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Abstract: Growing attention is being given to the European hedgehog (Erinaceus europaeus) because of
its synanthropic behaviour and its potential role in harbouring parasites, viruses, fungi and bacteria
and disseminating them to several animals and humans. Salmonella are the most frequently detected
zoonotic bacteria that hedgehogs could transmit through contaminating water and food sources
with faeces. This study aimed to determine the prevalence and distribution of Salmonella spp. in
wild hedgehogs in the Emilia-Romagna region (northern Italy). From 2019 to 2022, 212 European
hedgehogs that died naturally were tested for Salmonella spp. through culture isolation. Positive
samples were subjected to serological typing. A total of 82 samples tested positive for Salmonella
spp., with the overall Bayesian posterior estimated prevalence ranging from 35% (95% CI: 23–47%) to
a maximum of 45% (95% CI: 31–59%) during the years considered and with an overall prevalence
calculated at 39% (95% CI: 33–45%). Salmonella enterica Enteritidis and Veneziana were the most
prevalent detected serovars in 65% and 17% of the positive samples, respectively. Since 2021, S.
Typhimurium, S. Typhimurium Monofasica, S. Zaiman, S. Hessarek, S. Muenster, S. Isangi serovars,
S. enterica subsp. Diarizonae and S. enterica subsp. Houtenae have been detected. These findings show
a high prevalence of Salmonella spp. in tested hedgehogs, suggesting an important role of this animal
species in the epidemiology of potentially zoonotic serovars circulating in the Emilia-Romagna region.

Keywords: Erinaceus europaeus; Salmonella spp.; Enterobacteriaceae; epidemiology; zoonosis; wildlife;
Italy

1. Introduction

The European hedgehog (Erinaceus europaeus) is a hibernating mammal widely dis-
tributed in Europe that is characterised by its synanthropic behaviour, which usually leads
to frequent contact with humans and domestic and wild animals [1]. The hedgehog has
been identified as a potential reservoir of several pathogens, such as viruses, bacteria and
fungi [2]. Its interaction with several animals and its high population density make it
an ideal candidate for spreading and circulating zoonotic pathogens [3,4]. In addition,
hedgehogs withstand phoretic relationships with hematophagous vectors, such as ticks and
ectoparasites, and can, therefore, distribute them to other mammalian species [1,5,6]. More-
over, hedgehogs may contribute to maintaining ticks in suburban areas, especially during
cold months, and may play a role in the epidemiology of arthropod-borne diseases [7–9].
The two species of ticks that infest European hedgehogs are Ixodes ricinus and I. hexagonus,
which are both vectors of Borrelia burgdorferi [10–12] and Anaplasma phagocytophilum [13,14],
the pathogens responsible for Lyme disease and granulocytic anaplasmosis, respectively,
in humans and animals. Several viruses have been found in hedgehogs, including the
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tick-borne encephalitis virus [15–17] and coronavirus [18–20], all of which, in addition to being
potential etiological agents of disease in hedgehogs, can be transmitted to other animals [2].
Besides viruses, hedgehogs harbour different bacteria, such as Salmonella spp. [21], Lep-
tospira interrogans, L. ballum, L. borgpetersenii [22–24], Rickettsia helvetica [25], Mycobacterium
avium and M. bovis [26].

Amongst the pathogens harboured by hedgehogs, Salmonella spp. are some of the
zoonotic bacteria of most significant concern. In fact, Salmonella spp. are responsible for
2.8 billion cases of human gastroenteric infections that occur annually worldwide [27],
making this illness the second most commonly reported foodborne infection after campy-
lobacteriosis [28].

