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Abstract: Grazing systems have great potential to promote animal welfare by allowing animals to
express natural behaviours, but they also present risks to the animals. Diseases caused by gastroin-
testinal nematodes are some of the most important causes of poor ruminant health and welfare
in grazing systems and cause important economic losses. Reduced growth, health, reproduction
and fitness, and negative affective states that indicate suffering are some of the negative effects on
welfare in animals infected by gastrointestinal nematode parasitism. Conventional forms of control
are based on anthelmintics, but their growing inefficiency due to resistance to many drugs, their
potential for contamination of soil and products, and negative public opinion indicate an urgency to
seek alternatives. We can learn to deal with these challenges by observing biological aspects of the
parasite and the host’s behaviour to develop managements that have a multidimensional view that
vary in time and space. Improving animal welfare in the context of the parasitic challenge in grazing
systems should be seen as a priority to ensure the sustainability of livestock production. Among
the measures to control gastrointestinal nematodes and increase animal welfare in grazing systems
are the management and decontamination of pastures, offering multispecies pastures, and grazing
strategies such as co-grazing with other species that have different grazing behaviours, rotational
grazing with short grazing periods, and improved nutrition. Genetic selection to improve herd
or flock parasite resistance to gastrointestinal nematode infection may also be incorporated into a
holistic control plan, aiming at a substantial reduction in the use of anthelmintics and endectocides to
make grazing systems more sustainable.
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1. Introduction

Parasitism is an infectious disease caused by external agents such as ticks, flies, lice,
helminths, and protozoa. Together with predators, parasitism is a main threat to herbivore
survival and reproduction in the natural environment [1,2]. Additionally, gastrointesti-
nal parasites can affect animal production, health and wellbeing by causing discomfort,
pain, suffering, subclinical and clinical disease, and, in extreme and/or prolonged cases,
death [3,4], outcomes that lead to significant economic losses in grazing systems [5,6].

The control of gastrointestinal parasitism in many grazing farming systems depends on
a complex interaction of human, animal and environmental factors. Parasite management
can be done through the use of anthelmintics, grazing management and other preventive
procedures, or a combination of all. The question is whether it is possible to achieve
efficient control with anthelmintics while maintaining animal health and wellbeing. The
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use of chemical drugs to control parasitism has become increasingly inefficient, due to
anthelmintic resistance developed by most parasite species in herbivores throughout the
world [7–10]. For example, a survey of parasite control practices in Norway found that
80% of sheep producers used anthelmintics without knowing the parasitological status
of the herd [11]. Only 11% performed diagnostic tests to support their decision-making
for the use of anthelmintics. These findings are alarming and are a sample of what occurs
in other parts of the world; i.e., control of parasites based on the assessment of faecal
egg counts (FEC) is not adopted by producers as a routine practice [12,13]. The use of
helminth diagnostic tests should be integrated in economic evaluation frameworks for
improved decision-making for cattle [14]. Perhaps, if it were, the use of anthelmintics could
be reduced and consequently the problem of anthelmintic resistance minimised, as well as
residues in animal products and in the environment reduced [15].

Most anthelmintics used in livestock are classified as having high impact on the
agroecosystems, depending on how they are used. The maximum residue excretion period
is more transient in sheep than in cattle manure, but low levels of excretion may continue
for long periods, extending the sub-lethal effects of drugs on the environment [16]. The
degradation of faeces is essential to favour the recycling of nutrients in the soil and to
reduce pathogens, including the nematodes’ third larval stage (L3) [17,18]. However, the
intensive use of anthelmintics may affect the fauna of the dung that are responsible for
its degradation in the environment, given that some molecules, especially of the lactone
group, have been proven to be highly toxic for dung beetles [19]. An important fact is
that antiparasitic chemicals such as macrocyclic lactones are excreted through urine and
faeces, interfering with the survival and reproduction of pollinators, earthworms and
beetles, and in the decomposition of faeces [16,20–22]. Therefore, the frequent use of
endectocides increases the negative effects on the pasture and reduces microorganisms
with biological control potential. Animal manure is one of the main ways in which these
veterinary compounds spread through ecosystems [16,20,23,24]. Once in the environment,
they can be transported and distributed in water or soil [25,26]. These compounds can
remain in the environment, causing direct or indirect impacts on non-target organisms,
such as soil invertebrates, which are known to play an important role in transforming
faecal material and maintaining soil quality, being the main drivers in providing various
ecosystem services [16,20,27].

