism remains unexplained genomically in some species. For example, the S/R-colistin strain (GenBank accession: CP010512) showed a completely independent colistin response regarding the genomic context [31,32,33].




4. Materials and Methods


4.1. Sample Processing and Antimicrobial Susceptibility Testing


In 2016, 358 fecal samples of wild boar (Sus scrofa) were collected in the military camp of Canjuers (43°42′17.99′′ N 6°18′18.00′′ E) in the Var (Southeast France). The selective Lucie Bardet-Jean-Marc Rolain (LBJMR) medium (S177) was used for the isolation and culture of ECC isolates as described elsewhere [34]. Broth microdilution for antimicrobial susceptibility testing was performed according to the European Committee on Antimicrobial Susceptibility testing breakpoints.




4.2. DNA Extraction and Sequencing


The isolated bacterium was subjected to DNA extraction using the Biorobot EZ1 System with the EZ1 DNA tissue kit (Qiagen, Courtaboeuf, France) following the manufacturer’s recommendations. Genomic DNA was subjected to PCR amplification and sequencing targeting three group of genes: (i) housekeeping genes (i.e., dnaA, fusA, gyrB, leuS, pyrG, rplB, and rpoB) for multiloci sequence typing; (ii) the chromosomal phoP/phoQ and pmrA/pmrB and mgrB genes; and (iii) a group of known plasmid-mediated colistin-resistance (mcr) genes. PCR amplification was confirmed in a 2% agarose gel with ethidium bromide. The PCR products of all positive reactions were purified by filtration using NucleoFast 96 PCR DNA purification plate prior to the BigDye reaction using the Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). The BigDye products were purified on the Sephadex G-50 Superfine gel filtration resin prior to sequencing on the ABI Prism 3130XL.




4.3. Molecular Analysis


4.3.1. Data Preparation


To characterize the isolated bacterium, a dataset of 31 ECC strains was selected on the basis of the availability of information on MIC of colistin and genomic and plasmidic sequences. Of those, 12 bacterial genomes representing 5 ECC species (i.e., E. hormaechei, E. roggenkampii, E. cloacae, E. kobei, and E. asburiae) were available only in paired reads from GenBank Databse (Project accession: PRJDB13693) [3]. Genome assemblies were generated using a pipeline grouping different software (i.e., Velvet [35], Soap Denovo [36], and Spades [37]) as described elsewhere [38]. To strengthen the molecular phylogeny, 10 types of ECC strains were also involved in the study (Table 1). Briefly, the housekeeping genes of interest (i.e., dnaA, fusA, gyrB, leuS, pyrG, rplB, and rpoB) were researched and retrieved from the selected genomes and were then blasted on PubMLST server (https://pubmlst.org/ecloacae/, accessed on 15 July 2022) to confirm and/or identify the sequence type, while protein-coding genes in the two-component systems (pmrA/B and phoQ/P and the phoP/Q regulator mgrB gene) were also searched and retrieved from the selected strains.




4.3.2. Molecular Characterization


Sequence alignment was performed using MAFFT [39]. The Bioedit software was used to manually refine the multisequence alignments [40] prior to sequence concatenation using SEAVIEW [41]. The multisequence alignment was then subjected to maximum-likelihood-based phylogeny using iqtree2 software [42]. The best-fit model was selected using model finder [43] to compute the tree under 1000 bootstrap replications. Sequence of Klebsiella aerogenes, strain KCTC2190 (GenBank accession: CP002824) was used as outgroup to root the tree.



In addition, the parsimony tree was performed on the mutation matrix of the two-component systems (pmrA/B and phoQ/P and the phoP/Q regulator mgrB genes). Briefly, protein sequences were retrieved from all genomes of bacterial strains for which the results of colistin testing were available (n = 31) and were compared to sequences from the colistin-sensitive reference E. asburiae (GenBank accession: CP011863) using ClusterW and PROVEAN [44]. Identified mutations were then subjected to sorting intolerant from tolerant (SIFT) calculated on (https://sift.bii.a-star.edu.sg, accessed on 15 July 2022). The SIFT score and mutation matrix were then subjected to parsimony tree using PARS and CONSENSE applications within PHYLIP program [21]. The resulting heatmap as well as the information on colistin sensitivity of each strain (i.e., number of mutations per gene in the two-component systems (pmrA/B and phoQ/P and the phoP/Q regulator mgrB), MIC for colistin, and the presence of mcr genes) were used to annotate the tree using iTOL software [20].



Finally, the SMART server [45] was used to predict protein domains in the two-component systems (pmrA/B and phoQ/P and the phoP/Q regulator mgrB) using Escherichia coli K-12 sub-strain MG1655 as type strain.
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Table 1. Description of the ECC strains used in the molecular analysis.






Table 1. Description of the ECC strains used in the molecular analysis.





	
Strain Identification

	
Acc. No.