The Salmonella species most frequently involved in animal infections is S. enterica,
which is further divided into six subspecies, including more than 2600 serovars, distin-
guished by their flagellar (H) and somatic (O) structures [29]. The transmission mechanism
of Salmonella is by the faecal–oral route, with the ingestion of contaminated food being
the most common mode of infection [28]. Other potential transmission patterns are by
human–animal contact or by indirect contact with the environment [30]. Since hedgehogs
represent the most hospitalised wild animals in Italian rescue centres, workers and volun-
teers could be primarily exposed to hedgehog zoonotic pathogens. Therefore, rehabilitation
facilities could be critical to direct human–animal transmission [4]. A study conducted
in Great Britain in 2017 suggested an implication of direct human–animal contact in out-
breaks occurring in the country, as a phylogenetic analysis of Salmonella species isolated
from humans and hedgehogs showed them to be associated, suggesting that the infections
may have arisen from a standard population [31]. In the United States, several cases of
salmonellosis have been linked to direct contact with a pet hedgehog [32]. The hedgehog
may, therefore, represent a potential reservoir of the pathogen [2,21,33]. Moreover, in pet
hedgehogs, Salmonella infections may be asymptomatic; they can become carriers and shed
the bacteria in faeces, even persistently, or they may develop a latent infection within
the lymph nodes [32]. Clinical forms sometimes manifest with mucoid or bloody diar-
rhoea combined with enterocolitis [21]. Although there are few studies on this topic, wild
hedgehogs may also exhibit this same variety of clinical symptoms. Based on the above
statements, a better understanding of the role of wild hedgehogs in Salmonella epidemiology
may yield important information from a One Health perspective [34]. In this study, we
analysed 212 hedgehogs for Salmonella to better understand its frequency and distribution
in a specific area of Emilia-Romagna.

2. Materials and Methods
2.1. Sample Collection

From 2019 to 2022, a total of 212 European hedgehogs that died naturally were collected
from the wildlife recovery centre LIPU (Italian League for Birds Protection) in Ferrara
(Emilia-Romagna, Italy), according to a non-probabilistic sampling method [35].

Dead animals were delivered to the diagnostic laboratory of the Istituto Zooprofilattico
Sperimentale della Lombardia e dell’Emilia-Romagna, within the wildlife monitoring
regional plan framework. The geographical coordinates of the locations where the animals
were found were recorded, and the animals were subjected to a complete necropsy, where
the contents of the large intestine were sampled and cultured for the detection of Salmonella
spp. Thirty animals were collected in 2019 (14%), seventy-six in 2020 (36%), fifty-eight in
2021 (27%) and forty-eight in 2022 (23%).

2.2. Salmonella spp. Isolation and Serotyping

Salmonella spp. were isolated according to the ISO 6579:2002/Amd 1:2007 method
(ISO 2007) [36,37]. Specifically, a pre-enrichment step was performed for the reactivation
of the Salmonella spp. likely present in the test sample. This consisted of incubating 25 g
of intestinal contents in sterile bags containing 225 mL of buffered peptonated water at
37 ◦C for 24 h. After that, a subsequent enrichment step was performed by inoculating
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0.1 mL of the pre-enriched sample onto a semisolid culture medium (modified semi-solid
Rappaport–Vassiliadis—MSRV; OxoidTM, Hampshire, UK) and incubating it for 48 h at
41.5 ◦C. Then, colonies suspected to be Salmonella spp. were selected by plating them on two
selective solid media, xylose lysine deoxycholate agar (XLD; bioMérieux, Bagno a Ripoli,
Italy) and brilliant green agar (BGA; Vacutest Kima, Arzergrande, Italy), and incubating
them at 37 ◦C for 24 h. For confirmation testing according to the standardized method, at
least one colony from a solid selective medium plate was taken. In case of negative results,
four additional colonies—if available—were taken from the other combinations of selective
enrichment and isolation media. Suspected colonies were plated on a Nutrient Agar plate
for isolated colonies and incubated at 36 ◦C for 24 ± 3 h; in case of good isolation of the
suspected colony, confirmation tests were performed directly, conducting Nutrient Agar
seeding in parallel in order to check its purity. Pure cultures were used for subsequent
biochemical and serological confirmation tests.

Appropriate biochemical tests (Microgen® GNA ID System, Microgen Bioproducts
Ltd., Camberley, UK) were used to confirm the presence of Salmonella spp. The identification
of Salmonella spp. serovars was conducted using a rapid slide agglutination test from pure
cultures, after removing self-agglutinating serovars. An appropriate serum antigen for the
detection of somatic (poly O, rabbit antiserum, SSI DIAGNOSTICS, Hillerød, Denmark)
and flagellar (poly H, rabbit antiserum, SSI DIAGNOSTICS, Hillerød, Denmark) antigens
was used [36].