Given the problems caused by resistance to anthelmintics and concerns with residues
in the environment and in the products [28–30], new control methods are sought. In-
deed, the preventive use of anthelmintics has been banned in agroecological systems,
where helminths are considered a major concern [31,32]. These concerns also justify the
growing consumer demand for more natural and animal-friendly systems throughout the
world [28,33,34]. The existing connections between humans, animals and the environment
are indisputable, and the effects of pesticides are cumulative at the different trophic levels.
The One Health approach shows that it is necessary to establish agricultural models with
fewer negative externalities and that promote the well-being of all living beings [35].

Additionally, animal welfare is increasingly recognized as an essential component
of the social sustainability of animal production systems, with many arguing that, for
production systems to be socially sustainable, societal values must be integrated [36–38].
Fraser et al. [39] argued that, regarding animal welfare, these values can be captured
in three aspects of the animals: good physical health and biological functioning, the
ability to live reasonably natural lives consistent with their evolutionary history, and
positive affective or psychological states. Consumers’ preferences for outdoor, organic
and grazing systems [28,33,40] are in part associated with perceptions that pasture is a
more natural environment and that it results in less stressed or happier animals, as well
as healthier animal food products [41]. However, although grazing systems have a great
potential to promote welfare, domestic animals face risks, including lack of or poor access
to food, shade and water, grazing in uneven or rocky areas, exposure to extreme climatic
conditions, predation, and parasitism [2,42,43]. Nevertheless, citizens expect animals not
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only to be raised outdoors, but also healthy and well cared-for in these environments
and systems [44,45]. Furthermore, consumers who value systems with healthy animals
also tend to oppose production systems that rely heavily on pesticides, antibiotics, and
hormones [28,33,46]. In this context, aspects of grazing systems that may improve animal
welfare gain relevance, among them the management of parasitism.

Thus, grazing systems should aim to have animals with low worm burdens posed by
gastrointestinal parasite infections. Moreover, the focus of parasitism management must be
on prevention, and treatments must be as natural as possible. The development of such
management tools may benefit from knowledge of some aspects of the biology of the host
and the parasite, the behaviours of herbivores grazing in pastures containing parasites in
natural environments and those managed by humans, and the complex interplay among
the host, the parasites, and the environment. Here we aim to discuss gastrointestinal
nematode parasitism as a health and welfare challenge for grazing animals and review
the animal-plant-parasite interactions that may help develop alternative ways to manage
parasitism and to reduce the use of anthelmintics drugs.

2. Effects of Gastrointestinal Nematode Infections on Biological Functioning,
Behaviour, and Affective States

Ingestion of L3 through food is the most common route of endoparasite infections
in grazing ruminants. The eggs of adult parasites are released into the faeces and the
larvae that develop in the dung migrate to the grass, where they are ingested as L3. The
pathophysiology of the infection is directly related to the parasites involved and the organs
affected, with greater or lesser impacts on animal health and well-being [32]. In the case
of gastrointestinal nematodes, histopathological [47,48], biochemical, haematological, and
immunological [49–52] changes may follow. These changes can affect the health, appetite,
body growth, body condition and digestive and reproductive functions, influence wool
production, and cause pain [4,48,53,54].

Parasites of the genus Haemonchus can cause severe clinical conditions with serious
anaemia, especially in young animals and pregnant and lactating females, a significant
challenge in sheep production systems [50,55,56]. Helminths such as Trichostrongylus
colubriformis can cause enteritis with erosion in the duodenal mucosa epithelium [48],
while Haemonchus contortus can produce gastritis; both can cause inappetence in small
ruminants. Enteritis causes pain and colic due to the mucosa infection; the local response
of the inflammatory mediators involves redness, heat swelling, and pain [57]. The exact
causes of the lack of appetite are unknown, but some hypotheses have been raised, such
as the role of abdominal pain at the site of infection, caused by the action of parasites in
the gastrointestinal tract [58]; regulation of appetite through hormones such as gastrin and
cholecystokinin, which could be in altered amounts be due to the presence of parasites [59];
changes in amino acid availability; changes in digestion flow and pH; or direct neural
effects on the central nervous system. Increased protein and amino acid loss via the
gastrointestinal tract will reduce the amount available for other tissues [60]. Infection
induces protein deficiency by increasing the demand for amino acids in the alimentary
tract while reducing their supply through depression of appetite [61].

