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Abstract: The formulation of mathematical models using differential equations has become crucial in
predicting the evolution of viral diseases in a population in order to take preventive and curative
measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan,
Hubei Province, China, which causes a severe and potentially fatal respiratory syndrome. Since then,
it has been declared a pandemic by the World Health Organization and has spread around the globe.
A reaction–diffusion system is a mathematical model that describes the evolution of a phenomenon
subjected to two processes: a reaction process, in which different substances are transformed, and
a diffusion process, which causes their distribution in space. This article provides a mathematical
study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the
COVID-19 pandemic using the bias of reaction–diffusion equations. Both local and global asymptotic
stability conditions for the equilibria were determined using a Lyapunov function, and the nature
of the stability was determined using the Routh–Hurwitz criterion. Furthermore, we consider the
conditions for the existence and uniqueness of the model solution and show the spatial distribution
of the model compartments when the basic reproduction rate R0 < 1 and R0 > 1. Thereafter, we
conducted a sensitivity analysis to determine the most sensitive parameters in the proposed model.
We demonstrate the model’s effectiveness by performing numerical simulations and investigating the
impact of vaccination, together with the significance of spatial distribution parameters in the spread
of COVID-19. The findings indicate that reducing contact with an infected person and increasing
the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden
of COVID-19 in the population. Therefore, we offer to the public health policymakers a better
understanding of COVID-19 management.

Keywords: COVID-19; SEIRV epidemic model; reaction–diffusion equation; basic reproduction
number; vaccination; spatial distribution; infectious disease; pandemic; public health
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1. Introduction

The use of differential equations, especially partial differential equations, has become
very interesting to predict many evolutionary problems, in particular, the evolution of some
biological phenomena. They are essential in fields such as aeronautical simulation, finance,
weather prediction, and disease forecasting [1]. One of the most important classes of Partial
Differential Equations is the class of reaction–diffusion equations. A reaction–diffusion sys-
tem is a mathematical model that describes the evolution of a phenomenon subjected to two
processes: a reaction process, in which different substances are transformed, and a diffusion
process, which causes their distribution in space. Many research papers in epidemiology
have proposed a modelling approach using real datasets from affected countries and have
identified different characteristics controlled according to various parameters of the epi-
demic and to the effects of intervention strategies in the different countries concerned,
depending on their situation. Ian Cooper and co-authors studied an SIR model of COVID-
19 in diverse communities in Asia and North America [2]. In their study, they did not
consider migration and death of individuals, so the population size remained constant dur-
ing the study. In order to compensate for this deficiency, Ref. [3] conducted a study where
the population size is not constant and the death rates of all compartments are the same.
This led to more general results. Ref. [3] also studied the factors determining the spread of
COVID-19 and used statistical modelling to propose strategies to prevent future accelerated
viral infection similar to that observed in COVID-19. Furthermore, in [4], the authors
presented a novel Susceptible–Infectious–Goneanewsusceptible–Recovered (SIGR) model
to study the influence of vaccination at the sub-population level in the spread of COVID-
19 pandemic, while in [5], authors proposed Susceptible–Exposed-Infectious–Recovered
(SEIR) epidemic model with a convex incidence rate incorporated with a time delay in
order to study the influence of delay in the dynamical system.

Other studies (such as [6–12]) have proposed spatial epidemic models. In these studies,
reaction–diffusion equations were used to explain both the temporal and spatial evolution
of the spread of diseases. Most of them use a continuous diffusion approach, but some
others, such as Mimura’s team’s article, adopt the spatial SEIR model, in which individuals
move randomly on a two-dimensional lattice with periodic boundary conditions [7]. Many
authors used this class of equations to understand the behaviour of hepatitis C virus. The re-
action term is the process of change of individuals involved in the interactions between
species in the absence of diffusion, and the diffusion term describes the spatial movement
of individuals [13–16]. In this paper, Ref. [17] studied a model of an SI diffusion reaction in
which a pathogen is active in a population with two subgroups: healthy individuals who
are susceptible to infection and already infected individuals who can transmit the disease
to healthy individuals. To generalize this result to a heterogeneous population, Ref. [18,19]
studied a reaction–diffusion Susceptible–Vaccinated–Infected–Recovered (SEIRV) model in
a spatially heterogeneous environment with Dirichlet boundary conditions.

Furthermore, in [20], the authors developed a reaction–diffusion epidemic model on
human mobility networks to characterize the spatio-temporal propagation of the COVID-
19 pandemic, and a novel time-dependent function was incorporated into the model
to describe the effects of human interventions. In [21], the authors studied an optimal
control problem for a generalized multi-group reaction–diffusion SIR epidemic model,
with heterogeneous nonlinear incidence rates, which is an extension of the study of an
optimal control problem to a large class of reaction–diffusion multigroup epidemic models.
In [22], the research carried out by the authors explored a novel SEIR-A reaction–diffusion
COVID-19 epidemic system with direct and aerosol transmission. The effects of three
strategies, including vaccination, receiving treatment, and wearing a mask, were evaluated
numerically by authors. The findings of their research suggest that the three strategies
can effectively control the peak and final scale of infection and shorten the duration of the
COVID-19 epidemic.

