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Abstract: No human vaccine is available for visceral leishmaniasis (VL). Live attenuated centrin gene-
deleted L. donovani (LdCen−/−) parasite vaccine has been shown to induce robust innate immunity
and provide protection in animal models. Toll-like receptors (TLRs) are expressed in innate immune
cells and are essential for the early stages of Leishmania infection. Among TLRs, TLR-9 signaling
has been reported to induce host protection during Leishmania infection. Importantly, TLR-9 ligands
have been used as immune enhancers for non-live vaccination strategies against leishmaniasis.
However, the function of TLR-9 in the generation of a protective immune response in live attenuated
Leishmania vaccines remains unknown. In this study, we investigated the function of TLR-9 during
LdCen−/− infection and found that it increased the expression of TLR-9 on DCs and macrophages
from ear-draining lymph nodes and spleen. The increase in TLR-9 expression resulted in changes in
downstream signaling in DCs mediated through signaling protein myeloid differentiation primary
response 88 (MyD88), resulting in activation and nuclear translocation of nuclear factor-κB (NF-
κB). This process resulted in an increase in the DC’s proinflammatory response, activation, and
DC-mediated CD4+T cell proliferation. Further, LdCen−/− immunization in TLR-9−/− mice resulted
in a significant loss of protective immunity. Thus, LdCen−/− vaccine naturally activates the TLR-9
signaling pathway to elicit protective immunity against virulent L. donovani challenge.

Keywords: visceral leishmaniasis; dendritic cells; myeloid differentiation primary response 88;
nuclear factor-kappa B; cytokines; costimulatory molecules; innate immunity

1. Introduction

Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani,
which affects nations worldwide. An estimated 50,000–90,000 new VL cases are recorded
every year from endemic areas of the world including Bangladesh, India, Nepal, Brazil,
Ethiopia, Kenya, and Sudan [1].

Host defenses against Leishmania species are mainly initiated by innate immune cell-
induced activation of an inflammatory response, followed by cell-mediated immune re-
sponses [2]. The innate immune system actively contributes to the rapid identification of
pathogens, such as viruses and bacteria, by using a range of pattern recognition receptors
(PRRs), such as Toll-like receptors [3–7]. TLRs are cellular receptors that detect common
pathogen-associated molecules such as lipopeptides, peptidoglycan, flagellin, lipopolysac-
charides, and nucleic acids and induce innate responses by several pathways, facilitating the
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generation of inflammatory cytokines by macrophages and dendritic cells (DCs) [8,9]. Dur-
ing Leishmania infection, the participation of TLR-9, TLR-4, TLR-2, and TLR-3 is pivotal for
mediating a proinflammatory cytokine response and subsequent infection control [10–13].

The findings that resistance to Leishmania is dependent on parasite lipophosphoglycan
(LPG) by TLR-2 [14], the generation of IL-12, and the establishment of a Th1 immune
response [15] in addition to NO production have validated the significance of TLR-2 in
infection control [16]. Previous studies also have demonstrated a significant function for
TLR-2/TLR-3 in L. donovani recognition and parasite clearance by macrophages via secretion
of nitric oxide (NO) and proinflammatory cytokines [13]. Similarly, TLR-4 signaling controls
L. major parasite growth, and lack of TLR-4 signaling exacerbates parasite growth during
both the innate and adaptive phase of the immune response as well as a delay in the healing
of the cutaneous wounds [17,18]. Recent studies also provided novel insights into the
mechanism of TLR-9-induced host protection during Leishmania infection. For example,
TLR-9 recognizes CpG DNA sequences of L. major and activates the dendritic cell (DC) along
with the generation of a Th1-dominant response that resolves the lesions [19]. Likewise,
during L. infantum infection, TLR-9 activates CD11chigh DCs thereby triggering IFN-γ
production and cytotoxic function in NK cell [20,21]. Notably, enhancing the effectiveness
of immunization with parasite antigens against leishmaniasis by activating TLRs via
exogenous agonists has emerged as a viable option [10,22,23].

Of the numerous vaccination methods against Leishmania, live attenuated vaccines
showed great potential because of mimicking the natural infection [24–26]. Our labora-
tory created several Leishmania mutant strains including L. donovani (LdCen−/−), which
lack the Centrin1 gene [27–30]. We showed that immunization with LdCen−/− resulted in
protection against virulent L. donovani infection in a variety of animal models, including
mice, hamsters, and dogs. Control of parasite burden and induction of an adaptive T cell
response that is host-protective served as indicators of LdCen−/− induced protection [31–34].
We recently reported that immunization with LdCen−/− parasites and innate cells such as
neutrophils, macrophages, and DCs are critical for eliciting a protective Th1 immune re-
sponse [28,35–37]. Innate cell-mediated recognition of pathogens and subsequent initiation
of signal transduction pathways that further instruct the development of antigen-specific
adaptive immunity mostly depend on TLRs [38]. Several TLR ligands have been utilized as
promising immune enhancers for vaccination against VL [39]. Specifically, TLR-9 ligand,
CpG-ODN, has been extensively explored as a preventative vaccine adjuvant for Leishmania
antigens and it has been demonstrated to provide protection following challenges with L.
major and L. donovani [39–44].