When gastrointestinal parasite infections are chronic and subclinical, symptoms such
as loss in appetite, apathy, prostration and submandibular oedema may not be observed [49].
In this type of condition, infected animals may manifest a reduction in productivity, feed
conversion, and growth rate. The disease may become clinically evident when the worm
burden increases or nutritional status is poor [56,62]. However, subclinical infections in
domestic and wild ruminants may also be expressed in the form of depressed growth
and reproduction, with consequences for their survival, though these effects are often
overlooked [63,64]. In young animals, subclinical parasitism can also influence bone
metabolism through changes in phosphorus and calcium absorption and retention, leading
to reduced bone growth [65,66] and significant reduction in weight gain and wool and milk
production [5,67]. The high nutrient demand for the development and maintenance of the



Pathogens 2023, 12, 531 4 of 17

immune response and the repair of damaged tissues during GIN infections also contributes
to the low performance of infected animals [48]. An examination of the immunological
response during subclinical haemonchosis in goats indicates a predominance of the Th2
immune response [64], which has also been observed in cattle resistant to Cooperia, with
the gene expression of both TH2 cytokines (IL-4 and IL-13) being detected [52]. Some
of the effects of parasitism discussed above may be described as sickness behaviour, a
set of nonspecific symptoms that include fever, weakness, inappetence, and malaise [68].
Anorexia or loss of appetite, however, is modulated by social factors [69], which may
be a reason it is not always manifested in parasitized animals. Animals with subclinical
infection may not show visible changes in behaviour, especially as prey species are unlikely
to show pronounced behavioural responses to pain unless injuries are advanced [70]. But
subtle changes in locomotor activity can be detected [54,71–73]. Changes in behaviour in
parasitized sheep have been shown in the form of a reduction in the complexity of activity
patterns [74], changes in lying time, or changes in demeanour, detected using Qualitative
Behaviour Assessment [75].

3. Interactions between Nutrition and Gastrointestinal Nematodes and Animal
Strategies to Cope with Parasite Infections

The interaction between parasitism and nutrition can be considered from two in-
terrelated aspects: first, the influence of parasites on host metabolism, and second, the
effect of host nutrition on nematode populations and the ability of the host to resist the
pathophysiological effects of infection [76].

Reduced voluntary consumption, a feature of gastrointestinal helminthic infections,
may vary from decrease in consumption in cases of chronic infection to complete anorexia
in cases of acute disease [76,77]. The reduction in voluntary consumption is probably the
most important factor contributing to the reduction in productivity among parasitized
animals [66,78]. In moderate or severe infections, food intake may be reduced by up to 20%
or more [58]. Altered protein metabolism is the main effect of gastrointestinal parasites in
the animal organism, as it causes a deviation of the protein synthesis of muscles and bones
in order to repair damage to the intestinal wall, produce mucus, and replace blood and
plasma losses [79].

In addition to providing nutrients for maintenance, growth and reproduction, nutrition
of the host can affect the infectious ability of pathogens, detrimentally alter the environment
in which they reside, and improve host resistance to pathogens [57,80]. Several experiments
have shown the benefits of protein supplementation as regards resistance to gastrointestinal
nematode infections in small ruminants [81], in periparturient ewes [82–86], in cattle [87,88]
and in goats [89,90]. Moreover, nutritional strategies with metabolizable protein supple-
mentation and anti-parasitic plant secondary metabolites showed a potential to additively
improve host resilience and reduce reliance on anthelmintics [91]. Despite the well-known
increased demand for protein in parasitized animals, lambs prioritised the ingestion of
energy-dense over protein-dense foods or medicinal condensed tannins when challenged
by gastrointestinal parasitism [92].

Grazing animals are always making trade-offs between acquiring their nutritional
needs and maintaining their health [93]. The choice of feeding strategy may be altered
by the animal’s internal environment, making it less hospitable to parasites [94], and the
preference for a given food is influenced primarily by infection level and diet composition,
alongside genetic [95] and environmental factors [96–99]. Animal strategies to prevent and
combat parasitism involve parasite avoidance, controlling the level of exposure to infected
sites (in order to stimulate the animals’ immune system); alteration of behaviour (especially
in sick animals); selection of resistant sexual partners; and protecting and assisting sick
animals and offspring [100,101]. As herbivores develop strategies to combat the risk of
parasitism or fight parasites, they must make complex daily decisions on foraging to
maximise the intake rate and nutritional quality, while minimising the risks of parasitic
infections or overcoming them. In summary, when coping with parasitic infection through
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foraging, herbivores focus on three strategies: preventing infection, resisting parasitism, or
self-medicating [93].

