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Abstract: New Delhi metallo-β-lactamase (NDM)-carrying IncX3 plasmids is important in the trans-
mission of carbapenem resistance in Escherichia coli. Fitness costs related to plasmid carriage are
expected to limit gene exchange; however, the causes of these fitness costs are poorly understood.
Compensatory mutations are believed to ameliorate plasmid fitness costs and enable the plasmid’s
wide spread, suggesting that such costs are caused by specific plasmid–host genetic conflicts. By
combining conjugation tests and experimental evolution with comparative genetic analysis, we
showed here that the fitness costs related to ndm/IncX3 plasmids in E. coli C600 are caused by
co-mutations of multiple host chromosomal genes related to sugar metabolism and cell membrane
function. Adaptive evolution revealed that mutations in genes associated with oxidative stress, nu-
cleotide and short-chain fatty acid metabolism, and cell membranes ameliorated the costs associated
with plasmid carriage. Specific genetic conflicts associated with the ndm/IncX3 plasmid in E. coli C600
involve metabolism and cell-membrane-related genes, which could be ameliorated by compensatory
mutations. Collectively, our findings could explain the wide spread of IncX3 plasmids in bacterial
genomes, despite their potential cost.

Keywords: New Delhi metallo-β-lactamase; IncX3 plasmid; fitness cost; adaptive evolution; genetic
conflict; carbapenem-resistant E. coli

1. Introduction

The emergence and dissemination of carbapenem resistance conferred by New Delhi
metallo-β-lactamase (NDM) has become a major concern worldwide [1]. Of the plasmids
reported to carry blandm, IncX3-type plasmids are the most common. The ndm/IncX3
plasmids have been detected in Asia, Europe, and North America, though strains from
China carry the highest proportion of ndm/IncX3 (68.4%) [2,3].

Plasmids reduce the competitiveness of the host bacteria and so confer a fitness cost [4],
which is considered a major barrier to plasmid maintenance in microbial populations [5].
This cost in fitness has been attributed to plasmid properties, such as the number of copies,
size of the plasmid, and related metabolic burden [4–7]. The ndm/IncX3 plasmid was
considered to confer a low fitness cost because of its low copy number, minor metabolic
burden, and stable genetic backbone [8–11]; however, high fitness costs have been reported
in some E. coli strains [12,13]. The mechanism of the diversity of fitness costs while
carrying the ndm/IncX3 plasmid remains unclear and is potentially unrelated to the general
properties of the plasmid.
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Genetic conflicts, which emerge from plasmid–chromosome gene interactions as plas-
mid entry into the host, are proposed by some researchers as vital mechanisms for plasmid-
related fitness costs [14,15]. Plasmids are independently replicating genetic elements, which
differ from chromosomes. Genetic conflicts arise when plasmids and chromosomes attempt
to independently maximize their own fitness [16]. Such genetic conflicts have manifested as
mutations, such as missense variant, deletion, and stop-gained, occurring in chromosomes
or plasmids. Frequent conflict between plasmid replication and the host chromosome
comes at the cost of host survival, such as the fitness cost reported for Salmonella enterica
serovar Typhimurium ATCC14028 carrying the MDR IncHI2 plasmid pJXP9 manifesting
as chromosomal mutations [17]. These genetic conflicts would likely be strain-specific,
depending on the genetic background of the strain. Hall et al. [14] proposed that specific
genetic conflicts were responsible for the fitness cost reported for Pseudomonas fluorescens
SBW25 carrying the megaplasmids pQBR57 and pQBR103; the specific genetic conflict
occurred as the SOS-response-related gene PFLU4242 mutation. However, there have been
no studies on the relationship between specific genetic conflicts and the fitness cost of
carrying ndm/IncX3 plasmids. Our work has previously revealed that the ndm/IncX3
plasmids are highly conserved [9], and thus we suggest that specific genetic conflicts that
may occur in the host chromosome confer a diverse fitness cost.