Considering the beneficial effects of TLR-9 activation in Leishmania vaccine studies,
we have investigated the role of TLR-9 in LdCen−/− induced immunity. We have demon-
strated that LdCen−/− infection specifically upregulates TLR-9 expression and subsequent
TLR-9-mediated downstream signaling in DCs compared to LdWT infection. These events
enable DCs to produce an increased proinflammatory response and initiate CD4+Th1 cell
proliferation. Importantly, significant loss of protection by LdCen−/− immunization in
TLR-9−/− mice against virulent L. donovani challenge highlights the crucial role of TLR-9
activation for the generation of a host-protecting immune response by LdCen−/− vaccine.

2. Material and Methods
2.1. Animals and Parasites

Female C57BL/6 mice aged five to six weeks were purchased from The National Can-
cer Institute, National Institutes of Health, Bethesda, MD; TLR-9−/− mice were purchased
from Jackson Laboratory. We performed all our tests on female mice that were 6 to 8 weeks
old. Mice were kept in an environment that was appropriate for this species at the Food and
Drug Administration/CBERAAALAC-accredited facility. The LdWT (MHOM/SD/62/1S)
and LdCen−/− line of L. donovani (Ld1S2D) parasites were employed, and the parasite
culture process and standard molecular biology practices were carried out as previously
reported [31].
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2.2. Ethics Statement

The study’s animal protocol (ASP 1995#26) received clearance from the Institutional Animal
Care and Use Committee of the Center for Biologics Evaluation and Research of the Food and
Drug Administration. Further, the animal protocol is in full accordance with the “Guide for
the Care and Use 198 of Laboratory Animals” as described in the U.S. Public Health Service
199 Policy on Humane Care and Use of Laboratory Animals 2015. (http://grants.nih.gov/
grants/olaw/references/phspolicylabanimals.pdf; accessed on 15 October 2021).

2.3. Infection of Mice and Isolation of Macrophages and DCs from Ear dLN and Spleen

Using a 29-gauge needle (BD Ultra-Fine) and a volume of 10 µL, 3× 106 LdWT/LdCen−/−

parasites were intradermally (ID) injected into C57BL/6 mice in the ear pinna. Each study
employed a minimum of six mice per group. As a control group, naïve mice that were
age-matched received PBS. Macrophages (MØ) (Cd11b+Ly6G−Ly6c−Cd11c−MHCII+) and
dendritic cells (DC) (Cd11b+Ly6G−Ly6c−Cd11c+MHCIIhi) were sort selected from the
spleen and ear dLN of LdWT and LdCen−/− infected mice at 72 h and 7 days after infection,
respectively, by high-speed FACS cell sorter system (BD FACS ARIA IITM). Briefly, tweezers
and a syringe plunger were used to physically separate and remove the retro maxillary
(ear-draining) lymph nodes. Filtration of tissue homogenates using a 70-µm cell strainer
was performed (Falcon Products, Corning, NY, USA). To create a single-cell suspension,
mouse spleens were collected and processed with collagenase (1 mg/mL) and DNase I
(20 mg/mL) (Thermo Fisher Scientific, Waltham, MA, USA). The single cell suspension
from the spleen and dLN of the ear was labeled with anti-TCR-, anti-NK1.1, and anti-Cd1b
that had been APC-tagged. To exclude certain cell types, anti-APC magnetic beads were
utilized and run across LS columns. Flow through enriched population of macrophages
and DCs were collected and stained with macrophages and DC-specific markers and then
further sorted.

2.4. Cultivation of Bone Marrow-Derived Dendritic Cells (BMDCs)

In vitro dendritic cell culture was performed using bone marrow progenitors. Briefly,
mice’s tibias and femurs were removed, cleared of tissue, and then cleansed with RPMI media.
The erythrocytes were removed using ACK lysis buffer (Lonza, Rockville, MD, USA), and the
isolated bone marrow was then cultured for 7 days with complete RPMI medium supplemented
with 10% (v/v) fetal bovine serum (FBS) (R&D systems, Minneapolis, MN, USA), 1% peni-
cillin (20 U/mL)/streptomycin (20 g/mL) (Thermo Fisher Scientific, Waltham, MA, USA),
and 20 ng/mL GM-CSF (Peprotech, Cranbury, NJ, USA) and IL-4 (Peprotech, Cran-
bury, NJ, USA) for obtaining >75% purity of DCs and analyzed by flow cytometry. BMDCs
were transfected with TLR-9 siRNA/MyD88 siRNA or treated with/without JSH-23 (NF-κB
transcriptional activity inhibitor) (Abcam, Waltham, MA, USA) followed by infection. In
some experiments BMDCs were treated with LPS (Sigma, St. Louis, MO, USA) (1 µg/mL)
for 45 min before siRNA transfection/JSH-23 treatment and infection. By using sandwich
ELISA, mouse cytokines were detected in the conditioned medium of BMDC cultures.
Using a sandwich ELISA kit (Thermo Fisher Scientific, Waltham, MA, USA), culture su-
pernatants were collected 24 h after infection to assess cytokine production. Using flow
cytometry, acquisitions of a million events were carried out to quantify the expression of
costimulatory molecules on the surface of DCs. The flow cytometry section of the Material
and Methods has a full description of the technique and antibodies.