The ability to avoid helminthic infections is an important prevention strategy for
animal survival, and it is a condition passed on to the offspring by natural selection. Food
avoidance and preferences are influenced by species, breed, and physiological stage of
the animal or the parasite [95,102–104], characteristics of the sward [105,106], and envi-
ronmental characteristics [96–98,107–109]. Ruminants select forage or preferred grazing
patches based on the odour, taste [110], colour, or canopy height [2,111,112]. The preferred
patches have high nutritional quality, but are usually closer to faeces and potentially very
contaminated with L3. This poses a conflict to the animal between obtaining better nu-
trition and avoiding faeces [111,113]. The decision in favour of these nutrient-rich sites
can improve animal nutrition and consequently immune response, while posing a risk of
parasite contact and infection. Therefore, the animals are always making trade-offs between
meeting nutritional needs or maintaining health.

Herbivore trade-off theory is based on the creation of mosaics in the pastures, which
become heterogeneous landscapes [93,104]. The avoidance of certain grazing patches makes
them taller and more attractive, generating a mosaic of more and less nutritious areas. These
nourishing patches represent a motivational situation for the animal between meeting their
nutritional needs and risking contamination, or avoiding the parasites [93,113]. In both
cases the animal is seeking to prevent or defend itself from endoparasitism. However, few
studies have highlighted how these choices vary in time and space [114]. The trade-off
value varies over time within the forage-plant development cycle. Animals may take the
risk of eating young plants and reject areas with older plants with lower nutritional quality
as they continue their phenological cycle.

During the evolutionary cycle of the parasite, host herbivores are challenged to make
choices between parasitic (or predatory) risk and good nutrition or investing in their
nutrition and immune response [2,115]. The first trade-off situation is posed to the animal
with the contact between the animal and the faeces-contaminated plant. Sheep are known to
be able to make complex grazing decisions (nutrition versus faecal avoidance) based on their
physiological state [111,116,117]. This dilemma, proposed in the late 1990s [102,117], was
the starting point for understanding the behaviour of the grazing animals and parasitism
in the pasture environment. After approximately two decades, understanding the route of
transmission in the light of foraging theory based on ingestive-digestive decisions, on the
diverse diets at temporal and spatial variation, on parasites’ characteristics and on animal
behaviour and welfare, brought a new view regarding the control of parasites and diseases
more naturally and effectively [103,116,118]. According to Lozano [101], herbivores utilise
several methods for preventing parasitism, including avoiding foods that may be sources
of parasite infections, selecting diets that can improve immune response, and engaging
in self-medication by ingesting foods with specific antiparasitic compounds that can kill
and/or expel established parasites.

With parasites that have rapid pasture development times, faecal avoidance decreases
the risk of infection, as the host is less likely to graze in places with a high concentration of
a very active infective larval population [116]. This is the case, for example, of the cycle of
the endoparasite H. contortus. Animals that already have mature worms will lay eggs on
day 1, and these eggs may hatch and have L3 on day 4 [119]. Thus, contact with fresher
faeces may pose a threat to the animal.

Once the animal is parasitized, it may either alter its ingestive behaviour or develop
anorexia in order to impede larval entry into the body [111]. In the first case, the ani-
mal chooses what to eat to improve its nutritional state in order to mount an immune
response [57,120], or to self-medicate [121,122]. When adopting the strategy of avoidance
behaviour, sick animals seek to reduce ingestion of L3 by reducing consumption or by
being more selective [111]. Faecal avoidance behaviour and anorexia are most beneficial
when the host has limited ability to mount an immune response against parasites, as is the
case of young animals, and when there are parasites that have rapid development [116].
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Grazing time and the amount of forage consumed within 24 h are reduced in parasitized
ruminants. It is important to note that the avoidance phenomenon may be compromised in
intensive grazing systems such as strip grazing.