	
Strain

	
ST. Acc.

	
dnaA

	
fusA

	
gyrB

	
leuS

	
pyrG

	
rplB

	
rpoB

	
Source

	
MIC (mg/L)

	
Mcr Genes

	
References






	
E. h. subsp. steigerwaltii

	
ST1042

	
B-107

	
1042

	
4

	
6

	
4

	
77

	
11

	
36

	
39

	
wild boar

	
4

	
No

	
This study




	
 E. h.  subsp. steigerwaltii  a

	
CP017179

	
DSM 16691

	
906

	
58

	
174

	
4

	
6

	
42

	
4

	
25

	

	

	

	
[46]




	
E. h. subsp. steigerwaltii

	
CP083849

	
14269

	
125

	
63

	
3

	
66

	
68

	
3

	
16

	
3

	

	
8

	
mcr-9.2

	
[30]




	
 E. h.  subsp. hoffmannii  a

	
CP017186

	
DSM 14563

	
816

	
59

	
9

	
80

	
172

	
35

	
6

	
6

	

	

	

	
[46]




	
 E. h.  subsp. oharae  a

	
CP017180

	
DSM 16687

	
108

	
68

	
8

	
75

	
63

	
65

	
34

	
35

	

	

	




	
E. hormachei

	
DRX366480

	
En42

	
1579

	
4

	
4

	
4

	
6

	
72

	
4

	
6

	
Dog

	
>128

	
No

	
[47]




	
E. roggenkampii

	
CP083853

	
12795

	
523

	
36

	
39

	
192

	
206

	
49

	
12

	
20

	

	
>128

	
mcr-9.2

	
[30]




	
E. roggenkampii

	
CP083819

	
13840

	
702

	
36

	
25

	
49

	
30

	
49

	
21

	
143

	

	
16

	
mcr-10.1




	
E. roggenkampii

	
DRX366478

	
En37

	
1576

	
72

	
278

	
71

	
383

	
160

	
46

	
172

	
Dog

	
>128

	
mcr-10

	
[47]




	
E. roggenkampii

	
DRX366479

	
En50

	
606

	
37

	
27

	
49

	
57

	
200

	
21

	
20

	
Cat

	
>128

	
No




	
 E. oligotrophica   a

	
AP019007

	
CCA6

	
Novel

	
401 b

	
266

	
423

	
496 b

	
342 b

	
4

	
273

	
leaf soil

	

	

	
[46]




	
 E. roggenkampii a

	
CP017184

	
DSM 16690

	
Novel

	
270

	
39

	
91

	
92

	
312

	
12

	
26

	

	

	




	
E. xiangfangenisc  a

	
CP017183

	
LMG 27195

	
544

	
10

	
21

	
9

	
44

	
45

	
4

	
33

	

	

	




	
E. c. subsp. cloacae a

	
CP0011918

	
ATCC 13047

	
873

	
85

	
63

	
101

	
103

	
96

	
6

	
53

	
Human

	
8

	
No




	
E. c. subsp. cloacae

	
CP083821

	
12961

	
84

	
60

	
1

	
61

	
1

	
36

	
22

	
1

	

	
>128

	
mcr-10.1

	
[30]




	
E. cloacae

	
DRX366481

	
En46

	
765

	
156

	
92

	
169

	
218

	
105

	
22

	
99

	
Dog

	
>128

	
No

	
[47]




	
E. cloacae

	
CP010512

	
colR/S

	
252

	
22

	
15

	
102

	
104

	
101

	
11

	
10

	
Human

	
1/500

	
No

	
[31]




	
E. cloacae

	
CP032291

	
/0073

	
73

	
8

	
33

	
6

	
9

	
12

	
6

	
8

	
Human

	
>8

	
No

	
[48]




	
E. cloacae

	
CP021749

	
163

	
163

	
71

	
3

	
87

	
89

	
13

	
16

	
3

	
Human

	
>8

	
No




	
E. cloacae

	
CP014280

	
MBRL1077

	
Novel

	
467 b

	
202

	
484 b

	
582 b

	
377

	
219

	
266

	
Human

	
> 4

	
No

	
[49]




	
 E. kobei   a

	
CP017181

	
ATCC BAA-260

	
806

	
71

	
3

	
87

	
312

	
254

	
16

	
167

	

	

	

	
[46]




	
E. kobei

	
CP083828

	
11778

	
280

	
3

	
3

	
58

	
37

	
3

	
16

	
17

	

	
>128

	
mcr-10.2

	
[30]




	
E. kobei

	
DRX366470

	
En3

	
591

	
3

	
3

	
110

	
232

	
19

	
16

	
17

	
Dog

	
>128

	
No

	
[47]




	
E. kobei

	
DRX366471

	
En4

	
591

	
3

	
3

	
110

	
232

	
19

	
16

	
17

	
Dog

	
>128

	
No




	
E. kobei

	
DRX366472

	
En5

	
591

	
3

	
3

	
110

	
232

	
19

	
16

	
17

	
Dog

	
>128

	
No




	
E. kobei

	
DRX366473

	
En14

	
591

	
3

	
3

	
110

	
232

	
19

	
16

	
17

	
Cat

	
>128

	
No




	
E. kobei

	
DRX366474

	
En49

	
1577

	
316

	
277

	
110

	
518

	
3

	
16

	
210

	
Dog

	
>128

	
No




	
E. kobei

	
CP083862

	
11743

	
56

	
42

	
3

	
52

	
37

	
23

	
16

	
3

	