Following plasmid-related fitness cost emerging, this could have one of two outcomes:
either that plasmids will be lost, which is clearly inconsistent with the current epidemic
status of plasmids, or that plasmids and host strains can undergo compensatory evolution,
which reduces the cost of plasmid carriage and allows for plasmid persistence. Similarly, for
the plasmid to persist, the fitness cost imposed by genetic conflicts conferring targeted dele-
tions and mutations should be compensated by adaptive evolution [14,17,18]. Therefore,
one may expect coevolution between the host chromosomes and plasmids to correspond
with a reduction in the deleterious effects of the plasmid. We suggest that host strains
carrying the ndm/IncX3 plasmid initially have a fitness cost, which is compensated by
adaptive evolution, and thus may lead to diverse levels of fitness cost, but the mechanism
of the diverse fitness cost after coevolution remains unknown.

This study investigates the relationship between diverse fitness costs associated with
the ndm/IncX3 plasmid and specific genetic conflicts, and how adaptive evolution compen-
sates the fitness cost caused by this specific genetic conflict. We evaluated the mechanisms
underlying the fitness costs specifically related to the ndm/IncX3 plasmid pHN330 in E. coli
C600 and performed experimental evolution to explore the potential for compensatory
evolution and its mechanism. We found that carrying the ndm/IncX3 plasmid generated an
elevated fitness cost for E. coli C600, suggesting the occurrence of a specific genetic conflict.
Adaptive evolution can compensate for the specific plasmid–host chromosome conflicts,
ameliorating the cost of the C600 carrying the ndm/IncX3 plasmid.

2. Materials and Methods
2.1. Bacterial Strains and Plasmid

The plasmid pHN330 was isolated in our laboratory as reported in our previous
study [19]. We performed conjugation experiments and successfully obtained E. coli J53
and C600 transformants containing pHN330; Table 1 summarizes the strain information.
Susceptibility to antibiotics was assessed using a standard microdilution method according
to the CLSI guidelines [20].

Table 1. Strain descriptions.

Strain Plasmid Replicon Description

C600 None model E. coli strain
C600T IncX3 C600 transformant

C600N500 IncX3 500th passage of C600T without antibiotics
C600Y500 IncX3 500th passage of C600T with 2 mg/L imipenem
C600D500 None 500th passage of C600

J53 None model E. coli strain
J53T IncX3 J53 transformant



Pathogens 2023, 12, 137 3 of 13

2.2. Growth Curve Assay

The growth curves of the strains were determined by measuring the optical density
(OD) at 600 nm (BioTek, Vermont, USA). Briefly, cultures grown in Luria–Bertani (LB) broth
overnight at 37 ◦C were diluted 1:1000 in fresh LB broth and grown at 37 ◦C with shaking
(200 rpm) for 24 h. The OD600 of the culture was measured once every hour for a total of
24 h [21].

2.3. Competition Experiments

To assess the fitness impact of pHN330 carriage on the host, transformants and host
strains were paired to perform competition experiments. The overnight bacterial suspen-
sion of paired strains was adjusted to 0.5 McFarland, mixed at a ~1:1 ratio, and 50 µL of
the mixture was seeded into 5 mL of LB broth for 24 h of incubation (37 ◦C, 200 rpm). At 0
and 24 h, 100 µL of the culture was diluted and the diluted sample was transferred to LB
agar or LB agar supplemented with meropenem (1 mg/L). After incubation at 37 ◦C for
18–24 h, colony forming units (CFUs) were counted and the competitive index (CI) was cal-
culated as previously described [22]: CI = (transconjugant CFU/original CFU)/(inoculated
transconjugant CFU/inoculated original CFU).

2.4. Experimental Evolution

Briefly, the C600T strain was inoculated into 5 mL of LB broth with or without
imipenem (2 mg/L). These cultures were considered generation 0 for each lineage. We
transferred 5 µL of the culture daily to 5 mL fresh LB broth with imipenem (2 mg/L) or
without antibiotics over 50 d (10 generations per day, 500 generations total). PCR analysis
confirmed that all the progeny strains were ndm-positive [19].