Once the animal is sick, it can use the self-medication tool. Self-medicating behaviour
has been described in humans, primates, and wild herbivorous animals [123,124], as well
as in domesticated animals [122,125]. Self-medication of ruminants with parasitic tannin-
containing foods has been observed experimentally and in nature [92,122,125–129]. Foods
containing secondary compounds, especially condensed tannins, have positive effects on
reducing endoparasitism [127,130–132]. For example, more parasitized lambs ingested
tannin-supplemented feed than non-parasitized lambs [133]. In addition to the anthelmintic
effect, tannins also have positive effects on the intestinal microbiota. However, it is worth
noting that high levels of condensed tannins in the diet (greater than 50 g/kg DM) can
cause adverse effects, such as reduced voluntary food intake [134].

Therefore, food choice studies can help better understand animal grazing behaviour
and resistance to parasitism and provide tools for animal management strategies for more
sustainable breeding. Solutions must include grazing management to reduce pasture larval
infectivity and tactics to avoid excessive exposure to anthelmintics, including strategically
targeted nutritional regimens to promote an effective immune response and minimise
the pathogenic effects of worms. Understanding animal strategies and self-medication
behaviour in grazing livestock may reduce the use of anthelmintics in animals and, conse-
quently, their residues in animal products and the environment, i.e., promoting One Health
and preserving the agroecosystems.

4. Resistance to Gastrointestinal Nematodes

The use of livestock animals resistant to nematodes may help reduce the welfare and
environmental problems discussed earlier. Host resistance to infection is largely mediated by
the involvement of the immune system. Hyperplasia of mast cells, eosinophil and globular
mucosa and blood leukocytes, antibodies, cytokines, increased mucus production and the
presence of inhibitory substances in mucus have been consistently observed in relation to the
development of immunity to gastrointestinal nematodes in ruminants [47,50–52,135]. The
association between different immunoglobulin isotypes, including IgA, IgE, IgG, and IgM, and
resistance to GIN has been extensively studied in sheep. A systematic review demonstrated
the findings on immunoglobulin response to GIN in the literature published up to 2019 and
discussed the potential to use immunoglobulins as biomarkers [136]. In cattle, some studies
have shown that immunoglobulins are markers for nematode resistance [51,52,135].

Resistance to infections may be associated with the host breed or characteristics of
the individual. Resistant sheep and cattle have adopted avoidance strategies that lead
to nutritional disadvantages [95,112]. Genetically resistant sheep and cattle can avoid
parasites, either by choosing grazing sites or by becoming more selective [104,112,137].
Sheep of the breed Scottish Greyface that bear twins risk more in trade-off situations
between obtaining better nutrition and avoiding parasite ingestion [113]. Ewes become
more susceptible to infections by gastrointestinal nematodes in the peripartum period,
releasing a large number of eggs in the faeces. Parasite resistance also influence the intensity
of this phenomenon, often referred to as periparturient immunity relaxation [55,138].

5. Some Environmental and Grazing Management Effects on the Parasite-Host Cycle
in the Pasture

Environmental factors such as external climatic conditions including radiation, hu-
midity and temperature, faeces dispersal, pasture characteristics, and grazing systems may
assist or impair the host animal in parasitic control. Early studies done on simple grazing
systems focused on avoidance and external factors that could affect avoidance, such as
dung quantity and age [102]. Later models, studied to estimate with greater complexity
the influence of grazing systems on parasitic risk, proposed the need to include variables
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related to edaphoclimatic factors, as well as interactions between parasites and the grazing
pattern of the animal [63].

The development and spread of anthelmintic resistance in the main sheep-producing
regions has led to integrated management approaches of parasites with non-chemotherapeutic
strategies such as grazing management. The success of such programs is dependent on a de-
tailed understanding of environmental influences on the free-living stages of the nematode
life cycle and ecology [139,140]. Strategies for utilising pastures with low L3 contamination
entail the use of stubble from pastures and hay or implementing alternate grazing with
species that do not harbour the primary parasites of sheep or cattle. In agroecological
production systems, it is possible to include areas for the production of food for human
consumption in pastoral areas. This can help interrupt the cycle of gastrointestinal nema-
todes by avoiding the cultivation of foods that may serve as sources of parasite infections.
These areas can also be used to cultivate vegetables and then be returned to pasture in a
rotational system [141]. Additionally, including areas for grain production in integrated
crop-livestock systems can further aid in reducing pasture contamination and preventing
infections by gastrointestinal nematodes [141,142].