2.5. TLR-9 siRNA and MyD88 siRNA Mediated Silencing in DC In Vitro

TLR-9 siRNA and control siRNA were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). MyD88 siRNA and control siRNA were purchased from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA). Cell transfections with siRNAs were performed
according to the manufacturer’s protocol.

http://grants.nih.gov/grants/olaw/references/phspolicylabanimals.pdf
http://grants.nih.gov/grants/olaw/references/phspolicylabanimals.pdf
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2.6. NF-κB Nuclear Translocation

DCs were isolated from mouse BM and stimulated with LPS (1 µg/mL) for 45 min
followed by infection with LdWT/LdCen−/− parasites and recovered for analysis. After 6 h of
incubation, Fc receptors were blocked with normal mouse serum for 15 min at 4 ◦C, and cells
were fixed by 4% formaldehyde for 10 min at room temperature. Then, DCs were treated
with monoclonal rabbit anti-mouse pNF-κBp65 (Cell signaling, Danvers, MA, USA) at a
dilution of 1:50 in permeabilization buffer for 30 min at room temperature. Cells were then
stained using a 1:200 dilution of an Alexa 647-conjugated goat anti-rabbit secondary antibody
(Thermo Fisher Scientific, Waltham, MA, USA) for 30 min at room temperature. The cells
were stained with DAPI (Thermo Fisher Scientific, Waltham, MA, USA) for the nucleus
before being captured using Image stream AMNIS. By using the TransAM NF-κB activation
assay kit (Active Motif, Carlsbad, CA, USA) NF-κBp65 activation in LPS-treated control and
infected DCs was also quantitatively evaluated as per manufacturer’s instructions.

2.7. Antigen Presentation Assay: In Vitro DC and T Cell Co-Culture Studies

After being transfected with control siRNA/TLR-9 siRNA or treated or untreated
with JSH-23 and an OVA peptide pulse (2 µg/mL; residues 323 to 339; Anaspec, Fremont,
CA, USA), DCs were infected for 24 h with either LdWT or LdCen−/− parasites. From the
spleens of DO11.10 transgenic mice, CD4+ T lymphocytes were isolated and stained with
5 µM carboxyfluorescein succinimidyl ester (CFSE) (Thermo Fisher Scientific, Waltham,
MA, USA) for 10 min in RPMI 1640 without fetal calf serum (FCS) at 37 ◦C in a 5% CO2
humidified chamber. After that, cells were incubated with ice-cold RPMI 1640 and 10%
FCS for 5 min to quench the CFSE, and cells were properly washed before being plated in
96-well tissue culture plates with OVA-pulsed BMDC. CD4 T cell proliferation was then
calculated using flow cytometry by gating on CD4+T cells after 5 days at 37 ◦C with 5%
CO2. An amount of 10,000 CD4-positive cells were counted in each sample. The program
utilized was FlowJo version 9.7.5. Day 5 culture supernatants were collected for an ELISA
test using a sandwich ELISA kit to assess cytokines (Thermo Fisher Scientific, Waltham,
MA, USA). The assay was carried out in accordance with the manufacturer’s thorough
instructions.

2.8. RT-PCR

Total RNA was extracted from the (1) macrophages and DCs recruited in ear dLN or
spleen following ID injection of either PBS/LdWT or LdCen−/− parasites (2) DCs (3) spleen
utilizing RNAqueous-Micro kit (AM1931; Ambion, Austin, Texas, USA), which additionally
removes any contaminating DNA by using on-column PureLink DNase treatment during
RNA purification. A high-capacity cDNA reverse transcription kit from Applied Biosystems
was used to reverse transcribe aliquots (400 ng) of total RNA into cDNA via random hexam-
ers. The TaqMan gene expression master mix and prepared TaqMan gene expression assays
(Applied Biosystems) were used with a CFX96 Touch Real-Time System (Bio- Rad, Hercules,
CA, USA) to measure the levels of cytokine gene expression. CFX Manager Software was
used to evaluate the data. The CFX96 Touch Real-Time System was used to measure the
expression of the following genes: TLR-2 (Mm00442346_m1); TLR-4 (Mm00445273_m1);
TLR-9 (Mm00446193_m1); MyD88 (Mm00440338_m1); and GAPDH (Mm99999915_g1).
The 2-DD Cycle threshold approach was used to determine the expression values. Samples
were compared to the expression levels from untreated samples or animals that had received
PBS injections, as necessary, after being normalized to GAPDH expression.