2.5. Whole-Genome Sequencing and Bioinformatic Analysis

Whole-genome sequencing was performed on all strains. Briefly, single colonies were
grown for 16 h in LB broth at 37 ◦C and bacterial DNA was extracted using a bacterial DNA
extraction kit (Omega Bio-Tek, USA) according to the manufacturer’s instructions. Whole-
genome sequencing was performed by Novegene (Novogene BioTech, Beijing, China) on an
Illumina Novaseq platform. Genomes were assembled using Shovill version 1.0.4 [23] and
annotated using Prokka software [24]. Single nucleotide polymorphism (SNP) analysis was
performed using Snippy [25]. The online tool DAVID [26] was used to annotate SNP genes
according to biological function and cellular components via Gene Ontology analysis [27].
The genome of the E. coli strains were submitted to GenBank under accession number
PRJNA907472.

2.6. Statistical Analysis

Data were analyzed using SPSS software version 25.0 (IBM SPSS, Chicago, IL, USA).
CIs and growth rates were compared between groups using a paired t-test, with statistical
significance set at p < 0.05.

3. Results
3.1. Fitness Cost of Carrying IncX3 Plasmid

The pHN330 plasmid harboring blandm and the studied strains acquired resistance
to carbapenems after carrying the IncX3 plasmid. We performed antibiotic susceptibility
tests (Table 2) and found that all strains carrying pHN330 were resistant to imipenem and
meropenem, with MIC values 32- to 512-fold higher than the control strains.

Competition experiments and growth curves were used to assess the fitness cost of
carrying pHN330 (Figure 1). We found that when J53 was the host, there were no significant
differences in growth rates between the transformants and control bacteria (p > 0.05); when
C600 was used as the host, the growth rate of the transformants was lower than that of
control bacteria (2.47 vs. 2.16, p < 0.0001).



Pathogens 2023, 12, 137 4 of 13

Table 2. Resistance profiles of the host strains and transformants.

Strain
MIC (mg/L)

MEM IPM FEP CAZ ATM AMK LEV

C600 0.125 0.25 0.125 1 0.25 0.125 0.125
C600T 64

(512-fold) a
64

(256-fold) a
32

(256-fold) a
128

(128-fold) a
8

(32-fold) a 0.125 0.125
C600N500 32 32 32 128 8 0.125 0.125
C600Y500 16 32 32 128 8 0.125 0.125

J53 0.125 0.125 0.125 0.125 0.5 4 0.125
J53T 4

(32-fold) a
16

(128-fold) a
64

(512-fold) a
64

(512-fold) a
128

(512-fold) a 4 0.125

MEM—meropenem, IPM—imipenem, FEP—cefepime, CAZ—ceftazidime, ATM—aztreonam, AMK– amikacin,
LEV—Levofloxacin. a Fold increase in MIC values of the transformants compared to the model strain.

Figure 1. Growth curves of host strains and transformants. (A) Comparison of the growth curves for
J53 and J53T showed no significant changes. (B) Comparison of growth curves for C600 and C600T;
the growth rate was significantly decreased in C600T.

Further competition experiments (Figure 2) showed that the fitness cost of carrying
the IncX3 plasmid was minor for the J53 strain (CI: 0.92 ± 0.03) but carrying the pHN330
had a clear fitness cost for the C600 strain (CI: 0.15 ± 0.04).

Figure 2. The competitive indices of the C600 and J53 strains. The transformants and host strains
were paired to perform competition experiments and the competitive index (CI) was calculated. CI
values < 1 indicate that the carried plasmid generates a fitness cost, with smaller CI values indicating
higher fitness costs.
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3.2. Comparative Analysis of E. coli C600 and E. coli C600/pHN330

To explore the mechanism conferring the fitness cost related to the IncX3 plasmid, we
analyzed whether SNPs occurred in the plasmid or chromosomal genes by comparative
genomics. We detected several SNPs in J53 (8) and C600 (29), but none were observed in
the IncX3 plasmid (Table 3 and Table S1).

Table 3. Number of SNPs in the host strains carrying the pHN330 plasmid.

Strain
SNP Counts

Total SNPs CDS Count Intergenic Sequence Count

J53T 8 0 8
C600T 29 11 18

SNP—single nucleotide polymorphism, CDS—coding sequence. SNPs differed between J53 and C600, with J53
having no SNP in the CDS region and C600 having 11 SNPs in the CDS region. SNP gene—gene occurring in the
CDS region.