Diverse environmental conditions (dryness, rainfall, humidity, temperature, UV ra-
diation) in each geographical region will determine a different dynamic of the free-living
stages of gastrointestinal nematodes. Calves in the humid Pampa in Argentina are placed
on the best pastures in order to obtain a good body mass development; however, these
pastures are the source of infection for the recently weaned animals, resulting from the
high L3 pasture contamination [143].

Climatic conditions may interfere with the grazing behaviour of the host animal [144],
as well as with the parasite cycle [121,145,146]. For example, less intense solar radiation
may increase the distance that lambs forage from the dung [127,137]. Lambs’ avoidance
of dung can occur when radiation strikes a pasture with poor forage cover, making the
faeces-repellent odour stronger [147]. Ingestive behaviour may also affect parasitism by
changing the intensity and timing of parasitic incidence in the pasture and promoting
alteration of the canopy architecture and floristic landscape [116].

Solar radiation may also cause L3 desiccation [105], which occurs, for example, in
rotational systems during the paddock-resting period, when there is a lowering of forage
height (natural or cropped) and greater exposure of the L3 to solar radiation [112,137].
Larval desiccation will result in a decreased pasture infectivity and, consequently, a lower-
than-normal parasite burden inside the host.

In pasture systems, all contact between the herbivore and the contaminated pasture
represent a chance of nematode infection [108]. Thus, less pasture contact, with the fodder
in a good nutritional state, may favour the decision for better nutrition with low risk
of contamination in the trade-off imposed on pasture systems. Since natural pastures
have more forage species, they create heterogeneous environments in time and space
and, therefore, there is greater nonlinear interrelational complexity between the heteroge-
neous environment and time. The heterogeneous architecture of the plant composition
creates microclimates and varying nutrient distribution, which plays major roles in the
selection of diet by herbivores [107,148]. These natural landscapes are composed of smaller
inter-hierarchically and dynamically interconnected spaces forming mosaics [149,150].
Mixed pastures with two or more forage species (multispecies) resemble heterogeneous
natural pastures.

Animal behaviour responses in heterogeneous pastures are quite varied, depending
on the host animal species and the spatial and temporal disposition of the faeces [114]. In
heterogeneous pastures, the vegetation and faeces are not homogeneously distributed in
either the natural or any pastoral system [151] or in domestic environments [152]. Addition-
ally, the forage and legume species may also influence the ingestion of L3 by animals, which
offers a potential tool for reducing contact with the parasite. Garcia-Méndez, et al. [153]
compared the vertical and horizontal migration of L3 of gastrointestinal nematodes in sheep
across three legume species: white clover (Trifolium repens), red clover (T. pratense), and



Pathogens 2023, 12, 531 8 of 17

bird’s-foot-trefoil (Lotus corniculatus), finding that smaller numbers of L3 were recovered
from the upper stratum of the third plant species. Others [154] showed that, depending on
the season, the forage species may be either a limiting or facilitating factor of L3 vertical
migration. During the autumn season, which is marked by low temperatures and high
humidity, L3 migration was facilitated by aruana grass, but hindered by brachiaria and
signal grass. Additionally, L3 migration was observed to be longer under high humidity
conditions, as moisture can permeate the grass stems and hairs. In contrast, under low
humidity conditions, such as in spring, moisture only permeates through the stems. In
such instances, aruana and brachiaria facilitated the migration of L3 [154]. The spread of
anthelmintic resistance in the main sheep-producing regions has led to the development
of an approach for the integrated management of parasites with non-chemotherapeutic
strategies, such as grazing management. The success of such programs relies on a compre-
hensive understanding of the environmental factors that affect the free-living stages of the
nematode life cycle [140].