The present work aims to carry out a mathematical study of a model of infection of
COVID-19 by the bias of reaction–diffusion equations. In this current work, we want to
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make some additions to the work carried out earlier by researchers, by considering the
exposed population (not still infectious) and the diffusion phenomena and by showing the
existence, the uniqueness, the positiveness, and the boundedness of the solutions of the
SEIRV diffusion reaction model considered. A study on the existence and nature of the
equilibrium states is carried out according to the basic reproduction numberR0 whether it
is less than or greater than 1. We were also able to find a Lyapunov function to investigate
the global stability of the disease-free and endemic equilibria. For the confirmation of these
properties, a numerical simulation is presented at the end of the study with Python software.

The remainder of the article is as follows: in Section 2, we present the mathematical
model we formulated alongside parameters and their biological signification. In Section 3,
an extensive mathematical analysis is presented to understand the dynamical behaviour
of the system. In Section 4, we present a numerical simulation and sensitivity analysis of
R0 in order to identify parameters sensitive to the disease spread, and lastly in Sections 5
and 6, we present some perspective, discussion and key conclusions derived from our
research approach to the spatial distribution of COVID-19 outbreak with vaccination using
diffusion equation.

2. Mathematical Model

Let us consider the following model:

∂S(x, t)
∂t

= d1∆S + Λ− dSS− β1SI − λS,
∂E(x, t)

∂t
= d2∆E + β1SI + βVI − σE− dEE

∂I(x, t)
∂t

= d3∆I + σE− dI I − θ I,
∂R(x, t)

∂t
= d4∆R + γV − dRR + θ I,

∂V(x, t)
∂t

= d5∆V + λS− βVI − dVV − γV.

(1)

where S, E, I, R, and V are the population of susceptible, exposed, infected, recovered (and
definitely immunized), and vaccinated at the position x at time t, respectively. The sus-
ceptible population reproduces at a constant rate Λ and is infected at a rate β1SI, where
β1 is the contact rate per day between the susceptible and infected populations and dS,
dE, dI , dR, and dV are, respectively, the mortality rates of susceptible, exposed, infected,
recovered, and vaccinated people in the studied region. The parameter λ is the vaccination
rate against COVID-19 in this population. The recovered population is produced from the
infected at a rate θ I. We assume that the population moves in the region Ω according to
Fick’s law [1], and di’s being the diffusion coefficients and ∆ the Laplacian operator. In this
work, we consider the system (1) with initial conditions as follows

S(x, 0) = ϕ1(x), E(x, 0) = ϕ2(x), I(x, 0) = ϕ3(x), V(x, 0) = ϕ4(x), R(x, 0) = ϕ5(x) x ∈ Ω, (2)

where ϕi ∈ C2(Ω) ∩ C(Ω) and homogeneous Neumann boundary conditions

∂S
∂ν

=
∂E
∂ν

=
∂I
∂ν

=
∂R
∂ν

=
∂V
∂ν

= 0 x ∈ ∂Ω, t > 0, (3)

where Ω is an open bounded subset of Rn with smooth boundary ∂Ω, ν being the unit
outer normal to ∂Ω. The interaction graph of the system (1) is presented in Figure 1 while
the signification of parameters is presented in Table 1.
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Figure 1. Interaction graph of the system (1).

Table 1. Parameters and their signification.

Parameters Biological Signification of Parameters

Λ Number of incoming susceptible per day

dS Mortality rate of susceptible per day

β1 Contact between S and I

β Contact between V and I

λ Vaccination rate

dE Mortality rate of exposed population per day

σ Infection rate

dI Mortality rate of infected population per day

dR Mortality rate of recovered population per day

θ Recovery rate

dV Mortality rate of vaccinated population per day

3. Dynamical Behaviour of the System and Qualitative Analysis

In this section, we study the dynamical behaviour of system (1), such as the exis-
tence and uniqueness of positive solutions and existence of equilibria, and their basic
reproduction number, local stability, and global stability.

3.1. Existence, Uniqueness, and Positivity

Definition 1. Let (Ŝ, Ê, Î, V̂, R̂) and (S̃, Ẽ, Ĩ, Ṽ, R̃) in C(Ω× [0, ∞)) ∩ C1,2(Ω× [0, ∞)) are a
pair of upper and lower solution to the problem (1), if S̃ ≤ Ŝ, Ẽ ≤ Ê, Ĩ ≤ Î, Ṽ ≤ V̂, R̃ ≤ R̂ in
Ω× [0, ∞), and the following differential inequalities hold:

∂S̃
∂t ≤ d1∆S̃ + Λ− β1S̃ Ĩ − (dS + λ)S̃ ; ∂Ŝ

∂t ≥ d1∆Ŝ + Λ− β1Ŝ Î − (dS + λ)Ŝ
∂Ẽ
∂t ≤ d2∆Ẽ + β1S̃ Ĩ + βṼ Ĩ − (σ + dE)Ẽ ; ∂Ê

∂t ≥ d2∆Ê + β1Ŝ Î + βV̂ Î − (σ + dE)Ê,
∂ Ĩ
∂t ≤ d3∆ Ĩ + σẼ− (dI + θ) Ĩ ; ∂ Î

∂t ≥ d3∆ Î + σÊ− (dI + θ) Î,
∂R̃
∂t ≤ d4∆R̃ + γ Ĩ − dRR̃ + θ Ĩ ; ∂R̂

∂t ≥ d4∆R̂ + γ Î − dRR̂ + θ Î,
∂Ṽ
∂t ≤ d5∆R̃ + λS̃− βṼ Ĩ − (dV + γ)Ṽ ; ∂V̂

∂t ≥ d5∆R̂ + λŜ− βV̂ Î − (dV + γ)V̂.
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for (x, t) ∈ Ω× (0, ∞) and

