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Abstract: Clade 2.3.4.4 H5Nx influenza viruses have further diversified into several subclades. Sub-
clade 2.3.4.4b H5N1 viruses have been widely circulating in wild birds and detected in Europe, Africa,
Asia, and North America since October 2020. In this study, we report the first detection of highly
pathogenic avian influenza H5N1 clade 2.3.4.4b viruses in wild birds and domestic ducks from live
bird markets in Egypt. Phylogenetic analysis revealed that the Egyptian H5N1 virus retained the
genomic composition of Eurasian strains. Mutations in the viral proteins associated with zoonotic
potential and pathogenicity were detected in Egyptian isolates. Egypt is considered a hot spot
check for for the evolution of the influenza virus, so active surveillance of avian influenza viruses in Egypt
updates is warranted.
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1. Introduction

Infectious diseases and pandemics in humans are often caused by pathogens transmit-
ted from non-human animal reservoirs. Influenza A viruses (IAVs) spread among a variety
of different hosts and cross species barriers to create new viral strains. Waterfowl serves

pathogens12010036

as the primary reservoir and can perpetuate many avian influenza virus (AIV) subtypes
Academic Editors: Bonto Faburay via asymptomatic shedding, which plays an important role in the reassortment and trans-
and David Scott McVey mission of influenza subtypes to domestic poultry [1]. In 1996, a highly pathogenic (HP)
Received: 13 November 2022 AIV (H5N1) of Goose/Guangdong/1/96 (Gs/GD) lineage emerged in Chinese poultry
Revised: 15 December 2022 and has been able to cross the species barrier and infect humans, which eventually spread
Accepted: 24 December 2022 to Europe, Africa, and the North American continent via migratory birds [2—4]. Due to
Published: 26 December 2022 the accumulation of genetic mutations and reassortment with multiple influenza subtypes,

Gs/Gd lineage viruses evolved into nine clades and multiple subclades.
The phylogenetic clade 2.3.4.4 of H5Nx viruses has caused extensive outbreaks across
= the globe and has further evolved into eight subclades (2.3.4.4a-2.3.4.4h) [5]. In 2020/2021,
clade 2.3.4.4b H5N1 viruses have spread to many countries in Europe, Africa, Asia, and
America [6], and several infections have been reported in wild or captive mammals as well
as in humans.

Highly pathogenic AIV (H5N1) was initially introduced into Egypt in 2005 and became
Attribution (CC BY) license (https:// endemic in poultry in 2008. Since then, many outbreaks have been reported in domestic
creativecommons.org/ by/ poultry farms. Multiple clades of H5N1 Gs/Gd lineage viruses (Clades 2.2,2.2.1,2.2.1.1,

.org/licenses/by
10/). 2.2.1.1a, and 2.2.1.2) were identified [7]. The 2.3.4.4b H5NS8 virus was first detected in
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Egypt in wild birds in 2016 [8]. Since then, several cases of H5N8 were recorded among
domestic poultry in live bird markets, backyard flocks, and commercial farms in several
governorates in Egypt. Although all Egyptian H5NS8 isolates belong to the clade 2.3.4.4,
several independent introductions of the virus have been detected [9]. The 2.3.4.4b H5N8
replaced the clade 2.2.1 H5N1 viruses that subsequently disappeared. HIN2 AIVs were
widespread in poultry globally and endemic in poultry in many Middle Eastern countries
including Egypt, where HIN2 G1-like lineages were introduced in 2010 [10-12]. Extensive
surveillance of the HIN2 virus has indicated that the virus was endemic in Egyptian
domestic poultry in different geographical regions across the country and reassortant
HI9N?2 viruses were detected [13]. Co-circulation of H5SNx and HIN?2 viruses increases the
probability of genetic reassortment which might enhance the zoonotic potential.