2.3. Data Analysis

Considering the non-probabilistic nature of sampling in this study, a data analysis
based on standard errors (such as p-values and confidence intervals) was not considered
appropriate [38,39]. In addition, the significant/non-significant dichotomy based on a
predetermined p-value cut-off for the interpretation of results is under reconsideration
by the biomedical scientific community, as also expressed by the American Statistical
Association (ASA), which has cautioned the use and interpretation of the p-value [40,41].
In light of this, we focused on the extent of the estimation uncertainty.

A conjugate beta prior to the distribution of p (probability of a sample being Salmonella-
positive) in a binomial experiment to obtain a posterior beta distribution of the probability
p [42] was used to obtain point and interval estimates of the year-specific prevalence and the
overall prevalence of the Salmonella-positive samples. Given the observed data, according
to Bayes’ theorem, the posterior distribution of p is:

p|x ~ Beta (x + α, n − β)

where p is the probability of being Salmonella-positive; x is the number of positive samples;
n is the number of tested samples; and α and β are the hyperparameters of the a priori
beta distribution of p, which, in this case, was a Jeffrey’s prior with a beta distribution
(0.5, 0.5). A credibility interval was then constructed from the posterior distribution,
which collected the highest probability of density (HPD) corresponding to 95% of the
estimated probability (p) values. The point and interval estimates of the Salmonella spp.
prevalence were calculated using the function binom Bayes of the binom package [43] in R
language [44]. The forestplot package [45] in R was used to obtain a forest plot, where all
the results for each year are presented.

3. Results

In most cases, the hedgehogs were not suitable for a complete necropsy. Often, the
carcasses were not delivered from the wildlife rescue centre immediately after death, and
sometimes it was impossible to maintain the cold chain. This led to tissue deterioration
and the impossibility to appreciate gross pathological lesions.

Nevertheless, it was possible to perform a necropsy on 117 hedgehogs, 84% (n = 98)
of which showed no lesions. Among the 19 remaining animals, traumatic lesions and
haemorrhages were the most frequent gross pathological findings, which were probably
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caused by vehicle collisions and which were observed in six and four animals, respectively.
Interestingly, liver necrotic foci were noticed in four hedgehogs, and in one case, they were
associated with hepatomegaly. In one case, splenomegaly was observed, while in another
case, jaundiced skin was evident. These six cases were the only Salmonella-positive animals
that had gross findings. Other minor findings were pneumonia (1/19), lung congestion
(1/19), ascites (1/19), enteritis (2/19) and intussusception (1/19).

A total of 82 samples were positive for Salmonella. A statistical analysis conducted
over the years highlighted a rate of prevalence ranging from a minimum of 35% (95% CI:
23–47%) to a maximum of 45% (95% CI: 31–59%), with the overall prevalence calculated at
39% (95% CI: 33–45%) (Figure 1).

Pathogens 2023, 12, x FOR PEER REVIEW 4 of 10 
 

 

3. Results 
In most cases, the hedgehogs were not suitable for a complete necropsy. Often, the 

carcasses were not delivered from the wildlife rescue centre immediately after death, and 
sometimes it was impossible to maintain the cold chain. This led to tissue deterioration 
and the impossibility to appreciate gross pathological lesions.  

Nevertheless, it was possible to perform a necropsy on 117 hedgehogs, 84% (n = 98) 
of which showed no lesions. Among the 19 remaining animals, traumatic lesions and 
haemorrhages were the most frequent gross pathological findings, which were probably 
caused by vehicle collisions and which were observed in six and four animals, respec-
tively. Interestingly, liver necrotic foci were noticed in four hedgehogs, and in one case, 
they were associated with hepatomegaly. In one case, splenomegaly was observed, while 
in another case, jaundiced skin was evident. These six cases were the only Salmonella-pos-
itive animals that had gross findings. Other minor findings were pneumonia (1/19), lung 
congestion (1/19), ascites (1/19), enteritis (2/19) and intussusception (1/19). 

A total of 82 samples were positive for Salmonella. A statistical analysis conducted 
over the years highlighted a rate of prevalence ranging from a minimum of 35% (95% CI: 
23–47%) to a maximum of 45% (95% CI: 31–59%), with the overall prevalence calculated 
at 39% (95% CI: 33–45%) (Figure 1). 

 
Figure 1. Bayesian posterior estimated prevalence with 95% credibility interval of Salmonella spp. 
isolated from tested hedgehogs. 

