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Abstract: Aberrant adenosine diphosphate-ribose (ADP)-ribosylation of proteins and nucleic acids
is associated with multiple disease processes such as infections and chronic inflammatory diseases.
The poly(ADP-ribose) polymerase (PARP)/ADP-ribosyltransferase (ART) family members promote
mono- or poly-ADP-ribosylation. Although evidence has linked PARPs/ARTs and macrophages
in the context of chronic inflammation, the underlying mechanisms remain incompletely under-
stood. This review provides an overview of literature focusing on the roles of PARP1/ARTD1,
PARP7/ARTD14, PARP9/ARTD9, and PARP14/ARTD8 in macrophages. PARPs/ARTs regulate
changes in macrophages during chronic inflammatory processes not only via catalytic modifications
but also via non-catalytic mechanisms. Untangling complex mechanisms, by which PARPs/ARTs
modulate macrophage phenotype, and providing molecular bases for the development of new
therapeutics require the development and implementation of innovative technologies.

Keywords: immunity; mass spectrometry; proteomics; ADP-ribosylation; poly(ADP-ribose) glycohydrolase;
Diphtheria toxin-like ADP-ribosyltransferases; chronic infection; arboviruses; cardiovascular disease;
emphysema; alcoholic liver disease; SARS-CoV-2; host–pathogen interactions

1. Introduction

Poly(ADP-ribose) polymerases (PARPs), or ADP-ribosyltransferases (ARTs), cat-
alyze the covalent transfer of ADP-ribose (ADPr) groups from NAD+ onto target bio-
logical macromolecules including nucleic acids (DNA, mRNA), transcription factors
(e.g., NF-κB), or enzymes (e.g., PARP1/ARTD1 auto-ADP-ribosylation) [1]. The process
of adding a single ADPr moiety is known as mono-ADP-ribosylation (MARylation),
whereas adding multiple ADPr moieties is known as poly-ADP-ribosylation (PARyla-
tion); the latter occurs in a sequential way, starting with the transfer of one ADPr unit
followed by the transfer of additional ADPr units onto a growing chain. The PARP
enzyme family comprises 17 members, with variable functionality. PARP1/ARTD1,
PARP2/ARTD2, PARP5a/TNKS1/ARTD5, and PARP5b/TNKS2/ARTD6 are poly-ARTs
and have PARylation activity, while PARP3/ARTD3, PARP4/ARTD4, PARP6/ARTD17,
PARP7/ARTD14, PARP8/ARTD16, PARP9/ARTD9, PARP10/ARTD10, PARP11/ARTD11,
PARP12/ARTD12, PARP14/ARTD8, PARP15/ARTD7, and PARP16/ARTD15 are mono-
ARTs and have MARylation activity [2]. PARP13/ARTD13 is catalytically inactive [3].
The poly-ARTs’ catalytic activity is counterbalanced by poly(adenosine diphosphate-
ribose)-glycohydrolase (PARG) that hydrolyzes PARylation to MARylation. PARG is
completely unable to hydrolyze the MAR covalently attached to proteins [4], however,
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the biological significance of this limitation remains unclear [5]. Nonetheless, this PARG
enzymatic property is convenient for mass spectrometry-enabled ribosylome profiling
(more below), since only the MARylated form of the modification is conducive to mass
spectrometric analysis [6]. The mono-ARTs’ catalytic activity can be counterbalanced
by enzymes other than PARG, such as ADP-ribosylhydrolase 3 (ARH3) [7,8], terminal
ADP-ribose protein glycohydrolase (TARG)/C6orf130 [9,10], and MacroD1 [11] and
MacroD2 [12], which are able to hydrolyze the MAR attached to proteins, functioning as
mono-ADP-ribosylhydrolases. PARPs/ARTs also orchestrate biological processes via
non-catalytic activities, such as directly binding to nuclear DNA or binding to transcrip-
tion factors, but these roles remain to be further explored [13].

The subcellular locations of the PARPs/ARTs also dictate their biological functions. In
a comprehensive analysis of human somatic cell lineages, Vyas et al. used N-terminal green
fluorescent protein (GFP) and affinity-purified peptide antibodies to study the cellular
localization of PARPs/ARTs and the occurrence of PARylation during the cell cycle [14].
PARP1/ARTD1 localized to the nucleus; PARP5a/TNKS1/ARTD5, PARP5b/TNKS2/ARTD6,
PARP12/ARTD12, PARP13/ARTD13, PARP6/ARTD17, PARP8/ARTD16, PARP10/ARTD10,
and PARP16/ARTD15 localized to the cytoplasm; and PARP2/ARTD2, PARP3/ARTD3,
PARP7/ARTD14, PARP9/ARTD9, PARP14/ARTD8, PARP4/ARTD4, and PARP11/ARTD11
localized to the nucleus and cytoplasm. Their findings also suggested that: firstly, the
expression of most PARPs/ARTs was pervasive across human tissues; secondly, while
PARPs/ARTs could be found in the nucleus and in the cytoplasm, they were predominantly
found in the cytoplasm; thirdly, PAR levels were influenced by the cell cycle, and the
proportion of PAR identified in the nucleus versus cytoplasm changed during the cell
cycle. Leung et al. demonstrated that PARP5a/TNKS1/ARTD5, PARP12/ARTD12, two
isoforms of PARP13/ARTD13, PARP14/ARTD8, and PARP15/ARTD7 coordinate the
assembly of stress granules in the cytoplasm, modifying each other within this cellular
compartment [15]. Ryu et al. demonstrated that low concentrations of NAD+ can limit
PARP1/ARTD1 activity in the nucleus [16]. The influx or efflux of NAD+ thus interferes
with PARP1/ARTD1′s activity, leading to alternative gene expression signatures in the
early process of adipogenesis [17]. Additionally, the predominant type of ADP-ribosylation
in distinct cellular compartments seems to vary: PARylation appears to occur primarily
in the nucleus [18], whereas MARylation in the cytoplasm [19]. These examples illustrate
that PARPs/ARTs’ functions vary based on ADP-ribosylation catalytic activity, cellular
compartment location, and the physiological and/or pathological microenvironment.