To monitor the influenza viruses with pandemic potential at the human-animal in-
terface, in this study, we identify the genetic and antigenic characteristics of HPAI H5N1
viruses that were introduced into Egypt through active surveillance of AIVs in live bird
markets (LBMs) and migratory wild birds.

2. Materials and Methods
2.1. Sample Collection

Active surveillance of avian influenza viruses has been conducted in Egypt through
collaborative efforts of the Center of Scientific Excellence for Influenza viruses, National
Research Centre, Egypt, and Center of Excellence for Influenza Research and Surveillance
at St. Jude (Memphis, TN, USA) since 2009. In April 2021, we sampled poultry and wild
birds sold in LBMs in Egypt. We collected cloacal and oropharyngeal swab samples, which
were kept chilled in virus transport medium until they reached the laboratory.

2.2. Sample Screening and Virus Isolation

Samples were thoroughly vortexed prior to viral nucleic acid extraction from 200 uL
of viral transport media using either the automated MagNA Pure 96 platform, KingFisher
Flex instrument (Thermo Fisher Scientific, Rocklin, CA, USA) or the QlAamp Viral RNA
Mini kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Nucleic
acid extracts were screened by real-time RT-PCR (rRT-PCR) for the presence of the AIVs
(universal M-gene) [14], and samples were classified as positive with a Ct value < 36. All
positive samples were individually injected into the allantoic cavity of 10-day-old specific
pathogen-free embryonated hens’ eggs, incubated for 48 h post-injection at 37 °C, and then
chilled at 4 °C for 4 h or overnight. Allantoic fluids were then collected and analyzed by the
hemagglutination assay (HA) using 0.5% chicken red blood cells (RBCs). Hemagglutination
assays (HA) of the allantoic fluids from the inoculated eggs were performed to screen for
IAV according to the World Health Organization (WHO) and the World Organization for
Animal Health (OIE) protocols. The positive samples were aliquoted and stored at —80 °C.

2.3. Sequencing and Sequence Analysis

Viral RNA extracted from allantoic fluid was subjected to reverse transcription to syn-
thesize the first cONA strand using a SuperScript IV first-strand synthesis kit (Invitrogen,
Waltham, MA, USA) and the Unil2 influenza primer. Then, Phusion high-fidelity DNA
polymerase (New England Biolabs, Ipswich, MA, USA) and Unil2/13 primers were used
for multiplex PCR of all eight gene segments, and PCR products were purified. Sequencing
library preparation was performed by using Illumina’s Nextera XT DNA Sample Prepara-
tion Kit according to the manufacturer’s protocol. Amplicons were sequenced on I[llumina’s
MiSeq platform (Illumina, San Diego, CA, USA) by using the paired-end approach. The
eight full segments of each H5N8 virus were assembled using CLC Genomics Workbench,
version 21 (CLC Bio, Qiagen, Hilden, Germany).

For sequence and phylogenetic analyses, genome sequences of HSNx were aligned
by MAFFT v4.787 [15], and the maximum likelihood (ML) trees were built from each
segment alignment by FastTree v2.1.11 with GTR+Gamma model [16]. Temporal phylogeny
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was constructed by BEAST v1.10.4 under SRD06 substitution model [17,18], uncorrelated
lognormal relaxed clock model, and Gaussian Markov random field (GMRF) Bayesian
Skyride tree prior [19]. Two independent MCMC chains were run for 100 million iterations
and sampled every 10,000 generations. Convergence was examined by Tracer v1.7.2 [20],
requiring effective sample size (ESS) of over 200. The maximum clade credibility (MCC)
tree was summarized by TreeAnnotator included in the BEAST package.