Three different Salmonella subspecies were isolated: 1.2% were S. enterica subsp. diari-
zonae, 1.2% were S. enterica subsp. houtenae, and 97.6% were S. enterica subsp. enterica. A 
total of 65% of the S. enterica subsp. enterica belonged to the serovar Enteritidis (Table 1). 

The other detected serovars were Veneziana (17%), Monofasica (4%), Typhimurium 
(4%), Zaiman (4%), Hessarek (2%), Isangi (1%) and Muenster (1%) (Table 1). 

  

Figure 1. Bayesian posterior estimated prevalence with 95% credibility interval of Salmonella spp.
isolated from tested hedgehogs.

Three different Salmonella subspecies were isolated: 1.2% were S. enterica subsp. diari-
zonae, 1.2% were S. enterica subsp. houtenae, and 97.6% were S. enterica subsp. enterica. A
total of 65% of the S. enterica subsp. enterica belonged to the serovar Enteritidis (Table 1).

Table 1. S. enterica subspecies and serovars collected during the timeframe of the study, along with
the overall number and percentage of different isolates.

No. Isolates/Year

S. enterica subsp. enterica Serovars 2019 2020 2021 2022 Tot.

S. Enteritidis 12 22 9 10 53 (65%)
S. Veneziana 1 6 3 4 14 (17%)

S. Typhimurium 0 0 2 1 3 (4%)
S. Monofasica 0 0 0 3 3 (4%)

S. Zaiman 0 0 2 1 3 (4%)
S. Hessarek 0 0 2 0 2 (2%)

S. Isangi 0 0 0 1 1 (1%)
S. Muenster 0 0 1 0 1 (1%)

S. enterica subsp. diarizonae 0 0 1 0 1 (1%)

S. enterica subsp. houtenae 0 0 0 1 1 (1%)
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The other detected serovars were Veneziana (17%), Monofasica (4%), Typhimurium
(4%), Zaiman (4%), Hessarek (2%), Isangi (1%) and Muenster (1%) (Table 1).

Geographical coordinates were registered and used to create a map representing the
location of the tested hedgehog carcasses and the eventual isolated serovars (Figure 2). The
carcasses were mainly distributed in the north-eastern area of the province, and, except
for isolated cases, Salmonella-positive hedgehogs were mainly found in the urban and
peri-urban area of Ferrara and small villages.

Pathogens 2023, 12, x FOR PEER REVIEW 5 of 10 
 

 

Table 1. S. enterica subspecies and serovars collected during the timeframe of the study, along with 
the overall number and percentage of different isolates. 

 No. Isolates/Year  

S. enterica subsp. enterica Serovars 2019 2020 2021 2022 Tot. 
S. Enteritidis 12 22 9 10 53 (65%) 
S. Veneziana 1 6 3 4 14 (17%) 

S. Typhimurium 0 0 2 1 3 (4%)  
S. Monofasica 0 0 0 3 3 (4%)  

S. Zaiman 0 0 2 1 3 (4%) 
S. Hessarek 0 0 2 0 2 (2%)  

S. Isangi 0 0 0 1 1 (1%) 
S. Muenster 0 0 1 0 1 (1%) 

S. enterica subsp. diarizonae 0 0 1 0 1 (1%)  
S. enterica subsp. houtenae 0 0 0 1 1 (1%) 

Geographical coordinates were registered and used to create a map representing the 
location of the tested hedgehog carcasses and the eventual isolated serovars (Figure 2). 
The carcasses were mainly distributed in the north-eastern area of the province, and, ex-
cept for isolated cases, Salmonella-positive hedgehogs were mainly found in the urban and 
peri-urban area of Ferrara and small villages. 

 
Figure 2. Spatial distribution of collected hedgehog carcasses from 2019 to 2022 and the distribution 
of the different isolated serovars of Salmonella spp. 

4. Discussion 
The current study highlighted the presence and distribution of different Salmonella 

subspecies and serovars in wild hedgehogs collected in the Emilia-Romagna region. From 
2019 to 2022, 82 out of 212 tested animals were positive for Salmonella spp. The most fre-
quently isolated subspecies was S. enterica subsp. enterica; within this group, Enteritidis 
and Veneziana were the first and second most commonly isolated serovars, respectively. 
These results are consistent with previous studies conducted in other European countries 
[31,46]. Interestingly, Enteritidis belongs to the top five Salmonella enterica serovars most 
commonly involved in human infections [28]. In addition, Salmonella Typhimurium, 
Typhimurium Monofasica, Zaiman, Hessarek, Muenster and Isangi were detected in 
lower numbers. Other S. enterica subspecies detected in our study were S. enterica subsp. 
diarizonae and S. enterica subsp. houtenae. 