After J53 obtained the IncX3 plasmid, no SNPs were found in the coding sequence
(CDS) regions, and all SNP positions were located in intergenic regions (Table 3). In contrast,
after C600 obtained pHN330, 10 non-synonymous SNPs occurred in the CDS region, which
were located within the ptrA, lpdA, bamA, melA, gatA, mdoB, yihV, mntH, trkA, and ydfK
genes, which we termed SNP genes (Table 4).

Table 4. Non-synonymous SNP genes in host strains carrying the pHN330 plasmid.

Strain Non-Synonymous SNP Gene

J53T None
C600T ptrA, lpdA, bamA, melA, gatA, mdoB, yihV, mntH, trkA, and ydfK

Functional classification and clustering analyses with DAVID of all SNP genes in the
C600 strain (Tables S3 and S4) indicated that the bamA, mdoB, mntH, and trkA genes were
associated with the cell membrane, and lpdA, ptrA, gatA, yihV, ydfK, and melA were related
to metabolism.

3.3. IncX3 Plasmid Maintenance in E. coli C600 after 500 Passages

Plasmid–host coevolution can gradually reduce the fitness cost of plasmids. To verify
whether the same phenomenon exists in C600T, the experimental evolution of C600T was
assessed over 50 d without antibiotics or with imipenem 2 mg/L. pHN330 was consistently
present in all progeny strains, as confirmed by the PCR assay. The resistance profiles of
C600T before and after laboratory evolution (Table 2) showed that the MIC of meropenem
was unchanged after passage without antibiotics but decreased 4-fold after passage with
imipenem (from 64 mg/L to 16 mg/L), while the MIC of imipenem decreased 2-fold after
passage with and without antibiotics (from 64 mg/L to 32 mg/L).

3.4. Fitness Cost of Progeny Strains Decreased Compared to C600T Strain

After passages without antibiotics or with imipenem (2 mg/L), the growth rates of
C600N500 and C600Y500 significantly increased compared to that of the C600T strain but
did not recover to C600 levels. The CIs of C600N500 (0.22 vs. 0.14, t = −4.793, p = 0.003)
and C600Y500 (0.28 vs. 0.14, t = −7.328, p = 0.001) were clearly higher than that of C600T
(Figure 3).
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Figure 3. Experimental evolution of C600T without antibiotics or with imipenem (2 mg/L).
(A,C) Comparison of the growth curves for C600N500, C600Y500, and C600T. (B,D) After evo-
lution without or with antibiotics, the competitive index of C600N500 and C600Y500 increased
significantly compared to that of C600T. * p = 0.003; ** p = 0.001.

3.5. SNPs Occurring in the CDS Region Reduced the Fitness Cost of C600T

To investigate the mechanism underlying the decreased fitness cost of IncX3 plasmid-
carrying strains after evolution, progeny strains and transformants were subjected to
comparative genomic analysis (Table 5 and Table S2). SNPs were present in all progeny
strains (C600N500:28; C600Y500:27). After passages without antibiotics or with imipenem
(2 mg/L), the progeny strains had more SNPs in the CDS region (C600N500:17; C600Y500:11).

Table 5. SNP counts in progeny strains.

Strain
SNP Counts

Total SNPs CDS Count Intergenic Sequence Count

C600N500 28 17 11
C600Y500 27 11 16

SNP: single nucleotide polymorphism, CDS: coding sequence. After adaptive evolution, the SNP was located in
the CDS region, and the intergenic sequence region occurred in the progeny strains.

As shown in Table 6, C600N500 had 14 SNP genes, gudD, araC, dgt, bamA, rfaF, lptF,
ycjX, bcsG, pepQ, mshA, sfmD, paaJ, mreC, and tfaE, and C600Y500 had 10 SNP genes, gloA,
ydiF, fliY, hycF, caiA, bamA, rlmB, sbp, acnA, and yghQ. A reverse mutation in the bamA
gene was observed in the absence of antibiotic passages and with imipenem passages
(1882T > G p.Phe628Val, after passages, reverse).
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Table 6. Non-synonymous SNP genes in progeny strains.