∂S̃
∂ν ≤ 0 ≤ ∂Ŝ

∂ν , ∂Ẽ
∂t ≤ 0 ≤ ∂Ê

∂ν , ∂ Ĩ
∂ν ≤ 0 ≤ ∂ Î

∂ν , ∂Ṽ
∂ν ≤ 0 ≤ ∂V̂

∂t , ∂R̃
∂ν ≤ 0 ≤ ∂R̂

∂ν , for (x, t) ∈ ∂Ω× (0, ∞)

S̃(x, t) ≤ ϕ1(x, t) ≤ Ŝ(x, t), Ẽ(x, t) ≤ ϕ2(x, t) ≤ Ê(x, t), Ĩ(x, t) ≤ ϕ3(x, t) ≤ Î(x, t),
Ṽ(x, t) ≤ ϕ4(x, t) ≤ V̂(x, t), R̃(x, t) ≤ ϕ5(x, t) ≤ R̂(x, t), for (x, t) ∈ Ω× (0, ∞).

It is easy to see that 0 = (0, 0, 0, 0, 0) and K = (K1, K2, K3, K4, K5) are a pair of coupled
lower-upper solutions to problem (1), where

K1 = max{Λ
d , ‖ϕ1‖C(Ω,R)}

K2 = max{Λ
d , ‖ϕ2‖C(Ω,R)}

K3 = max{ σΛ
d2 , ‖ϕ3‖C(Ω,R)}

K4 = max{ dγΛ+γΛθ
d3 , ‖ϕ4‖C(Ω,R)}

K5 = max{ λΛ
d2 , ‖ϕ5‖C(Ω,R)},

and d = min{dS +λ; σ+ dE; dI + θ; dR}. Using the following lemma provided by Redinger [13],
we obtain the existence and uniqueness of the solution.

Lemma 1. Let Û and Ũ be a pair of upper and lower solutions for problem (1) and suppose that
the initial functions ϕi (i = 1, 2 . . . , 5) are continuous in Ω. Then problem (1) has exactly one
regular solution U(x, t) = (S(x, t), E(x, t), I(x, t), V(x, t), R(x, t)) satisfying Ũ ≤ U ≤ Û in
Ω× [0, ∞).

Hence, 0 ≤ S(x, t) ≤ K1, 0 ≤ E(x, t) ≤ K2, 0 ≤ I(x, t) ≤ K3, 0 ≤ V(x, t) ≤ K4,
0 ≤ R(x, t) ≤ K5. Furthermore, also, by the maximum principle, if ϕi(x) 6= 0, we have
S(x, t) > 0, E(x, t) > 0, I(x, t) > 0, V(x, t) > 0, R(x, t) > 0 for all t > 0, x ∈ Ω.

3.2. Equilibria and Basic Reproduction Number
3.2.1. Disease-Free Equilibrium and Basic Reproduction Number

It is easy to verify that system (1) always has a disease-free equilibrium given by
(S0, 0, 0, 0, V0) where

S0 = Λ
dS+λ

V0 = λ
dV+γ

Λ
dS+λ .

In order to find the basic reproduction numberR0 of the system (1), we obtain the following
linear system at disease-free equilibrium E0:

∂E(x, t)
∂t

= d2∆E + β1SI + βVI − σE− dEE, x ∈ Ω, t > 0
∂I(x, t)

∂t
= d3∆I + σE− dI I − θ I, x ∈ Ω, t > 0

∂R(x, t)
∂t

= d4∆R + γV − dRR + θ I, x ∈ Ω, t > 0
∂E
∂ν

=
∂I
∂ν

=
∂R
∂ν

= 0 x ∈ ∂Ω, t > 0.

(4)

By following the idea of Wendi Wang [23], consider the vectors F and V given by

F =

β1SI + β VI
σ E

γV + θ I

, V =

σE + dE E
dI I + θ I

dRR

.
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where F is the input rate vector and V the transfer rate vector for each compartment.
In order to find the next generation matrix K, we have

JF (E0) =

0 Λ
dS+λ

(
β1 +

βλ
dV+γ

)
0

σ 0 0
0 θ 0

, JV(E0) =

σ + dE 0
0 dI + θ 0
0 0 dR

.

Therefore, K is given by

K = JF (E0)JV−1(E0) =

 0 β1S0+βV0
dI+θ 0

σ
σ+dE

0 0
0 0 0

.