Figure 2. Spatial distribution of collected hedgehog carcasses from 2019 to 2022 and the distribution
of the different isolated serovars of Salmonella spp.

4. Discussion

The current study highlighted the presence and distribution of different Salmonella
subspecies and serovars in wild hedgehogs collected in the Emilia-Romagna region. From
2019 to 2022, 82 out of 212 tested animals were positive for Salmonella spp. The most fre-
quently isolated subspecies was S. enterica subsp. enterica; within this group, Enteritidis and
Veneziana were the first and second most commonly isolated serovars, respectively. These
results are consistent with previous studies conducted in other European countries [31,46].
Interestingly, Enteritidis belongs to the top five Salmonella enterica serovars most commonly
involved in human infections [28]. In addition, Salmonella Typhimurium, Typhimurium
Monofasica, Zaiman, Hessarek, Muenster and Isangi were detected in lower numbers.
Other S. enterica subspecies detected in our study were S. enterica subsp. diarizonae and S.
enterica subsp. houtenae.

Several Salmonella spp. serovars found in our study had not yet been described in
hedgehogs, as in the case of S. Veneziana, which was previously found mostly in wild boars
and other wild animals in Italy [36,47–49]. In particular, Veneziana was the most frequently
detected S. enterica serovar in foxes and badgers, with a prevalence of 16.4% in the same area
and in a similar year range as in the present investigation [36]. The other S. enterica serovars
detected were Hessarek, which has been described in avian species [50,51] and wild boars
in Italy [52], and Zaiman, a rare serovar first detected in the Zaiman river and sporadically
in humans in Argentina [53,54]. S. Zaiman was also isolated from foxes [34] and wild
boar carcasses in Italy [55]. S. Veneziana, S. enterica subsp. diarizonae and S. enterica subsp.
houtenae have been detected in foxes in the same area, although with a low percentage
(2.99% and 1.49%, respectively) [36]. These findings show that several Salmonella enterica
subspecies and serovars are well adapted to different wild animals and that hedgehogs may
play an essential role in the dissemination of various and unusual serovars of Salmonella, as
they could share the same environment as wild boars and carnivores.
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Although only partially exhaustive, our work provides an excellent general overview
of the various serovars circulating in the study area. Similar studies conducted worldwide
in previous years have shown rather heterogeneous data, highlighting the need for more
passive surveillance of this type of animal. Most of these studies show a similar or lower
prevalence than the data presented here [5,31,56–61]. In several studies conducted in
Northern European countries such as Denmark, Norway and the UK [31,58,59], the sample
size was considerable, although only in one case was it higher than in our study [59].
In other studies also conducted outside Europe, the collected samples were often small
and probably not representative of the real circulation of Salmonella in the hedgehog
population [56,60–63]. In addition, it is important to note that former studies performed
the analysis using a great variability in testing matrices and methods, presenting significant
challenges in terms of data comparison and the characterization of Salmonella epidemiology
in different countries.

Furthermore, in the present study, it is possible to notice an increase of different
serovars over the years considered. In particular, in 2019 and 2020, the only isolated
serovars were Enteritidis and Veneziana, while the others were isolated from 2021 onward.
Defining this trend is clearly challenging due to the lack of available data, making it difficult
to adequately explain this increase. Given the scarcity of information, further Salmonella
spp. isolation and serotyping analysis performed on different species within the same
area may provide valuable insights and potential explanations for the observed increasing
trend in serovars. The rise in the number of diverse asymptomatic reservoirs could play
a significant role in increasing the silent circulation of different Salmonella spp. serovars
within the same geographical area. The ongoing monitoring of Salmonella spp. in wild
species distributed throughout the territory will allow for a better understanding of this
phenomenon [28].

Moreover, in our study, the finding of positive cases near urban and peri-urban areas
deserves attention. Since hedgehogs are highly adaptable to urban environments [64], they
also represent a threat to domestic animals and humans. As a matter of fact, some studies
have shown a possible link between the contamination of farm animals and contact with
wildlife [60,65–67]. In areas with intensive animal farming, such as the Emilia-Romagna
region, farm animals may come into contact with infected animals, faeces or contaminated
food and water and may in turn infect humans [67]. Therefore, hedgehogs may repre-
sent a powerful reservoir of pathogens, as they can easily access farming territories and
contaminate the environment with their faeces.