2.9. Flow Cytometry

During the surface labeling of BMDCs, rat anti-mouse CD16/32 (BD Biosciences)
from BD Pharmingen was used to block cells for 20 min at 4 ◦C (5 µg/mL). Cells were
then stained with the following antibodies: anti-mouse CD11b (Thermo Fisher Scientific,
Waltham, MA, USA), anti-mouse CD3 (Thermo Fisher Scientific, Waltham, MA, USA), anti-
mouse CD4(Biolegend, San Diego, CA, USA), anti-mouse Cd44 (Thermo Fisher Scientific,
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Waltham, MA, USA), anti-mouse Cd11c (Thermo Fisher Scientific, Waltham, MA, USA),
anti-mouse Ly6G (Thermo Fisher Scientific, Waltham, MA, USA), anti-mouse Ly6C (Biole-
gend, San Diego, CA, USA), anti-mouse CD80 (BD Bioscience, San Jose, CA, USA), anti-
mouse MHCII Class II (I-A/I-E) (Thermo Fisher Scientific, Waltham, MA, USA), anti-mouse
CD40 (Thermo Fisher Scientific, Waltham, MA, USA), and anti-mouse CD200 (Thermo
Fisher Scientific, Waltham, MA, USA); each with 1:100 dilution at 4 ◦C. All flow studies’
samples were stained with Live/Dead Fixable Aqua (Thermo Fisher Scientific, Waltham,
MA, USA) to mark the dead cells. Cells were then fixed using a Fixation/Permeabilization
Solution Kit (BD Bioscience, San Jose, CA, USA) for 20 min at room temperature after being
washed twice with wash buffer. Cells were then acquired utilizing FACS Diva 6.1.2 software
on an LSR II (BD Biosciences, San Jose, CA, USA) outfitted with laser lines of 407, 488,
532, and 633 nm. There were one million events acquired. Version 9.7.5 of the FlowJo
program was used to analyze the data (Tree Star). First doublets were eliminated using the
width parameter, and dead cells were disregarded based on Live/Dead Aqua dye (Thermo
Fisher Scientific, Waltham, MA, USA) staining. Lymphocytes were classified using the
characteristics of their light scattering. CD4 T cells were identified as CD3+ lymphocytes
that express CD4 exclusively.

2.10. Immunization and Challenge Studies

Wild type (WT) (n = 13) or TLR-9−/− (n = 13) mice were immunized intradermally
with 3 × 106 stationary-phase LdCen−/− promastigotes. On day 22, three animals from each
experimental group were euthanized and the spleens were collected, and TLR-9 mRNA
expression in splenocytes was evaluated by RT-PCR. On day 22, 105 virulent L. donovani
(LdWT) metacyclic parasites were administered by tail vein to the remaining animals (n = 6).
Density gradient centrifugation was used to separate L. donovani’s infectious stage metacyclic
promastigotes from stationary cultures as described before [45]. Age-matched naïve mice
used as controls received 105 virulent L. donovani metacyclic parasites in a similar manner.
In order to quantify the parasite burden in the challenged mice’s spleens and livers at
6 weeks after the challenge, the separated host cell preparations were cultured using limiting
dilutions as previously reported [31]. By using sandwich ELISA, IFN-γ and IL-10 were
also detected in the Leishmania Ag-stimulated splenocyte culture supernatants 3 weeks after
vaccination and 6 weeks after the challenge (Thermo Fisher Scientific, Waltham, MA, USA).

2.11. Statistical Analysis

GraphPad Prism 5.0 software was used to conduct an unpaired, two-tailed Student
t-test to statistically analyze the differences in group mean values. A p value of 0.05 was
regarded as statistically significant, and a p value of 0.005 was regarded as highly significant.

3. Results

3.1. Infection with LdCen−/− Induces TLR-9 mRNA Expression

TLR-2, 4, and 9 are primarily responsible for influencing the various immune re-
actions during Leishmania infections [10,46]. Hence, we investigated the expression of
TLR- 2, 4, and 9 in ear dLN and spleen-derived macrophages and dendritic cells
from mice infected with LdCen−/− and compared it to LdWT-infected mice by real-time-
PCR. Macrophages (MØ) (Cd11b+Ly6G−Ly6c−Cd11c−MHCII+) and dendritic cells (DC)
(Cd11b+Ly6G−Ly6c−Cd11c+MHCIIhi) were sort selected from ear dLN and the spleen of
mice infected with LdWT and LdCen−/− at 72 h and 7 d post infection, respectively, and the
expression profiles of TLR- 2, 4, and 9 were assessed. The representative sorting strategy
has been displayed in Figure 1A,B showing the percentage of the positive population
of macrophages and DCs from ear dLN of LdWT and LdCen−/− infected mice. TLR-9
expression was significantly higher in macrophages (Figure 1C,E) and DCs (Figure 1D,F)
isolated from LdCen−/− infected mice’s ear dLN/spleen than in LdWT-infected animals. No
significant difference in the expression of TLR-4 in these infections was observed. TLR-2
expression was significantly lower in macrophages and DCs from LdCen−/− infected mice
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compared to LdWT-infected mice (Figure 1C–F). These results demonstrate that there is an
early induction of TLR-9 in the phagocytic cells following LdCen−/− infection.
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Figure 1. LdCen−/− infection induces TLR-9 expression in ear dLN and spleen-derived
macrophages and dendritic cells. Macrophages (MØ) (Cd11b+Ly6C−Ly6G−CD11c−MHCII+) and
DCs (Cd11b+Ly6C−Ly6G−CD11c+MHCIIhi) were flow sorted from the ear dLN or spleen 72 h and 7 d
post infection, respectively. (A,B) Sorting strategy showing the percentage of the positive population
of macrophages and DCs from ear dLN of LdWT and LdCen−/− infected mice. (C–F) mRNA expres-
sion levels of TLR-2, 4, and 9 from sorted macrophages and DCs in (C,D) ear dLN and (E,F) spleen
were estimated by qPCR as described in Materials and Methods and expressed as fold change from
uninfected naive mice. The experiment was repeated three times with pooled digests from five to six
ear dLNs per experiment. The data represent the mean values± SD of results from three independent
experiments that all yielded similar results (n = 6). ** p < 0.005; *** p < 0.0005 between the groups.