Finally, the basic reproduction number is given by

R0 = ρ(K) =
σΛ(β1(dV + γ) + βλ)

(dS + λ)(dV + γ)(σ + dE)(dI + θ)
. (5)

3.2.2. Existence and Uniqueness of the Endemic Equilibrium

For the second equilibrium, we are looking for E∗ = (S∗, E∗, I∗, R∗, V∗) all different
from 0 such that

Λ− dSS− β1SI − λS = 0

β1SI + βVI − σE− dEE = 0

σE− (dI + θ)I = 0

γV − dRR + θ I = 0

λS− βVI − dVV − γV = 0.

(6)

From these equations, we come out with

S = fS(I) = Λ
dS+λ+β1 I

E = fE(I) = I(dI+θ)
σ

V = fV(I) = λ fS(I)
βI+dV+γ

R = fR(I) = γ fV(I)+θ I
dR

.

(7)

By using (6) and (7), we will prove the existence of solution of equation

G(I) = β1 I fS(I) + βI fV(I)− (σ + dE) fE(I) = 0. (8)

It is easy to see that G(0) = 0 and lim
I→+∞

G(I) = −∞. Therefore, the previous equation has

a solution if G′(0) > 0. However, we have

G′(0) = β1 fS(0) + βh(0)− (σ + dE)g′(0) (9)

=
β1Λ

dS + λ
+

βλΛ
(dV + γ)(dS + λ)

− (σ + dE)(dI + θ)

σ
. (10)

It follows that G′(0) > 0 if and only if

0 <
β1Λ

dS + λ
+

βλΛ
(dV + γ)(dS + λ)

− (σ + dE)(dI + θ)

σ
.

This means
(σ+dE)(dI+θ)

σ < β1Λ
dS+λ + βλΛ

(dV+γ)(dS+λ)

1 < Λσ(β1(dV+γ)+βλ)
(σ+dE)(dI+θ)(dS+λ)(dV+γ)

≡ R0.
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To prove uniqueness, we are looking for a solution I 6= 0 which verifies (8). Since I 6= 0, it
can divided through, and then using (7), we obtain

h(I) =
β1Λ

dS + λ + β1 I
+

βλΛ
(dS + λ + β1 I)(βI + dV + γ)

− (σ + dE)(dI + θ)

σ
,

and it follows that

h′(I) = −
β2

1Λ
(dS + λ + β1 I)2 −

βΛλ(β1(βI + dV + γ) + β(dS + λ + β1 I))
(dS + λ + β1 I)2(βI + dV + γ)2 < 0. (11)

Finally, the function G is injective. Therefore, if I1 and I2 are two solutions of (8), then
G(I1) = G(I2) = 0 and by injectivity of G, we have I1 = I2. This allows us to conclude the
uniqueness of the endemic equilibrium. We come out with this following theorem.

Theorem 1. If R0 > 1, then the infected equilibrium E∗ = (S∗, E∗, I∗, R∗, V∗) exists and
is unique.

3.3. Stability of Equilibrium

Let 0 = µ0 < µi < µi+1 for i = 1, 2, . . . be the eigenvalues of −∆ on Ω with homoge-
neous Neumann boundary conditions, E(µi) is the space of eigenfunctions corresponding
to µi’s and {φij : j = 1, 2, . . . , dim E(µi)} an orthogonal basis of E(µi). Then, X = [C1(Ω)]3

can be decomposed as

X =
∞⊕

i=1

Xi, Xi =
dim E(µi)⊕

i=1

Xij

where Xij = {cφij : c ∈ R3}. Then we can prove the local stability of equilibrium as
in [2,24].

Theorem 2. If R0 < 1, then the disease-free equilibrium E0 of system (1) is locally asymptoti-
cally stable.

Proof. The linearisation of system (1) at E0 can be expressed by

∂Z(x, t)
∂t

= D∆Z(x, t) +AZ(x, t),

where ∆ is the Jacobian matrix of system (1) and A is the residual non-linear operator
Z = (S, E, I, R, V), D = diag(d1, d2, d3, d4, d5), and if J is the Jacobian matrix of system (1),
we have:

−J +D∆ =


−(dS + λ)− βI 0 −β1S 0 0

β I −(σ + dE) β1S + βV 0 βI
0 σ −(dI + θ) 0 0
0 0 θ −dR γ
λ 0 −βV 0 −βI − (dI + γ).

 (12)

Therefore, the characteristic equation of -J at E0 is

(−dR − µid4 − x)(−(dS + λ)− µid1 − x)(−(dI + γ)− µid3 − x)P(x), (13)

where

P(x) = x2 + (σ + dE + dI + θ + µi(d2 + d5))x + (σ + dE)(dI + θ)− σ(β1S0 + βV0).
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It is obvious that (13) has as eigenvalues

x1 = −dR − µid4, x2 = −(dS + λ)− µid1, x3 = −(dI + γ)− µid3.

The two other ones are x4 and x5 such that

x4 + x5 = −(σ + dE + dI + θ + µi(d2 + d5))
x4x5 = (σ + dE)(dI + θ)− σ(β1S0 + βV0).

They are negative if and only if x4x5 > 0; that is,

0 < (σ + dE)(dI + θ)− σ(β1S0 + βV0). (14)

By using the values of S0 and V0 given by (6), Equation (14) is equivalent to

σ(β1S0 + βV0) < (σ + dE)(dI + θ).