Although more evidence is needed, monitoring wildlife could act as a sentinel for
upcoming outbreaks in animals and humans [67]. This concept is fundamental, since in the
last years, the close connection between wildlife pathogens, the environment and human
health has become more and more of a point of interest. This connection can provide
helpful information for zoonotic disease risk assessments, especially regarding emerging
new threats [68]. In this context, investigating wildlife zoonosis, such as salmonellosis, and
its relationship with spillover and transmission events is an important point to consider
in many surveillance programs. In Italy, the attention given to this pathogen is very great
because it was the zoonosis with the highest number of reported cases in 2021, registering
a 39% increase from the previous year [28]. Furthermore, it is relevant to monitor the
circulating serovars, since, according to the EFSA and ECDC, in 2021, there were 60,050
reported cases of salmonellosis all around Europe, which led to 71 deaths [28].

5. Conclusions

Our findings highlight the first detection of several Salmonella serovars in hedgehogs
in Italy, with some being potentially zoonotic. The high percentage of positivity suggests
that wild hedgehogs can play a role in the epidemiology and circulation of different
Salmonella subspecies and serovars in the studied geographical area. The most commonly
isolated subspecies was S. enterica subsp. enterica, with Enteritidis and Veneziana being
the most frequently detected serovars. The increasing diversity of serovars observed
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over the years is challenging to explain given the scarcity of data. Examining data from
different species that harbor the same pathogens within the same area could provide
valuable insights into this trend. Ongoing monitoring of Salmonella in wild species will
enhance our understanding of this phenomenon and its potential implications for animal
and human health. In fact, monitoring wildlife can serve as an early warning system
for identifying emerging outbreaks in animals and humans. This is especially important
considering the growing recognition of the interconnectedness between wildlife pathogens,
the environment, and human health. Understanding wildlife zoonoses and both spillover
and transmission events is crucial for effective surveillance programs. Given the high
number of reported cases of salmonellosis in Europe, including Italy, it is pivotal to monitor
the circulating serovars to assess the risks of zoonotic diseases and address emerging threats.
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9. Dziemian, S.; Sikora, B.; Piłacińska, B.; Michalik, J.; Zwolak, R. Ectoparasite Loads in Sympatric Urban Populations of the
Northern White-Breasted and the European Hedgehog. Parasitol. Res. 2015, 114, 2317–2323. [CrossRef]

https://doi.org/10.1016/j.ijppaw.2021.04.009
https://www.ncbi.nlm.nih.gov/pubmed/33996441
https://doi.org/10.3390/ani11061754
https://www.ncbi.nlm.nih.gov/pubmed/34208276
https://doi.org/10.3390/ani10030407
https://www.ncbi.nlm.nih.gov/pubmed/32121543
https://doi.org/10.3390/ani11113171
https://doi.org/10.1186/s13071-015-0814-5
https://doi.org/10.1186/s13071-017-2065-0
https://doi.org/10.1007/s10493-011-9432-x
https://doi.org/10.1007/s00436-015-4427-x


Pathogens 2023, 12, 946 8 of 10

10. Fingerle, V.; Schulte-Spechtel, U.C.; Ruzic-Sabljic, E.; Leonhard, S.; Hofmann, H.; Weber, K.; Pfister, K.; Strle, F.; Wilske, B.
Epidemiological Aspects and Molecular Characterization of Borrelia burgdorferi s.l. from Southern Germany with Special Respect
to the New Species Borrelia spielmanii sp. nov. Int. J. Med. Microbiol. 2008, 298, 279–290. [CrossRef]
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Northern White-Breasted Hedgehogs Erinaceus roumanicus as Hosts for Ticks Infected with Borrelia burgdorferi Sensu Lato and
Anaplasma phagocytophilum in Romania. Ticks Tick-Borne Dis. 2013, 4, 214–217. [CrossRef]

12. Majerová, K.; Hönig, V.; Houda, M.; Papežík, P.; Fonville, M.; Sprong, H.; Rudenko, N.; Golovchenko, M.; Černá Bolfíková, B.;
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