The type of grazing system may exert an important interference in various ways
with the parasite cycle and the oral transmission route. Rotational pasture systems are
well accepted and used in tropical pastures, and their benefits in managing gastrointesti-
nal nematodes are well recognized [112,155,156]. When rotational grazing systems have
multi-species grazing and variable paddock-resting periods (e.g., the Voisin System) [157],
the relationships between the heterogeneous environment and time are even more dy-
namic [158–160]. However, the characteristics of so-called rotational systems vary greatly
among different countries and studies [108,109,112,156,161,162]. In a temperate climate,
rotational systems are mainly performed by not using summer/fall pastures reserved for
young animals on the winter return (turnout) [109,156]. In Australia, agriculturalists use
moderate fertilisation, moderate grazing pressure, an average of five days’ occupation time
and longer rest periods [156]. In the United States, continuous systems, rotating with a fixed
return period and rotating with a variable period based on forage height are used [161]. The
survival of L3 on pastures in Argentina was determined by their ability to adapt to environ-
mental conditions. The longest surviving Ostertagia, Cooperia and Trichostrongylus genera
recorded were those adapted to the cold, temperate climate characteristic of the Pampa
region. The pasture infectivity seems greatly determined by rainfall with high L3 levels
in autumn–winter that decreases towards summer [143]. Similar results were obtained
in summer in a coastal area in southern Brazil [112,153]. Another rotational system, cited
in Sweden, consisted of separate 2 ha-paddocks with a grazing period of approximately
20 weeks [163,164]. Some of the rotational systems in Brazil and New Zealand are based on
the Voisin ecological principles, which focus on short occupancy time (24 to 48 h) and a
variable resting period [157].

Despite their differences, rotational systems have shown good control of gastrointesti-
nal parasites [165] and, in general, the reason is linked to the host–parasite cycle modifi-
cation [156] and to the host immune system [95,104,112,116]. However, when the resting
period from grazing is insufficient, pasture contamination does not reduce significantly,
as L3 can survive for several weeks or even several months in the environment [166–168].
Long spelling periods are required for pasture to become free of contamination by L3
of H. contortus in the humid subtropical climate of São Paulo state, Brazil, where pasture
contamination persists for up to 294 days in spring and 182 days in summer [168]. In
commercial farm conditions, prior planning involving greater diversification of the area
with other plant crops can provide areas with lower risk and promote environmental
sustainability. The use of nutritional tools and grazing in areas of lower contamination
is feasible.

The shorter grazing period offered in some rotational systems, where there is a high
stocking rate followed by zero grazing, may be one of the main mechanisms of parasitic
control in these systems. For example, a study evaluating the control of gastrointestinal
parasites in lambs weaned in organic systems found that the number of abomasal worms
was smaller in the rotational system with variable return time than in continuous grazing
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and another rotational system; however, body weight gains were similar and no differences
in the economic value were found among any of the grazing systems [161]. In the Voisin
grazing, the height of the pasture cannot be a reference to establish the resting time of the
paddock, but only the state of plant development. Grazed pastures at their optimal resting
point guarantee greater productivity and pasture quality [157]. Grass is cut uniformly under
this system, allowing most of the blades of grass to receive solar radiation, with the probable
consequence of reducing contamination by nematode L3. Low nematode infection has been
reported in the rotational system based on ecological principles, such as the Voisin system,
when compared with continuous systems. For instance, cattle FECs have ranged between 0
and 1400 eggs per gram of faeces on average [112]. In this same context, when investigating
and comparing animal welfare and parasitism of organic and conventional dairy farms in
Italy, the researchers clearly observed no differences between parameters related to welfare
and the prevalence of helminth infections in different production systems [169]. According
to the same authors, preventive measures in organic systems should include the regular use
of parasitological diagnosis as a tool in breeding systems, which help determine whether
anthelmintic treatment is necessary or can be safely delayed or withdrawn. Rotational
systems with small paddocks minimise the chance of animals coming into contact with
fresh faeces, which lowers the risk of contamination, as the time the animals stay in the
area is shorter than the time required for the hatched eggs to reach the L3 stage. Allowing
adequate rest time for the paddock after grazing and promoting L3 desiccation through
exposure to solar radiation can help prevent dung from becoming reservoirs of L3 and
reduce paddock contamination [112,137,153].

Finally, co-grazing cattle with a second, non-susceptible herbivore species that have
different grazing behaviours can be used to reduce parasite transmission, exploiting host
specificity and potentially allowing L3 to be removed from the system [170–174]. Most
studies have demonstrated that cross-infection between cattle and sheep nematodes is
usually of little significance when these ruminants share pastures. The benefits of integrated
grazing occur especially when this involves adult cattle [175,176]. The integration of differ-
ent herbivore species can result not only in the reduction in environmental contamination
by infective parasites, but also in more and better forage [177].