Strain Non-Synonymous SNP Gene

C600N500 gudD, araC, dgt, bamA, rfaF, lptF, ycjX, bcsG, pepQ, mshA, sfmD,
paaJ, mreC, and tfaE

C600Y500 gloA, ydiF, fliY, hycF, caiA, bamA, rlmB, sbp, acnA, and yghQ
SNP gene—gene occurring in the CDS region.

Further gene functional classification and clustering analyses of the non-synonymous
SNP genes were performed in the progeny strains. Among the SNP genes that occurred in
C600N500, bamA, bcsG, lptF, mreC, sfmD, mshA, and rfaF were related to the cell membrane,
and gudD, araC, pepQ, paaJ, and dgt were related to metabolism (Tables S3 and S5). Among
the SNP genes found in C600Y500, fliY, bamA, yghQ, and sbp were related to the cell
membrane, and caiA, gloA, acnA, rlmB, hycF, and ydiF were related to metabolism (Tables
S3 and S6). The number of SNP genes and gene clusters in the progeny strains and
transformants are shown in Figure 4.

Figure 4. SNP gene function classification. SNP: single nucleotide polymorphism. GO clustering
analysis was performed on non-synonymous SNP genes, which could be divided into metabolism-
and cell-membrane-related genes. Numbers above the bars represent the number of non-synonymous
SNP genes.

4. Discussion

The ndm/IncX3 plasmid is thought to confer a low fitness cost that contributes to
its worldwide occurrence [10,11]. However, some studies have also reported high fitness
costs [12,13], though the variety of fitness costs and the mechanism involved remain unclear.
Our group has been exploring IncX3 plasmid prevalence for several years [8,9,19]. In the
present study, we found that the ndm/IncX3 plasmid led to an elevated fitness cost in the
C600 strain, for which specific genetic conflicts were responsible and related to SNPs in
genes of the cell membrane and sugar metabolism. Adaptive evolution can compensate for
specific plasmid–host chromosome conflicts through SNPs in genes related to nucleotide
metabolism, strain biofilm formation, LPS synthesis, antioxidant stress, cytoskeleton, and
short-chain fatty acid metabolism, ameliorating the cost of the C600 carrying ndm/IncX3
plasmid. This indicates that diversity in fitness costs is likely common when evaluating
plasmid carriage across hosts, and genetic conflicts may provide relevant insights.

In the present study, plasmid-carrying E. coli J53 and C600 showed different fitness
costs, which is consist with previous studies that indicated that ndm/IncX3 plasmids cause



Pathogens 2023, 12, 137 8 of 13

diverse fitness costs [12,13]. Subsequent comparative genomic analysis revealed that the
fitness cost of carrying ndm/IncX3 plasmids is associated with several genetic mutations.
Plasmid-carrying E. coli C600 had more SNPs in CDS region genes and fewer in intergenic
regions on the chromosome compared to E. coli J53, indicating that mutations in intergenic
regions incur a low effect on fitness cost. For instance, Buckner et al. [28] showed that
the SNPs of Klebsiella pneumoniae Ecl8 carrying the pKpQIL plasmid were mainly in the
intergenic regions with low fitness cost. Wang et al. [29] found that mutations in gyrB
resulted in considerable costs, while carrying the OqxAB-encoding plasmids pHNGC59
and pHNFD436. Thus, mutations in functional CDS regions play an important role in
generating fitness costs.