3.2. LdCen−/− Infected DCs Showed Heighted NF-κB Activation and Proinflammatory Cytokine
Response via TLR-9- Myd88 Pathway

Since infection with LdCen−/− enhanced TLR-9 expression compared to LdWT infec-
tion, we investigated whether the TLR-9 mediated downstream signaling is also altered
in LdCen−/− infected DCs. We have specifically chosen DCs for our experiment since it
has been demonstrated to be crucial in coordinating the immune response in Leishmania in-
fection [47]. Downstream TLR-9 signaling involves Myd88-dependent pathway-mediated
regulation of NF-κB transcription factor activation, which controls the expression of proin-
flammatory mediators [10]. Hence, we first assessed the translocation of NF-κB in LdCen−/−

infected DCs either untreated or transfected with TLR-9 siRNA/Myd88-siRNAs or treated
with JSH-23, an inhibitor of NF-κB transcriptional activity. Upon transfection with TLR-9
siRNA/Myd88-siRNAs, expression levels of TLR-9 and Myd88 mRNA were significantly
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reduced in LdWT/LdCen−/− infected DCs compared to untreated DCs, and the representa-
tive data for the LdCen−/− infected group has been shown (Figure 2A). Quantitative ELISA
indicated marked NF-κBp65 activation in LdCen−/− infected DCs with a 1.2-fold increase
at 6 h post infection compared to LdWT (Figure 2B). Further, Image Flow analysis of DCs
showed an active translocation of immunofluorescence of p65 from the cytoplasm to the
nucleus (Figure 2C). Silencing of either TLR-9 or MyD88 using corresponding siRNAs,
respectively, or inhibition of NF-κB signaling using JSH-23, significantly abrogated NF-κB
p65 activation and translocation in LdCen−/− infected DCs (Figure 2B,C). Active transloca-
tion of NF-κB to the nucleus facilitates up-regulation of the proinflammatory response [48].
Corroborating the heightened NF-κB activation and nuclear translocation in LdCen−/− in-
fected DCs, we observed considerably increased production of proinflammatory cytokines
IL-12 (Figure 2D) and TNF-α (Figure 2E) than in LdWT infected DCs. Importantly, silencing
of TLR-9 or Myd88 or treatment with JSH-23 significantly abrogated the expression of
IL-12 and TNF-α in LdCen−/− infected DCs (Figure 2D,E). These data show that LdCen−/−

infection elicits the TLR-9-Myd88 signaling pathway to regulate inflammatory cytokine
responses through the activation of the NF-κB.
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Figure 2. LdCen−/− infected BMDCs showed heightened NF-kB activation and proinflammatory
cytokine generation via the TLR-9-Myd88 pathway. (A) BMDCs were transfected with control siRNA
(TLR-9)/TLR-9 siRNA or control siRNA (MyD88)/MyD88 siRNA or treated with JSH-23 followed
by treatment with LPS (1 µg/mL) for 45 min and infected with LdCen−/− parasites for 6 h. The
transfection efficiency of TLR-9 siRNA/Myd88 siRNA was checked for every sample by qPCR
as described in Materials and Methods and the representative data for LdCen−/− infected group has
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been shown. The data represent the mean values± SD of results from three independent experiments that
all yielded similar results. ** p < 0.005; *** p < 0.0005 between the groups. (B) Cell extract was prepared,
and NF-κB p65 activation was measured quantitatively using Trans AM NF-κB kit. Data for NF-κB p65
activation (Absorbance at 450 nM) are expressed as means ± standard deviations (SD) from triplicate
experiments that yielded similar results. * p < 0.05; ** p < 0.005. (C) LPS (1 µg/mL) treated BMDCs were
either infected with LdWT parasites or transfected with TLR-9 siRNA or MyD88 siRNA or treated with
JSH-23 and infected with LdCen−/− parasites for 6 h, and nuclear translocation was analyzed in Flowsight.
Representative images of treated cells. For improved visualization, red (DAPI) and green (NF-κB) colors
were assigned in IDEAS software. Brightfield (BF), co-localization (yellow). (D,E) LPS (1 µg/mL) treated
BMDCs were either infected with LdWT parasites or transfected with control siRNA (TLR-9)/ /TLR-9
siRNA or control siRNA (MyD88)/ /MyD88 siRNA or JSH-23 and infected LdCen−/− parasites for 24 h.
Culture supernatants were collected to determine the (D) IL-12 and (E) TNF- α release by ELISA. The data
represent the mean values± SD of results from three independent experiments that all yielded similar
results. * p < 0.05; ** p < 0.005; *** p < 0.0005 between the groups.

3.3. TLR-9 Silencing or Inhibition of NF-κB Transcriptional Activity Significantly Reduced the
Expression of Costimulatory Molecules While Augmenting Expression of Coinhibitory Molecule in
LdCen−/− Infected DCs