This implies
σΛ

dS + λ

(
βλ

dV + γ
+ β1

)
< (σ + dE)(dI + θ),

and it follows that σΛ
dS+λ

β1(dV+γ)+βλ
dV+γ < (σ + dE)(dI + θ). Finally, we come out with

R0 ≡
σΛ(β1(dV + γ) + βλ)

(dS + λ)(dV + γ)(σ + dE)(dI + θ)
< 1,

and the result follows.

Theorem 3. IfR0 > 1, then the endemic equilibrium E∗ of system (1) is locally asymptotically stable.

Proof. The linearization of system (1) at E∗ can be expressed by

∂Z(x, t)
∂t

= D∆Z(x, t) + BZ(x, t),

where

−J +D∆ =


−(dS + λ + β1 I∗) 0 −β1S∗ 0 0

β1 I∗ −(σ + dE) β1S∗ + βV∗ 0 βI∗

0 σ −(dI + θ) 0 0
0 0 θ −dR γ
λ 0 −βV∗ 0 −(βI∗ + d∗I + γ)

,

and D = (d1, d2, d3, d4, d5).
Thus, the characteristic equation at E∗ is

(−dR − µid4 − x)
(

x4 + λ3x3 + λ2x2 + λ1x + λ0

)
= 0, (15)

where

λ3 = ((dS + λ + β1 I∗) + µid1 + (βI∗ + dV + γ) + µid5 + (σ + dE) + µid2 + (dI + θ) + µid3) > 0
λ2 = −(dS + λ + β1 I∗) + µid1(βI∗ + dV + γ + µid5)σβ1S∗ + βV∗(σ + dE + µid2)(dI + θ + µid3) > 0
λ1 = (σβ1S∗ + βV∗)(1 + (dS + λ + β1 I∗) + µid1 + (βI∗ + dV + γ) + µid5) + ββ1σI∗(S∗ −V∗)
λ0 = (dS + λ + β1 I∗ + µid1)(βI∗ + dV + γ + µid5)(σ + dE + µid2)(dI + θ + µid3)

−ββ1σI∗(λS∗ − (βI∗ + dV + γ + µid5)S∗ −V∗(dS + λ + β1 I∗ + µid1)+)
−σ(βI∗ + dV + γ + µid5)β1S∗ + βV∗(A + 1).
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Hence, λ0, λ2, λ3 > 0 and λ1(λ3λ2 − λ1) > λ2
3λ0 wheneverR0 > 1. Then, using the Routh–

Hurwitz criterion, we claim that all eigenvalues of (15) have negative real parts. Thus,
the endemic equilibrium E∗ of system (1) is locally asymptotically stable when R0 > 1.
This completes the proof.

3.4. Global Stability of the Disease-Free and Endemic Equilibria by Means of a Lyapunov Function

In this section, we investigate the global stability of the disease-free equilibrium
E0 for system (1). We consider a Lyapunov functional based on the Volterra function
Φ(x) = x− 1− ln x. Clearly, Φ(x) ≥ 0 for all x > 0 and the equality holds if and only if
x = 1. In the presence of diffusion, the aim is to show that every solution of system (1)
with a positive initial value that is different from the equilibrium point will converge to
the equilibrium.

Theorem 4. IfR0 < 1, then the disease-free equilibrium E0 of system (1) is globally asymptotically
stable in the feasible region Γ. IfR0 > 1, then E0 is unstable.

Proof. Define a Lyapunov function

L(t) =
∫

Ω
L1(x, t)dx,

where
L1(x, t) = aE(x, t) + bI(x, t)

and a, b are positive constants to be determined later. Then, along with the solutions of
system (1), we have

∂L1
∂t = a ∂E

∂t + b ∂I
∂t

= a(β1SI + βVI − σE− dEE) + b(σE− (dI + θ)I) + ad2∆E + bd3∆ I
≤ a(β1S0 I + βV0 I − σE− dEE) + b(σE− (dI + θ)I) + ad2∆E + bd3∆ I
= I(aβ1S0 + aβV0 − b(dI + θ)) + (bσ− a(σ + dE))E + ad2∆E + bd3∆I

By choosing a = σ and b = σ + dE, we obtain

∂L1

∂t
≤ (dI + θ)(σ + dE)(R0 − 1)I + ad2∆E + bd3∆I.

Using Green’s formula and the Neumann boundary conditions in (3), we obtain∫
Ω

∆Idx =
∫

Ω
∆Edx = 0.

Using the above conditions, we have

∂L
∂t
≤
∫

Ω
((dI + θ)(σ + dE)(R0 − 1)I)dx. (16)

Therefore, ∂L
∂t ≤ 0 whenever R0 < 1. Furthermore, ∂L

∂t = 0 if and only if I = 0. It
follows that the largest invariant subset {(S, E, I, V, R) such that L̇ = 0} when R0 < 1
is reduced to the singleton E0. By LaSalle’s Invariance Principle [25], the infection-free
equilibrium of system (1) is globally asymptotically stable when R0 < 1 and if R0 > 1,
then E0 is unstable.