We analyze what specific genetic conflicts are related to the function of the SNP genes
mutated in the CDS region of E. coli C600. The functions of the non-synonymous SNP
genes in C600 (ptrA, lpdA, bamA, melA, gatA, mdoB, yihV, mntH, trkA, and ydfK) were re-
lated to the cell membrane and sugar metabolism (Table S4). Overall, the SNPs occurring
in the metabolism-related genes (lpdA, melA, gatA, and yihV) reduce the efficiency with
which E. coli C600 metabolizes different sugars, resulting in slower growth. The lpdA
gene is a component of the pyruvate dehydrogenase complex, which codes for lipoamide
dehydrogenase and has been reported to promote the growth rate of E. coli by glucose
metabolism [30]. MelA, gatA, and yihV, which are involved in the metabolism of other
sugars (galactitol, melibiose, and sulfoquinovose) in addition to glucose, have been re-
ported to restrict bacteria from utilizing essential nutrients and reduce growth rates [31–33].
Mutants occurring in the cell-membrane-related genes (bamA, trkA, and mdoB) affected the
stability of E. coli C600 membranes, reduced resistance to osmotic pressure, and promoted
potassium ion imbalance, resulting in the decrease in bacterial growth. The bamA gene is an
outer membrane protein assembly factor, which encodes a component of the BAM complex
that is essential for the construction and maintenance of the outer membrane [34,35]. Phos-
phoglycerol transferase I—encoded by the mdoB gene—is involved in the biosynthesis of
membrane-derived oligosaccharides and has been reported to affect the regulation of osmo-
larity and the stability of the bacterial membrane [36]. TrkA, the NAD-binding component
of the Trk potassium transporter, is responsible for maintaining potassium ion homeostasis
under hypotonic conditions [37]. Consequently, the co-mutations in these metabolic and
cell-membrane-related genes reduced the ability of pHN330 carrying E. coli C600 to utilize
different sugars, affected the membrane stability, decreased the ability to resist various
environmental stresses, and caused a potassium ion imbalance, resulting in fitness costs.

Plasmid fitness costs related to bacterial metabolism and cell membrane function
have been previously reported. Alvaro et al. [38] found that carrying different plasmids
altered the expression of metabolic genes in Pseudomonas aeruginosa PAO1, which altered
the regulation of energy production, lipid transport, and carbohydrate transport. E. coli
DH10 carrying the IncA/C2 plasmid pAR060302 has also been reported to have an elevated
fitness cost [39], specifically through the upregulated expression of the plasma membrane
and active transmembrane transport genes [40].

In nature, the cost of carrying plasmids can be compensated through adaptive evolu-
tion [41]. In the present study, we found that the cost could be compensated by co-evolution,
but the underlying mechanisms of host–plasmid coevolution compensating for the fitness
cost are still unknown. Comparative genomic analysis between progeny strains and
transformants revealed that bamA showed a reverse mutation in the compensated strains
C600N500 and C600Y500. BamA is an essential component of the Omp85 protein super-
family and is well conserved in all Gram-negative bacteria [34,42]. BamA is important for
the activity of the conserved β-barrel assembly machinery, which is responsible for the
assembly of the outer membrane β-barrel conformation in Gram-negative bacteria [43,44].
BamA, the component of β-barrel membrane proteins, is proven to be vital for nutrient
import, signaling, motility, and survival of Gram-negative bacteria [45]. Wu et al. found
that the BamA protein depleted in E coli JCM166 results in cell death [46]. Thus, our results
are consistent with the function of the bamA gene; mutants that occurred in the bamA gene
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resulted in a decreased growth rate and, after compensation, the bamA gene reverse mutant
increased the growth rate of the C600N500 and C600Y500 strains. Future studies are needed
to explore the role of the bamA gene in determining the fitness cost of another IncX3 plasmid
bearing E. coli.

In addition to the bamA gene, GO clustering analysis suggested that other non-
synonymous SNP genes occurred in progeny strains C600N500 and C600Y500, which
were also related to the cell membrane, nucleotide, and short-chain fatty acid metabolism
(Tables S5 and S6). The metabolism-related non-synonymous SNP gene dgt occurred in
C600N500 and is associated with nucleotide metabolism. The dgt gene encodes for dGT-
Pase, responsible for the hydrolysis of dGTP to deoxyguanosine and triphosphate. Mutants
in the dgt gene can cause mismatches during DNA replication [47]. The cell-membrane-
related non-synonymous SNP genes bcsG, lptF, rfaF, and mreC occurred in C600N500 and
are associated with biofilm formation, LPS synthesis, and cell cytoskeletal formation. The
gene bcsG, which is involved in the production of exopolysaccharide cellulose, has been
reported to affect biofilm formation in E. coli [48]. The lptF and rfaF genes are essential for
lipopolysaccharide formation, which is critical for cell motility, intestinal colonization, and
biofilm formation, and encode for major extracellular polymers [49–51]. The gene mreC
encodes for cytoskeletal proteins that regulate cell morphology and survival and is highly
conserved in bacteria [52].