2.4. Antigenic Analysis

Haemagglutination inhibition (HI) assays were used to antigenically characterize the
isolated viruses. The H5N1 AIVs were tested by using post-infection ferret antiserum raised
against F2015-7-A /duck/England /36254 /2014 (H5N8), F.2017-13-A / chicken/Kumamoto/1-
7/14 (H5NS8), F2016-16- A/gyrfalcon/Washington/410886/2014 (H5NS8), and F.2015-48-
A/Sichuan/26221/2014 (H5N6) of clade 2.3.4.4 viruses which were produced in Center
of Excellence for Influenza Research and Surveillance at St. Jude (Memphis, TN, USA). A
panel of post-infection ferret antisera was treated with receptor-destroying enzyme II and
heat-inactivated at 56 °C for 30 min and diluted to a final concentration of 1:10 in PBS and
0.5% chicken erythrocytes. The HI test was performed according to the WHO protocols [21].

2.5. Nucleotide Sequence Accession Numbers

The nucleotide sequences of the H5N1 AlIVs described in this study were deposited in
the GenBank database with the accession numbers shown in Table S1.

3. Results and Discussion

Through surveillance, we isolated H5N1 viruses from one wild pintail duck and three
domestic Pekin ducks, A/pintail/Egypt/RA198530P /2021 in late 2021 and A /duck/Egypt/
BA20360C /2022, A/duck/Egypt/BA203600P /2022, and A /duck/Egypt/BA203610P /2022
isolates in early 2022. The analysis of the complete HA gene segment showed that the HPAI
H5NT1 viruses belonged to phylogenetic clade 2.3.4.4b. The nucleotide sequence identities
across all eight segments of the four viruses were 99.5-100%. As a representative virus,
A /pintail/Egypt/RA198530P /2021 (H5N1) had a high nucleotide identity (99-100%) to
the HPAI A(H5N1) viruses of clade 2.3.4.4 from Europe and the Middle East (Table 1).
These isolates were identified as HPAI viruses that harbored multiple basic amino acids
(PLRERRRKR/G) within the cleavage site of the HA gene, which is characteristic of high
pathogenicity in chickens.

We combined genome sequences generated in this study with all sequences of H5Nx
viruses available in GenBank and the GISAID database (11). Phylogenetic analysis con-
firmed that the Egyptian A(H5N1) isolates are of clade 2.3.4.4b and clustered with the
recent HPAIV A(H5NT1) isolates from Europe, Africa, and the Middle East (Figure 1). The
clade 2.3.4.4b HA genes of H5 viruses have evolved from a sub-linage under clade 2.3.4.4
which includes several subtypes of H5SN1, H5SN6, and H5N8 viruses. Our isolates detected
in this study clustered with the HA genes of H5N1 viruses contemporarily detected in
Europe and the Middle East.
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Table 1. Comparison of nucleotide sequence identities of the eight influenza A virus (IAV) gene
sequences for the virus isolated in this study (A/pintail/Egypt/RA198530P /2021 (H5N1)) and
nearest virus homologs.

Gene * Accession No. Virus Collection Date % Identity
PB2 EPI12082687 A/Great white pelican/Israel /123/2022 (A /H5N1) 2022-01-12 99
EPI1922962 t A/duck/Saratov/29-08V /2021 (H5N1) 2021-09-30 99
PB1 EPI12085772 A/common kestel/Israel /49-2/2022 (A/H5N1) 2022-01-02 99.63
EPI11922971 A/duck/Saratov/29-11V /2021 (A/H5N1) 2021-09-30 99.96
PA EPI1207623 A/chicken/Israel /88/2022 (A/H5N1) 2022-01-09 99
EPI11922969 A/duck/Saratov/29-11V /2021 (A/H5N1) 2021-09-30 99
i s e ey s w
NP EP12085770 A/common kestel/Israel /49-2/2022 (A/H5N1) 2022-01-02 99
EPI1922966 A/duck/Saratov/29-11V /2021 (A/H5N1) 2021-09-30 99
NA EP12085768 A/common kestel/Israel /49-2/2022 (A/H5N1) 2022-01-02 99
EPI1963383 A/guineafowl/Scotland /054471/2021 (A /H5NT1) 2021-11-01 99
M EPI12085769 A/common kestel/Israel /49-2/2022 (A/H5N1) 2022-01-02 100
EPI11922960 A/duck/Saratov/29-08V /2021 (A/H5N1) 2021-09-30 100
NS EPI12008127 A/black-headed_gull/England /388256/2022 (A /H5N1) 2022-02-03 99
EPI1938848 A/barnacle goose/Sweden/ 2021-11-01 99