Theorem 5. Consider a Lyapunov function

H(t) =
∫

Ω
H1(x, t)dx,
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with

H1(x, t) = S∗Φ
(

S
S∗

)
+ I∗Φ

(
I
I∗

)
+ R∗Φ

(
R
R∗

)
.

where
Φ(x) = x− 1− ln x

Then,H is non-negative and is strictly minimized at the unique equilibrium (S∗, E∗, I∗, R∗, V∗); i.e.,
it is a valid Lyapunov function. Hence, E∗ = (S∗, E∗, I∗, R∗, V∗) is globally asymptotically stable.

Proof. According to (1), we have

∂H(x,t)
∂t =

(
1− S∗

S

)
∂S
∂t +

(
1− I∗

I

)
∂I
∂t +

(
1− R∗

R

)
∂R
∂t

=
(

1− S∗
S

)
(d1∆S + Λ− dSS− β1SI − λS) +

(
1− I∗

I

)
(d3∆I + σE− dI I − θ I)

+
(

1− R∗
R

)
(d4∆R + γV − dRR + θ I)

= − (S∗−S)2(dS+λ)
S +

(
1− S∗

S

)
d1∆S + β1S∗ I∗

(
1− SI

S∗ I∗ −
S∗
S + I

I∗

)
+ σ

(I−I∗)(E−E∗)
I − (dI+θ)(I−I∗)2

I +
(

1− I∗
I

)
d3∆I +

(
1− R∗

R

)
∂R
∂t

= − (S∗−S)2(dS+λ)
S +

(
1− S∗

S

)
d1∆S− β1S∗ I∗

(
Φ
(

SI
S∗ I∗

)
+ Φ

(
S∗
S

)
−Φ

(
I
I∗

))
+

(
1− I∗

I

)
d3∆I − σE∗ I∗

(
Φ
(

I
I∗

)
+ Φ

(
E
E∗

)
−Φ

(
EI

E∗ I∗

))
− dR

R (R∗ − R)2 − R∗ I∗
(

Φ
(

I
I∗

)
+ Φ

(
R
R∗

)
−Φ

(
RI

R∗ I∗

))
+
(

1− R∗
R

)
d4∆R.

Using Green’s formula and the Neumann boundary conditions in (3), we obtain∫
Ω

(
1− S∗

S

)
d1∆Sdx = −d1

∫
Ω
∇
(

1− S∗

S

)
∇Sdx = −d1

∫
Ω

S∗

S2 |∇S|2dx ≤ 0,

∫
Ω

(
1− V∗

V

)
d1∆Vdx = −d1

∫
Ω
∇
(

1− V∗

V

)
∇Vdx = −d1

∫
Ω

V∗

V2 |∇V|2dx ≤ 0,

∫
Ω

(
1− R∗

R

)
d1∆Rdx = −d1

∫
Ω
∇
(

1− R∗

R

)
∇Rdx = −d1

∫
Ω

R∗

R2 |∇R|2dx ≤ 0.

Using the above conditions, we conclude that

dH(t)
dt

≤
∫

Ω

[
− (S∗ − S)2(dS + λ)

S
− dR

R
(R∗ − R)2 − (dI + θ)(I − I∗)2

I

]
. (17)

Furthermore, we have dH(t)
dt = 0 only at steady-state E∗ = (S∗, E∗, I∗, R∗, V∗). Therefore,

by Lyapunov’s direct method, the steady state solution E∗ is globally asymptotically
stable.

4. Numerical Simulation and Sensitivity Analysis ofR0

4.1. Numerical Simulation
4.1.1. Experiment 1: Numerical Simulation WhenR0 < 1

Here, n = 1 (spatial dimension). We choose

(d1, d2, d3, d4, d5) = (1000, 900, 20, 900, 1200)m2day−1. (18)

With the values in Table 2 and simulation, we obtain R0 = 2.94−6 < 1 and at the
disease-free equilibrium, we show S0 to be 1800 and V0 to be 8000. Figure 2 displays the
solution curves of the model where they tend to the stability of the disease-free equilibrium
point with different initial histories. Hence, numerical simulations of Experiment 1 confirm
the qualitative results.
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Table 2. Values of the parameters whenR0 < 1.

Parameters Values References

Λ 350 Estimated

dS 0.03324588 [26]

β1 0.0000051 [26]

λ 0.000091 [26]

β 0.00001611 [26]

σ 17/100 [26]

dE 0.003324588 [26]

dI 0.06184588 [26]

θ 0.1109289 [26]

dR 0.03324588 [26]

dV 0.003324588 [26]

γ 0.15 Estimated

Figure 2. Spatial and temporal distribution whenR0 < 1.

4.1.2. Experiment 2: Numerical Simulation WhenR0 > 1

Here, n = 1 (spatial dimension), and we use the same diffusion coefficient as presented
in experiment 1.

With the values in Table 3, the endemic equilibrium value is E∗ = (4000, 1.25, 6000,
3500, 105), andR0 = 2.05 > 1. The result is presented in Figure 3 and is consistent with the
stability of endemic equilibrium presented in the qualitative analysis.
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Table 3. Values of the parameters whenR0 > 1.

Parameters Values References

Λ 15, 000 Estimated

dS 0.003324588 [26]

β1 0.0000051 [26]

λ 17/100 Estimated

β 0.00000091 [27]

σ 0.00001611 Estimated

dE 0.003324588 [26]

dI 0.06184588 [26]

θ 0.1109289 [26]

dR 0.03324588 [26]

dV 0.003324588 [26]

γ 0.95 [26]

Figure 3. Spatial and temporal distribution whenR0 > 1.