Adaptive evolution can compensate for fitness costs through altered metabolism
and cell membrane function. Elias et al. found that the fitness cost of K. pneumoniae
after obtaining ceftazidime-avibactam resistance can be compensated through adaptive
evolution through the downregulated expression of phospholipids and LPS biogenesis
and modification [53]. Previous studies have found that P. fluorescens carries pQBR103 at
an elevated cost and can be compensated by a mutant in the gacA/gacS two-component
system [54], which regulates energy metabolism and central intermediary metabolism [55].
Ma et al. found that after evolution, mutant DNA replication in the dnaK gene compensated
for the fitness cost of E. coli carrying the mcr/IncHI plasmid [56].

Oxidative stress resistance and the metabolism of short-chain fatty acids were related
to the adaptive evolution of C600Y500 under antibiotics. The ydiF gene encodes acetate-
CoA transferase, which is a short-chain acyl-CoA involved in the metabolism of short-chain
fatty acids [57]. FliY is an E. coli L-cysteine/L-cystine importer that cooperates with
the L-cysteine exporter EAMA in the L-cysteine/L-cystine shuttle system involved in
oxidative stress resistance [58] and has been reported to affect the growth of E. coli in
LB broth [59]. The gloA gene encodes glyoxalase I involved in the glutathione (GSH)-
dependent glyoxalase I pathway [60], which influences the metabolism of methylglyoxal; a
high concentration of methylglyoxal has been reported to lead to bacterial growth stasis
and even death [61]. The fliY, gloA, and acnA gene mutations in C600Y500, which are
related to different pathways involved in oxidative stress resistance, may be related to the
selection pressure of imipenem on C600Y500. Wang et al. found that imipenem selection
pressure in Acinetobacter baumannii stimulated the strain to produce hydroxyl radicals [62].
Another study found that ampicillin induced the formation of hydroxyl radicals through
oxidative damage, which led to bacterial death [63].

Our results suggest that while IncX3 plasmids are already known to have a low fitness
cost, occasional elevated fitness costs can occur. This suggests that IncX3 plasmids could
have initially been high-fitness-cost plasmids; however, through host–plasmid coevolution,
the IncX3 plasmid became a low-fitness-cost plasmid. Our findings indicate that the host–
plasmid adaptive coevolution process is a trade-off between plasmid and host chromosome
fitness, in which the IncX3 plasmid is an approximate perfect plasmid, and thus the
plasmid and host reach a compromise manifested as host chromosome mutations alleviating
the plasmid-borne fitness cost. S. Typhimurium ATCC 14028 and IncHI2 plasmid pJXP9
plasmid evolutionary analysis also confirmed the plasmid–host trade-off [17]. This study
regarding the mechanism of the fitness cost while carrying the ndm/IncX3 plasmid provides
insight about how bacteria maintenance plasmids. Our findings provide a reasonable
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representation of the evolution of the IncX3 plasmid and provide a better understanding of
its prevalence.

The present study has some limitations. We found that bamA may be a vital factor
compensating for the fitness cost related to specific genetic conflicts. The role of BamA
mutations should be confirmed in complementation experiments. Fitness costs and compen-
satory mechanisms are related to diverse metabolic pathways; thus, in-depth metabolomic
and transcriptomic analyses are needed to provide more specific insights across bacterial
strains and species.

In conclusion, we report that the fitness cost of the ndm/IncX3 plasmid was related
to specific genetic conflicts that were ameliorated by compensatory mutations following
coevolution, specifically through the bamA gene reverse mutation. Our study provides a
clearer understanding of the mechanisms related to the fitness cost of carrying plasmids and
their adaptive evolution with host strains, which is essential for predicting the prevalence
and evolution of plasmid-mediated horizontal gene transfer.
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