6. Conclusions and Final Considerations

We have reviewed evidence that gastrointestinal nematode parasitism presents a main
challenge to animal welfare in grazing systems. The most clear effects are on growth, good
health, reproduction and fitness, but there are also indications of suffering, which refers to
experiencing unpleasant emotional states [178]. As reviewed earlier, animals parasitized by
gastrointestinal nematodes may experience hunger, pain and malaise. Thus, it is clear that
parasitism, if not well managed, entails animal suffering. Studies investigating the affective
states of animals with clinical or subclinical parasitism may add to this understanding.
Play behaviour, a widely recognized indicator of welfare, could be explored in the context
of parasite infections in young animals. A decrease or cessation in play frequency is a
common response when environmental conditions become challenging, negatively affecting
an animal’s fitness status [179]. Therefore, a reduction in play may potentially serve as
an indicator of infection. In animal welfare research, judgement bias has emerged as a
promising tool to measure affect [180], with previous studies showing changes in attention
and judgement biases in response to pain [181] and hunger [182], two conditions associated
with endoparasite infections. As such, studying these affective states in the context of
clinical or subclinical endoparasite infections could provide valuable insights.

As we have reviewed, depending on factors of the parasite, the host and the envi-
ronment, grazing ruminants use different strategies to avoid or control gastrointestinal
nematodes and their effects on the body. In this process, they weigh the short-term mo-
tivation to access palatable nutrition against longer-term effects on fitness; occasionally,
they may self-medicate to alleviate the negative experience of being parasitized. However,
depending on how grazing systems are managed, animals are deprived of using these
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naturally evolved behaviours to avoid or control gastrointestinal nematodes. In farming
systems, blanket treatments with anthelmintics are often the main tool used by farmers
to maintain or restore animal health. With a vision of a more sustainable livestock pro-
duction, we suggest that knowledge of host-parasite-environment interactions needs to
be improved and refined and incorporated into pasture management systems, which may
restore ecological balance and reduce dependence on pharmacological tools.

Yet, although much progress has been made, there are still few studies regarding
animal adaptation strategies and individual control of parasitic diseases. Importantly,
there are not many studies on animal behaviour strategies regarding risk of parasitism in
grazing systems in subtropical or tropical climates involving warm and humid parasites
such as Haemonchus. Most of the identified studies were conducted in a temperate climate,
in pastures with C3 type photosynthetic-metabolism plants or in natural grasslands in
cold regions. Also, the studies on grazing behaviours against the threat of parasitism
or its management need to be expanded to more breeds and animal categories. Most
studies have used Soay sheep, Scottish Blackface, and Scottish Greyface, although some
have employed Katahdin lambs. In contrast, few studies have evaluated the behaviour of
tropical and subtropical animal breeds, such as Crioula Lanada [50], Santa Ines [183], and
Red Massai [184], which are naturally resistant to parasitism. We also encourage studies
evaluating the behavioural adaptation strategies of herbivores and domestic ruminants
in rotational systems, co-grazing among herbivores in multispecies pastures and with
variable resting times that, as discussed, have greater environmental complexity, which
can help or challenge animals in the pasture. Given the complexity of the factors and their
interactions on a space-time scale, further studies with multifactorial analyses are indicated.
Meta-analyses can be important for preselecting these factors.

Reducing the use of pharmacological tools may improve the welfare of grazing ru-
minants by avoiding exposure to potentially aversive human-animal interactions associ-
ated with drenching management. This may also avoid or reduce a less discussed and
less understood issue, which is the undesirable side effects on animals treated with an-
thelmintics. Strategies and parasite-management tools aiming to reduce or avoid the use
of anthelmintics can contribute to promote One Health, as they integrate the health of the
animals, the environment (for example, by reducing the adverse effects on biodiversity and
nutrient cycling), and humans (for example, by reducing residues in the food and in the
environment that may enter the food chain).

A better management of gastrointestinal nematodes and increased animal welfare in
grazing systems may be achieved with the following measures: using multispecies pastures;
mixing animal categories or species; using resistant breeds adapted to the local environmen-
tal conditions and its crosses [51,185]. Another important measure is to maintain adequate
nutrition to maintain or boost the immune system in young animals and in stressful life
events like parturition and weaning, as well as under extreme climate events that can lead
to a general scarcity of feed supply [62,186]. The host-parasite specificity can be exploited
to produce clean pastures or reduce contamination by the L3 of gastrointestinal nematodes
when different herbivores share pastures. Mixed or multi-species pastures may favour
parasite control in many ways, as they may promote better nutrition with high levels of
protein, as well as offer the animals greater opportunity for self-medication with plants
containing antiparasitic compounds.
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