4.1.3. Experiment 3: Numerical Simulation WhenR0 < 1 and λ = 0

In this section, all parameters used are the same as the ones used for experiment 1,
except that in this case λ = 0. The result of the simulation is presented in Figure 4.
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Figure 4. Effect of λ = 0 on the spatial and temporal distribution whenR0 < 1.

4.1.4. Experiment 4: Numerical Simulation WhenR0 > 1 and λ = 0

In this section, all parameters used are the same as those used in experiment 2, except
that in this case λ = 0. The result of the simulation is presented in Figure 5.

Figure 5. Effect of λ = 0 on the spatial and temporal distribution whenR0 > 1.
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4.2. Local Sensitivity ofR0

To know the effect of the parameters in system (1) on the control reproduction number
R0 , we perform sensitivity analysis on R0. This analysis is investigated analytically by
computing ∂R0

∂Z , where Z = (σ, Λ, β1, β, dS, λ, dV , γ, dI , θ, dE). The sensitivity ofR0 to each
parameter is as follows:

∂R0
∂σ = Λ(β1(dV+γ)+βλ)

(dS+λ)(dV+γ)(dI+θ)
dE

(σ+dE)2 > 0
∂R0
∂Λ = σ(β1(dV+γ)+βλ)

(dS+λ)(dV+γ)(σ+dE)(dI+θ)
> 0

∂R0
∂β1

= σΛ(dV+γ)
(dS+λ)(dV+γ)(σ+dE)(dI+θ)

> 0
∂R0
∂β = σΛλ

(dS+λ)(dV+γ)(σ+dE)(dI+θ)
> 0

∂R0
∂dS

= −Λ(β1(dV+γ)+βλ)
(dV+γ)(dI+θ)

1
(dS+λ)2 < 0

∂R0
∂λ = σΛ(βdS−β1(dV+γ))

(dV+γ)(σ+dE)(dI+θ)
∂R0
∂dV

= − σΛ
(dS+λ)(σ+dE)(dI+θ)

βλ

(dV+γ)2 < 0

∂R0
∂γ = − σΛ(β1(dV+γ)+βλ)

(dS+λ)(dI+θ)(σ+dE)
1

(dV+γ)2 < 0
∂R0
∂dI

= − σΛ(β1(dV+γ)+βλ)
(dS+λ)(dV+γ)(σ+dE)

1
(dI+θ)2 < 0

∂R0
∂θ = − σΛ(β1(dV+γ)+βλ)

(dS+λ)(dV+γ)(σ+dE)
1

(dI+θ)2 < 0
∂R0
∂dE

= − σΛ(β1(dV+γ)+βλ)
(dS+λ)(dV+γ)(dI+θ)

1
(dE+σ)2 < 0.

We have the plot of R0 in terms of their different parameters in Figure 6. The values of
other parameters used for plotting while fixing the parameter that is plotted againstR0 for
each plot are taken from Table 2.

The sensitivity index technique will help to measure the most sensitive parameters
for the fundamental reproductive numberR0. The fundamental reproduction number’s
normalised sensitivity index is provided by SR0

Z = ∂R0
∂Z . ZR0

, where Z is a parameter, as
defined earlier. We obtain

SR0
σ = dE/(dE + σ),

SR0
Λ = 1,

SR0
β1

=
β1(dV + γ)

β1(dV + γ) + βλ
,

SR0
β =

βλ

β1(dV + γ) + βλ
,

SR0
dS

= −dS/(dS + λ),

SR0
λ =

λ(−β1(dV + γ)− βλ + β(dS + λ))

(dS + λ)(β1(dV + γ) + βλ)
,

SR0
dV

= − dV βλ

(dV + γ)(β1(dV + γ) + βλ)
,

SR0
γ = − γβλ

(dV + γ)(β1(dV + γ) + βλ)
,

SR0
dI

= −dI/(dI + θ),

SR0
θ = −θ/(dI + θ),

SR0
dE

= −dE/(dE + σ).

The sensitivity indices obtained by using the parameters values in Table 2 are presented
in Table 4. Four of the sensitivity indices are positive, while the others are negative, as can
be seen in Table 4. We notice a difference in sensitivity between the parameters’ contact
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between V and I (β) and contact between S and I (β1). This difference is minimal for β
because the vaccinated population has developed some kind of immune system when in
contact with the infected population, which is due to the fact that significant proportion of
the population have been vaccinated, and maximal for β1 because the parameter determines
the spread of the disease during contact between the susceptible population and the infected
population, hence the high sensitivity of this parameter. We conclude that increasing the
recovery rate and vaccination rate will aid in decreasing theR0, which affirms the effect
of vaccination, and by extension, it is important to encourage a significant chunk of the
population to get vaccinated, which will help to combat the spread of the virus.

(a)R0 = f (β) (b)R0 = f (β1)

(c)R0 = f (dE) (d)R0 = f (dI)

(e)R0 = f (dS) (f)R0 = f (dV)

(g)R0 = f (γ) (h)R0 = f (λ)

Figure 6. Cont.
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(i)R0 = f (Λ) (j)R0 = f (σ)

(k)R0 = f (θ)

Figure 6. Sensitivity analysis ofR0 for the system (1).