Next, we investigated the role of TLR-9 and its downstream NF-κB signaling pathway
in eliciting DC function during LdCen−/− infection and compared it to LdWT infection. We
assessed the expression of costimulatory and coinhibitory molecules in LdCen−/− infected
DCs under either TLR-9 silenced or JSH-23 treated/untreated conditions and compared
them to LdWT infection by flow cytometry. The strategy for gating and representative
individual flow plots for one costimulatory (MHCII) as well as one coinhibitory (CD200)
molecule have been shown in Figure 3A,B. LdCen−/− infected DCs showed a significant
increase of co-stimulatory molecules such as MHCII (Figure 3A,C), CD40 (Figure 3D),
and CD80 (Figure 3E) compared to LdWT infected mice under control siRNA or JSH-23
untreated conditions. A substantial decrease in the expression of MHCII, CD40, and CD80
was seen after TLR-9 silencing or JSH-23 treatment in DCs infected with LdCen−/− but
not in LdWT infected DCs (Figure 3A,C–E). Additionally, we measured the expression of
co-inhibitory molecules such as CD200 in both LdWT or LdCen−/− infected DCs under either
TLR-9-silenced or JSH-23 treated conditions. LdCen−/−infected DCs exhibited significantly
reduced expression of CD200 (Figure 3B,F) compared to LdWT under control siRNA or
JSH-23 untreated conditions. On the contrary, TLR-9 silencing or NF-κB inhibition signifi-
cantly increased CD200 in LdCen−/− infected DCs albeit it had no effect in LdWT-infected
DCs (Figure 3B,F).

3.4. TLR-9 Silencing or Inhibition of NF-κB Transcriptional Activity Significantly Reduced
LdCen−/− Infected DC Mediated T Cell Proliferation and Altered Cytokine Expression

We analyzed the effect of TLR-9 silencing or inhibition of NF-κB transcriptional ac-
tivity on the functional activity of DCs. We specifically examined the capacity of parasite
antigens to be presented by infected DCs to CFSE-labeled naïve CD4+T cells to determine
their antigen presentation capabilities under TLR-9 siRNA or JSH-23 treated/untreated
conditions (Figure 4A). LdCen−/− infected DCs significantly increased antigen-specific
CD4+T cell proliferation after 5 days of co-culture compared to those co-cultured with DCs
from uninfected or LdWT infected under control siRNA or JSH-23 untreated conditions
(Figure 4A). Following TLR-9 silencing/NF-κB inhibition, antigen-specific CD4+ T cell
proliferation co-cultured with DCs from uninfected and LdWT-infected cultures did not
vary (Figure 4A). However, the proliferation of Ag-specific CD4+T cells was significantly
reduced in LdCen−/− infected DCs compared to the same population from control siRNA
or JSH-23 untreated LdCen−/− infected DCs (Figure 4A). The generation of cytokines in the
DC-CD4+ T cell co-cultures’ supernatants was then evaluated and showed that LdCen−/−

infected DC with CD4T cell had a considerable increase in IL-12 p40 (Figure 4B) and TNF-α
(Figure 4C) along with a significant decrease in IL-10 (Figure 4D) production compared
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to LdWT infection under control siRNA or JSH-23 untreated condition. Conversely, fol-
lowing TLR-9 silencing or NF-κB inactivation, there was a significant decrease in IL-12p40
(Figure 4B) and TNF-α levels (Figure 4C) while IL-10 levels were significantly elevated
(Figure 4D) compared to control siRNA or the JSH-23 untreated condition. In contrast,
TLR-9 siRNA or JSH-23 itself had no effect on the cytokine levels from LdWT-infected
DC-CD4T cell co-cultures (Figure 4B–D).
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Figure 3. TLR-9 silencing or inhibition of NF-kB transcriptional activity significantly reduced the
expression of activation marker and costimulatory molecule expression while augmenting coin-
hibitory molecule expression in LdCen−/− infected DCs. BMDCs were transfected with control
siRNA/TLR-9 siRNA or treated/untreated with JSH-23 followed by infection with LdWT/LdCen−/−

parasites for 24 h. The expression of MHCII, CD40, CD80, and CD200 in the BMDCs was analyzed
by flow cytometry. (A,B) The gating strategy and the individual flow plots for (A) MHCII and
(B) CD200 have been shown. (C–F) Mean fluorescence intensity of (C) MHCII, (D) CD40, (E) CD80,
and (F) CD200 expression in BMDCs have been represented by the bar diagram. The data represent
the mean values ± SD of results from three independent experiments that all yielded similar results
(n = 6). * p < 0.05; ** p < 0.005; *** p < 0.0005 between the groups.
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Figure 4. TLR-9 silencing or inhibition of NF-kB transcriptional activity significantly reduced
LdCen−/− infected DC mediated T cell proliferation and generates Th2 response. (A) BMDCs were
transfected with control siRNA/TLR-9 siRNA or treated//untreated with JSH-23, pulsed with OVA
peptide followed by infection with LdWT/LdCen−/− parasites for 24 h, and then co-cultured with
purified CFSE-labeled CD4+T cells from DO11.10 transgenic mice for 5 d. OT-II T cells proliferation
after 5 d culture with OVA peptide-pulsed DCs was estimated by flow cytometry by studying CFSE
dilution of gated CD4+ T cells and is represented by the bar diagram. Cell proliferation was analyzed
in triplicate experiments. The data represent the mean values ± SD of results from three independent
experiments that all yielded similar results. ** p < 0.005; *** p < 0.0005 between the groups. (B–D) The
cytokines released from the co-culture experiment were measured by sandwich ELISA as described in
Materials and Methods. The data represent the mean values ± SD of results from three independent
experiments that all yielded similar results. * p < 0.05; ** p < 0.005; *** p < 0.0005 between the groups.