SVA211111570376/FB004496 /2021 (A /H5N1)

* PB2, basic polymerase 2; PB1, basic polymerase 1; PA, acidic polymerase; HA, hemagglutinin; NP, nucle-
oprotein; NA, neuraminidase; MP, matrix protein; NS, nonstructural protein. t Nearest virus homologs to
A/pintail/Egypt/RA198530P /2021 (H5N1) isolated before of detection time.

The time to the most recent common ancestor (tMRCA) was calculated to explain the
emergence of the H5N1 viruses. Taking the intersection of the 95% highest posterior density
(HPD) intervals of the tMRCA (Figure 2) suggests that the viruses from Europe, Africa,
and the Middle East share a common ancestor of unknown origin that emerged around
July 2020 (95%HPD: April 2020-October 2020). We also found an amino acid deletion at
position 133 in the HA protein (H3 numbering) in all our isolates, a feature common with
clade 2.3.4.4 isolated from humans (Table 2), and associated with the alteration of the H5
HA receptor binding pocket [22]. The analysis of the NA gene of H5N1 viruses revealed
that none of these viruses displayed oseltamivir resistance markers E119, H275, R293, and
N295 (N1 numbering) (Table 2). Deletions were also present in both neuraminidase (NA)
(an 11-aa deletion in the stalk region) and nonstructural protein 1 (NS1) (deletion from
residues 80-84; Table 2), which are associated with high pathogenicity in avian hosts [23].
These analyses suggest that the newly detected H5N1 viruses in Egypt may be able to infect
and cause disease in mammals.
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Figure 1. Phylogenetic tree of H5N1 viruses sequenced in this study, in addition to other publicly
available H5NXx clade 2.3.4.4 from GenBank and GISAID. Red dots represent the H5N1 viruses
sequenced in this study. Topological support values (SH-like support) of selected nodes are displayed.
To the right, a schematic representation of viral clustering of each gene segment (from left to right: PB2,
PB1, polymerase acidic, haemagglutinin, nucleoprotein, neuraminidase, matrix, and non-structural)
is shown. Segment colors indicate origin of the segment. Within each cluster, a unified color pattern
indicates homogeneity and a different color pattern indicates reassortment.
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Figure 2. Time to the most recent common ancestor of H5N1 viruses sequenced in this study;

maximum clade credibility temporal phylogeny of the hemagglutinin (HA) gene. The H5N1 viruses

from Egypt are represented by red dots. Posterior clade probabilities are indicated by the sizes of the

internal node circles. Shaded bars represent the 95% highest probability distribution for the age of

each node with posterior clade probability > 0.3.

Table 2. Assessment of molecular amino acid markers for zoonotic potential of the influenza A(H5N1)

virus detected in Egypt.

Viral A/Pintail/Egypt/
. Amino Acid RA198530P/2021 Functional Relevance References
Protein
(H5N1)
E627K E Mammalian host adaptation [24]
D70IN D Increasg po'lym.erase acthle and viral [25]
replication in mammalian cells
PB2 L89V \Y%
Enhanced polymerase activity,
/ 26
G309D D increased virulence in mice [26]
T339K K
A588V A Mammalian host adaptation [27]
PB1-F2 N66S S Increases v1r'ul'ence, rephcat'lon efficiency, [28,29]
and the antiviral response in mammals
V100A \ Contributed to the virulence and [30]
PA S409N S mammalian adaptation
A515T T Increejlsed polymerase activity, 1n~creased [31]
virulence in mammals and birds
E198D E Enhanced mammalian receptor binding [32]
Q234L Q Preferential binding to human [33,34]
HA G236S G Sialic acid x2-6 receptor !
I155T T Enhanced mammalian receptor binding [35]
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Table 2. Cont.
Viral A/Pintail/Egypt/
. Amino Acid RA198530P/2021 Functional Relevance References
Protein
(H5N1)