Table 4. The sensitivity index ofR0 with respect to the parameters Z of the system (1).

Parameter Sensitivity Index

σ 0.019
Λ 1
β1 0.99
β 0.00187597
dS −0.99727
λ −0.00085543
dV −0.00004068
γ −0.00183557
dI −0.3579566
θ −0.642
dE −0.019

5. Discussion

To demonstrate the influence of the spatial diffusion in the model, we used the method
presented in [28] by using implicit–explicit finite differences, where the Laplacian term
is discretised implicitly (for numerical stability, allowing for a relatively large time step-
ping), whereas nonlinear terms are handled explicitly. We assume Λ = 0 and the diffu-
sion term d1∆ = d2∆ = 0.00005. Furthermore, we assume S0(x) = 1.3 + cos(3πx) and
I0 = 0.01 exp(−1000x) with E0 = 0, V0 = 1, I0 = 0 and I0(1) = 0.001 in order to have a
wave-like or exponential propagation of the disease. When varying β, we chose β1 = 1 and
λ = 0.7 and when varying λ, we chose β = β1 = 1. Other parameters were chosen from
Table 2.

For the sensitivity analysis, we discovered that some of the parameters, i.e., Λ, β1, β,
and σ, cause R0 to increase, while other parameters, corresponding to dS, dE, θ, dI , dV , λ
and γ, cause it to decrease.

When R0 < 1, all compartments tend to zero except for the susceptible population,
which increases with rate depending on Λ. Moreover, the extinction of other compartments
is very fast (less than 50 days). For R0 > 1, the susceptible and vaccinated populations
tend towards zero, and the majority of the population becomes infected. WheneverR0 < 1,
the behaviour of the disease in the population does not change much with λ. However,
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when R0 > 1, if we increase λ, the infected population will disappear, and the majority
of the population becomes vaccinated. Hence, we cannot take λ < 0 since the parameters
are positive.

Figure 3 shows both (i) the influence of a nonzero Λ flow of entrants into the susceptible
population: the asymptotic value of S(x, ∞) is not zero, contrary to what we observe in
Figure 7, where Λ = 0 and S(x, ∞) = 0, and (ii) the influence of the vaccination parameter
λ, which, when it increases, increases the ratio V(x, ∞)/S(x, ∞) (it goes from the value
4.4 to the value 25 between Figure 2, where λ = 9.1× 10−5 and Λ = 350, and Figure 3,
where λ = 0.17 and Λ = 15, 000). When λ = 0 (Figures 4 and 5), we can see the influence
of R0 : S(x, ∞) = 0, if R0 > 1, even if Λ is high, equal to 15,000 (Figure 5), and S(x, t)
remains increasing with t ifR0 < 1, even if Λ is small, equal to 350 (Figure 4).

(a) (b)

(c) (d)
Figure 7. Simulation of an infection’s exponential phase propagating through a non-homogeneous
population for the system (1), for different values of β and λ, as indicated.

Figure 7a,b shows the influence of the parameter β and that of the diffusion: when
β goes from 0.1 to 0.2, the asymptotic values S(x, ∞) = 0 and V(x, ∞) = 0 are reached
later, and the initial shape of S(x, 0) is kept longer. Figure 7c,d shows the influence of
the parameter λ and that of the diffusion: when λ goes from 0.1 to 0.2, the asymptotic
values S(x, ∞) = 0 and V(x, ∞) = 0 are also reached later, and the initial shape of S(x, 0)
is kept longer. If λ is small, that is, less than 0.5, the trend of S(x, 300) will be close to
linear. This shows, as expected, that we must wait a long time to obtain the asymptote for
high values of β and λ , probably 500 or more time steps. Furthermore, for increasing λ,
the disappearance of S would correspond to the appearance of a high asymptotic value of
the evolution of V.

If the epidemic process starts with a non-homogeneous spatial initial condition for
β1S0(x, t), i.e., for the initial flow of exposed individuals resulting from a not spatially
uniform contact rate per day between the susceptible and infected population, then Figure 7
shows the evolution of the susceptible and exposed sub-populations until their asymptotic
state is reached. The susceptible individuals disappear progressively depending on both
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the exposition rate β1 and the vaccination rate λ, while their number seems to remain
constant for high values of λ.

6. Conclusions

In this paper, we have been able to develop a mathematical modelling of COVID-19
using diffusion equations built from some previous works to construct a more realistic
model of COVID-19. Using this model, we were able to prove the existence, uniqueness,
and local stability of constant stationary solutions. Another mathematical perspective we
contributed was to build an appropriate Lyapunov function for these constant solutions in
order to prove the global stability of the model. Then, we performed sensitivity analysis of
R0 in order to understand the dynamics of each parameter, which gives a better insight
into how to control the evolution of the disease in the population, which is of interest to
policy makers and public health experts. The numerical analysis showed agreement with
the results of the qualitative analysis. Moreover, the proof of existence and stability of
non-spatially homogeneous solutions and application of the model to time series data from
different countries will be the subject of a future investigation.
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