3.5. Absence of TLR-9 Abrogates LdCen−/− Induced Protection against LdWT Infection

To ascertain the role of TLR-9 signaling in LdCen−/− mediated protection against
virulent Leishmania challenge, wild type (WT) or TLR-9−/− mice were immunized with
LdCen−/− for 21 days (3 weeks). The schematic for the treatment regimen has been shown
in Figure 5A. TLR-9 mRNA expression in immunized WT and TLR-9−/− mice was deter-
mined in total spleen cells at day 22. TLR-9 mRNA expression was significantly higher
in splenic cells at day 22 in immunized WT mice compared to TLR-9−/− mice (Figure 5B)
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confirming the abrogation of the TLR-9 gene in TLR-9−/− mice. Further, a significantly
reduced IFN-γ:IL10 ratio in splenocytes from LdCen−/− immunized TLR-9−/− mice com-
pared to WT immunized mice at 3 weeks post-immunization was observed (Figure 5C).
At day 22 post-immunization, mice were challenged with virulent Leishmania donovani
parasites and were monitored for 6 weeks. Age-matched naïve mice were challenged with
virulent L. donovani parasites (i. v.). Significantly reduced IFN-γ: IL10 ratio in splenocytes
from LdCen−/− immunized TLR-9−/− mice compared to WT immunized mice after 6 weeks
post-challenge indicated a poor Th1 response (Figure 5C). Parasite burden in the spleen,
as well as liver after 6 weeks of challenge with LdWT parasites, showed the absence of
TLR-9 reversed LdCen−/− mediated parasite control as evidenced by substantially increased
parasite burden at the 6-week post-challenge period in comparison to immunized chal-
lenged WT mice (Figure 5D,E). Thus, activation of the TLR-9 pathway is important for the
LdCen−/− induced protective immunity.
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Figure 5. Absence of TLR-9 abrogates the LdCen−/− induced host protective immunity. (A) Schematic
diagram showing the treatment regimen. (B) TLR-9 mRNA expression levels in the spleens of immunized
WT and TLR-9−/−mice at day 21 (3WI) was determined by qPCR as described in Materials and Methods
and expressed as fold change from uninfected naive mice. The data represent the mean values ± SD of
results from three independent experiments that all yielded similar results (n = 3). ** p < 0.005 between
the groups. (C) Leishmania Ag–specific cytokines were measured from splenocytes of WT or TLR-9−/−

LdCen−/− immunized mice at the time of challenge (3 WI, 3 wk post-immunization) and after challenge
(3 WI+ 6 WPC: 6 wk post-challenge) by sandwich ELISA. The ratio of IFNγ/IL-10 is shown. The data
represent the mean values ± SEM of results from two independent experiments. The mean and SEM of
4–6 mice in each group are shown. ** p < 0.005. (D) Splenic and (E) liver parasite burden were measured
at 6 wk post-challenge in different groups of immunized-challenged and naive-challenged mice. The
data represent the mean values± SEM of results. The mean and SEM of 6 mice in each group are shown.
* p < 0.05; ** p < 0.005 between the groups.

4. Discussion

TLRs, mostly found on phagocytes, play a crucial role in protecting the host against
various pathogens [3–7]. During Leishmania infection, TLRs such as 2, 3, 4, 7, and 9 are
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essential for initiating an immunological defense response [10–12,49]. The addition of
TLR ligands has been shown to enhance immunogenicity in experimental vaccination
using soluble, heat-killed, or recombinant antigens from various Leishmania species, such
as L. donovani, L. major, and L. amazonensis [39–43,50]. The live attenuated L. donovani
parasite vaccine (LdCen−/−) without exogenous addition of TLR ligands has demonstrated
efficacy in preclinical investigations, resulting in the induction of protective immunity
in experimental animal models [31–34]. Therefore, we wanted to explore if LdCen−/−

immunization inherently engages various TLRs towards inducing protective immunity.
Macrophages and DCs, two important components of the innate immune system,

detect pathogens via TLRs. This activation is critical in initiating both the innate and
acquired immune response [38]. Our previous studies have shown that after infection with
LdCen−/− parasites, macrophages and DCs acquire a pro-inflammatory phenotype [28,36],
which could be due to the recognition of parasite ligands by various TLRs. In this study,
we analyzed the expression of TLRs 2, 4, and 9 in macrophages and DCs in response to
LdCen−/− and LdWT infections and found an elevated expression of TLR-9 transcript in
LdCen−/− infection compared to LdWT infection. Notably, DCs have been shown to be
important in activating TLR-9 through its ligand, CpG oligodeoxynucleotides, and serve as
an adjuvant for a vaccine against L. major [44]. Therefore, in the present study, we deter-
mined the function of TLR-9 and the signaling molecules that it triggers exclusively in DCs
during LdCen−/− infection. We observed, upon LdCen−/− infection, enhanced expression
of TLR-9 receptor on DCs stimulated NF-κB signaling protein through MyD88-dependent
mechanism to produce proinflammatory cytokines such as IL-12 and TNF, which have a
protective function during Leishmania infection. Further, by examining the signaling events,
we determined that silencing either MyD88 or TLR-9 reduces the production of proinflam-
matory cytokines in DCs during LdCen−/− infection. This suggests that the generation
of pro-inflammatory responses in LdCen−/−infected DCs is enabled by the activation of
the MyD88 aided by TLR-9 downstream signaling. Notably, MyD88 assisted activation
of TLR-9 signaling in DCs has been reported during L. infantum infection [3]. Our results
also emphasize the importance of TLR-9 and NF-κB in LdCen−/− infection induced DC
activation. The inactivation of either TLR-9 or NF-κB prevented the activation and matu-
ration of DCs and the subsequent presentation of antigens to CD4+ T cells. Additionally,
the considerably higher parasite load in LdCen−/− immunized TLR-9−/− animals after
challenge further shows the impairment of vaccination immunity in the absence of TLR-9
signaling and highlights the importance of TLR-9 in LdCen−/− vaccine-induced immunity.
Similarly, a recent study also showed that the TLR-9-binding L. amazonensis antigen vaccine
LaAg comprising CpG motifs was ineffective in protecting against virulent challenges in
TLR-9 deficient mice because of the lack of a protective Th1 response [51].