	
>128

	
mcr9.1/2 copies

	
[30]




	
E. kobei

	
CP083857

	
12379

	
57

	
43

	
3

	
51

	
36

	
18

	
16

	
19

	

	
>128

	
mcr-9.2




	
E. asburiae  a

	
CP011863

	
ATCC 35953

	
807

	
255

	
166

	
280

	
313

	
255

	
11

	
166

	
Human

	
1

	
No

	
[3]




	
E. asburiae

	
DRX366475

	
En6

	
1578

	
229

	
14

	
235

	
519

	
98

	
11

	
16

	
Dog

	
>128

	
No

	
[47]




	
E. asburiae

	
DRX366476

	
En19

	
562

	
22

	
15

	
102

	
104

	
101

	
11

	
71

	
Cat

	
>128

	
No




	
E. asburiae

	
DRX366477

	
En30

	
1578

	
229

	
14

	
235

	
519

	
98

	
11

	
16

	
Cat

	
>128

	
mcr-9




	
E. asburiae

	
CP083842

	
16773

	
41

	
37

	
25

	
49

	
30

	
49

	
21

	
20

	

	
>128

	
mcr-9.1

	
[30]




	
E. asburiae

	
CP083834

	
AR0468

	
27

	
26

	
16

	
25

	
53

	
22

	
9

	
15

	

	
>128

	
mcr-9.1




	
E. asburiae

	
CP083830

	
AR2284

	
252

	
22

	
15

	
102

	
104

	
101

	
11

	
10

	

	
>128

	
mcr-9.1 + mcr-9.2




	
E.asburiae

	
AP022628

	
A2563

	
484

	
26

	
14

	
143

	
191

	
61

	
11

	
89

	
Human

	
0.125

	
mcr-9

	
[50]




	
E. asburiae

	
CP083815

	
161373

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	

	
16

	
mcr-10.1

	
[30]




	
 E. ludwigii a

	
CP017279

	
EN-119

	
714

	
13

	
2

	
105

	
133

	
51

	
2

	
14

	

	

	

	
[46]




	
E. ludwigii

	
CP083824

	
11894

	
Novel

	
280 b

	
15

	
318 b

	
361 b

	
293

	
106

	
156

	

	
128

	
mcr-10.4

	
[30]








ST: sequence type; MIC: minimum inhibitory concentration; a: indicates type ECC strains; b: indicates the most closest allele found in PubMLST database.














5. Conclusions


Our results demonstrate that wild boar could be colonized by colistin-resistant E. hormaechei subsp. steigerwaltii, highlighting their potential role as reservoirs of AMR bacteria. Because of the consumption of wild boar as game animal as well as their proximity to domestic animals and farms, these common animals could be a zoonotic source for transmission of colistin-resistant bacteria to humans.
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Figure 1. Molecular characterization of the E. hormaechei subsp. steigerwaltii strain ST1042 isolated from wild boar in the present study. Maximum likelihood (ML) phylogeny showing the position of ST1042 strain among the member of the ECC strains. The tree corresponds to the IQTREE inferred from the 41 concatenated (3509 bps) sequences (i.e., dnaA, fusA, gyrB, leuS, pyrG, rplB, and rpoB) with 17.6% of informative sites. Branches are color coded according to the bootstrap values. The tree was rooted at the midpoint using iTOL v5 software [20]. Accession numbers, species names, and ST accessions are indicated at the tip of each branch. The bold blue label indicates the sequence obtained in this study. Bold black labels indicate reference strains. Size-dependent stars indicate the number of mutations identified in the two-component system genes (phoP/Q, pmrA/B, and mgrB) comparatively to the reference colistin-sensitive strain E. asburiae (CP011863). Black-filled circles indicate the colistin profile according to the MIC expressed in mg/L. The presence of mcr gene is indicated by the filled black right pointing (mcr-9 variants) and the left pointing (mcr-10 variants) triangles. The heatmap shows the profile of each strain according to the identified mutation in the two-component system genes (phoP/Q, pmrA/B, and mgrB). Green areas represent tolerated mutation, while red areas represent intolerant mutations according to the result of sorting intolerant from tolerant (SIFT) calculated on (https://sift.bii.a-star.edu.sg, accessed on 15 July 2022). The horizontal dendrogram corresponds to the parsimony tree generated by the PARS and CONSENSE applications within the PHYLIP program [21]. Red-colored labels and the color-coded background indicate intolerant mutation names and their origine (i.e., phoP/Q, pmrA/B, and mgrB), respectively. 
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Figure 2. Location of the non-synonymous mutations throughout the predicted domains of the two-component systems (phoP/Q and pmrA/B and the phoP/Q regulator mgrB gene). Black and red texts indicate, respectively, tolerated mutations and mutations affecting protein function according to the result of sorting intolerant from tolerant (SIFT) calculated on (https://sift.bii.a-star.edu.sg, accessed on 15 July 2022). The CLUSTALW alignment represents the informative sites of protein sequences of the phoP/phoQ and pmrA/pmrB and the PhoPQ regulator mgrB genes of ECC strains. 
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