E119V E
H275Y H

NA Oseltamivir resistance [36,37]
R293K R
N295S N
L26P L
V27A/1 \%

M2 A30T A Reduced susceptibility to amantadine [38—40]
S31IN S
G34E G
P42S S

Increased virulence and

NSl D92E D pathogenicity in mammals [41-43]

V149A A

The receptor binding sites in the viral HA gene of the four viruses possess the conser-
vative amino acid residues (including 190E, 220R, 225G, 226Q), and 228G; H3 numbering),
which indicated that these viruses would preferentially bind to the «-2,3-sialic acid linkage,
the avian-like receptors.

The antigenic properties of H5N1 viruses were also assessed using ferret antisera
against the World Health Organization’s candidate clade 2.3.4.4c H5NS and clade 2.3.4.4a
H5NG6 vaccine viruses including A/ gyrfalcon/Washington /41088-6 /2014 (H5N8), A /duck/
England /36254/2014 (H5N8), A/chicken/Japanese Kumamoto/1-7/2014 (H5NS), and
A /Sichuan/26221/2014 (H5N6) (Table 3). The presence of E and D at positions 627 and
701 in polymerase basic (PB) 2 in viruses sequenced in this study also confirms a typical
characteristic of avian influenza viruses (Table 2). PB2 amino acid substitutions L89V,
E249G, G309D, and T339M enhance the replication and increased virulence of the H5N1
virus in mice [26,44], and the substitution L89V, G309D, and T339K were found in all isolates
of our Egypt H5N1 viruses. PB1-F1 has been shown to contribute to viral pathogenicity,
as well as to enhance inflammation, cytotoxicity, and viral polymerase activity [42,45]. All
Egypt H5N1 isolates in this study expressed PB1-F2 of 90 aa and had the N665 mutation,
which increases virulence, replication efficiency, and antiviral response in mice.
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Table 3. Antigenic analysis of H5N1 influenza A viruses from Egypt by hemagglutination

inhibition assay.
F.2015-7 * F.2017-13 F.2016-16 F.2015-48
A/duck/England/ A /chicken/ A/Gyrfalcon/ A/Sichuan/
36254/2014 Kumamoto/1-7/14 WA /41088/2014 26221/2014
A/duck/England/36254/2014 320 2560 1280 2560
A /chicken/Kumamoto/1-7/14 40 80 <40 <40
A/Gyrfalcon/WA /41088 /2014 160 640 320 320
A/Sichuan/26221/2014 80 80 <40 80
A /Pintail/Egypt/RA198530P /2021 320 640 640 40
A/duck/Egypt/BA20360C /2022 160 640 320 160
A/duck/Egypt/BA20361C /2022 640 1280 1280 1280
A/duck/Egypt/BA203610P /2022 160 640 320 160

* Polyclonal antibodies were produced in ferrets. Homologous titers are bold and underlined.

4. Conclusions

Several introductions of clade 2.3.4.4b viruses have been seen in Egypt. Those intro-
ductions are typically through wild migratory birds but eventually spill over to poultry.
Some live bird markets in Northern Egypt sell both poultry and trapped wild birds for
human consumption. Such an interface provides ample opportunity for cross-species virus
spill-over. The viruses we detected were from such markets where the initial virus was
detected in a migratory bird and then in domestic poultry. No human cases of clade 2.3.4.4b
H5Nx infections were reported in Egypt but the mutations detected in analyzed viruses
suggest that human infections can occur. A vigilant surveillance system at the human-wild
bird-poultry interface is necessary.

Supplementary Materials: The following supporting information can be downloaded at: https:
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