Studies have investigated TLR-9 expression during L. donovani infection, but the find-
ings have been inconsistent. One study showed no variation in TLR-9 mRNA expression
in splenic biopsies and PBMCs of VL patients’ before and after treatment, indicating that
TLR-9 activation might be inhibited and not significant during L. donovani infection [52].
Thus, TLR-9 activation might not be essential in virulent infection but could play a crucial
role in LdCen−/− vaccine-induced immunity. A separate study found a substantial increase
in TLR-9 expression in whole blood samples from Sudanese VL patients. However, these
results were considered inconclusive since they did not align with TLR-9′s established role
in providing protection [53]. Nevertheless, it is important to note that in all these studies
mentioned above, TLR-9 expression was studied during the active disease whereas our
studies investigated TLR-9 expression in APCs at an early stage of infection, suggesting
that there can be functional differences of TLR-9 during active disease verses in early stages
of developing immune response.

Studies have shown that the detection of L. donovani CpG DNA by TLR-9 [54] can
trigger a Th1-mediated immune response [55], and the anti-leishmanial effect of miltefosine
in infected THP1 cells or peripheral blood mononuclear cells from VL patients has also
been linked to proinflammatory responses driven by TLR-9, demonstrating that TLR-9 is



Pathogens 2023, 12, 534 13 of 16

necessary for parasite control [56]. Therefore, it is reasonable to suggest that the upregula-
tion of TLR-9 mRNA expression and the consequent activation of downstream signaling in
LdCen−/−infected DCs could be essential in the proinflammatory response triggered by the
vaccination. This response might help to confer protection against a virulent challenge as
observed in our study.

The impact of TLR-9 on infections caused by various species of Leishmania is variable
and depends on the specific parasite species. For example, the activation and maturation of
dendritic cells (DCs) during L. major infection is influenced by TLR-9 signaling. This leads
to an increase in IFN-γ production by CD4+T cells, which in turn enhances the wound
healing process during the infection. Thus, activation of DCs by TLR-9 and subsequent
development of Th1 cells is a crucial factor in the overall immune response to L. major
infection. [19]. Likewise, infection with L. infantum activates a protective type-I interferon
response and production of IL-12 through TLR-9 activation [21]. However, L. guanenesis,
which has an endogenous RNA virus, fails to activate TLR-9-Myd88, leading to increased
IL-4 and IL-13 and reduced IL-12 levels, making the host more susceptible to disease [57].
Thus, the role of TLR-9 in the control of parasite infections is not unequivocal and may
result in either protective or susceptibility responses depending on the Leishmania species.

Besides increased expression of TLR-9 upon LdCen−/− immunization, we observed
decreased expression of TLR-2 in APCs compared to LdWT infection. This suggests that
LdWT parasites may use LPG-TLR-2-dependent Th2 bias to weaken the host effector re-
sponse, allowing the parasite to grow within the host, as has been shown during L. major or
L. donovani infection [58,59]. Further, TLR-2 activation during L. major infection decreases
the expression of TLR-9 and reduces anti-leishmanial responses [58]. Thus, reduced ex-
pression of TLR-2 in macrophages and DCs from mice infected with LdCen−/− likely led to
increased expression of TLR-9. Thus, LdWT and LdCen−/− parasites manipulate DC func-
tion through different TLR signaling pathways. Even though TLR-4 is essential for causing
antileishmanial activity in macrophages during experimental L. donovani infection [59], in
our work, we did not detect any discernible differences in TLR-4 expression between LdWT
and LdCen−/− infection. It appears likely that TLR-4-mediated activation is not necessary
for vaccine-induced immunity.

Collectively, these in vitro and in vivo studies point towards a novel mechanism
of TLR-9 mediated immunoprotection during LdCen−/− infection. Recent studies have
hypothesized that activating TLR-9 with parasitic CpG islands might serve as possible
adjuvants, especially against VL [54,60]. Further, the conventional Leishmania vaccines
such as Leishmania soluble antigen, recombinant vaccines, heat-killed vaccines, and DNA
vaccines require the presence of immunostimulatory TLR-9 ligand CpG-ODN to render
protection against leishmaniasis [39–44,50]. In contrast, live attenuated LdCen−/− vaccine
inherently elevates TLR-9 expression, eliminating the need for adjuvants and making it
a more affordable option for vaccine formulation against different types of leishmaniasis.
These findings have broad implications for the future development of vaccines against
leishmaniasis and highlight the importance of the TLR-9 pathway in the innate immune
response against this disease.
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