PARP/ART biology has been studied in the context of the innate immune system,
with a particular focus on macrophages [20]. PARPs/ARTs were associated with biological
responses mediated by IFN-γ, TNF-α, IL-1β, IL-6, and NF-κB, such as host–pathogen
interactions in viral infections, vascular inflammation, and others [20]. In 1985, Singh et al.
generated DNA double-strand breaks to induce PARylation in human monocytes [21]; and
in 1991, Berton et al. reported that PARylation levels increased after IFN-γ stimulation
in human macrophages [22]. More recently, Heer et al. demonstrated that the catalytic
activities of PARP7/ARTD14, PARP10/ARTD10, PARP12/ARTD12, and PARP14/ARTD8
were closely connected to nicotinamide and derivates in the establishment of cellular innate
immune response during COVID-19 infection [23]. In another pathological setting, Wang
et al. reported that PARP1/ARTD1 and PARP2/ARTD2 inhibition with olaparib [24–27]
(a PARP1/ARTD1/2 inhibitor approved by the Food and Drug Administration for the treat-
ment of ovarian, breast, pancreatic, and prostate cancer) induced macrophage reprogram-
ming towards an anti-tumor, pro-inflammatory phenotype [28]. Macrophages are found
within the microenvironments of solid tumors [29] and chronic inflammatory conditions
such as diabetes [30], neurodegenerative diseases [31], prolonged bacterial infections [32]
but exhibit distinct functions. In tumors, they are associated with an anti-tumor innate
immune response [33] but are hypothesized to promote and sustain a pro-inflammatory
tissue milieu [20]. To date, research has focused primarily on the role of PARPs/ARTs in
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cancer biology, whereas their roles in other macrophage-driven pathologies are only just
beginning to be explored.

As we will highlight further below, recent studies have begun to investigate more
the role(s) of PARPs/ARTs and ADP-ribosylation in macrophage activation, with the aim
to identify therapeutic avenues for acute and chronic inflammation. Olaparib is already
available for the treatment of cancer and is also being investigated as a potential therapy
for pulmonary arterial hypertension (Clinical Trial No.: NCT03782818), although these
applications focus on DNA damage and repair features of PARP1/ARTD1 inhibition.
Nevertheless, a phase-I trial has been initiated to test the PARP14/ARTD8 inhibitor, RBN-
3143, as a potential therapy for atopic dermatitis (Clinical Trial No.: NCT05215808), focusing
on inflammation control. Macrophages are key players in the sustained inflammation
occurring in atopic dermatitis [34,35], thus representing the initiative to translate the
interplay between ADP-ribosylation and macrophage biology to the clinic.

2. PARylation, Macrophages, and Chronic Inflammation

Among the PARPs/ARTs mediating PARylation during inflammation, PARP1/ARTD1
is the most studied [36,37]. Various stimuli promote PARP1/ARTD1 activity in macrophages,
often leading to the expression of pro-inflammatory genes and downstream inflammatory
responses. In the current section, we will review the most recent articles exploring the
distinct mechanisms of action of PARP1/ARTD1 in macrophage activity in the setting of
chronic or prolonged inflammation.

2.1. ADP-Ribosylation and DNA Damage

The catalytic activity of PARP1/ARTD1 increases with DNA damage following geno-
toxic stimuli. Dawicki-McKenna et al. used hydrogen/deuterium exchange–mass spec-
trometry to demonstrate that breaks in the DNA strand led to structural changes in
PARP1/ARTD1′s helical subdomain (HD), which is part of the catalytic domain [38]. The
helical subdomain functions as an autoinhibitory portion of the catalytic domain, unfolding
in the presence of DNA strand breaks and thus promoting PARP1/ARTD1′s catalytic activ-
ity. Eustermann et al. [39] demonstrated that a sequential multidomain unfolding occurs
in PARP1/ARTD1 in response to DNA single-strand breaks (SSBs). Firstly, the F2 domain
recognizes and detects SSBs; secondly, the F1 domain binds to the complex, exposing the 5′

cryptic site and orienting the assembly of remaining PARP1/ARTD1 domains; thirdly, the
F3, WGR, and CAT domains also bind the exposed strand, culminating in the unfolding
of the autoinhibitory helical subdomain. This cooperative process generates a specific
recognition of sites of SSBs by PARP1/ARTD1, promoting PAR-mediated signaling and
modulation of chromatin structure upon DNA damage. Figure 1 provides a graphical
representation [40] of PARP1/ARTD1 domains and their structure, as well as a flowchart
indicating the dual action of PARP1/ARTD1 during inflammation.

These works also aided in the paradox involving PARP1/ARTD1 cis versus trans
(another PARP1/ARTD1 molecule) modification during response to DNA damage. While
PARP1/ARTD1 dimers have been reported [41–43], suggesting that the trans modification
occurs, results from Dawicki-McKenna et al. [38] and Eustermann et al. [39] indicated that
PARP1/ARTD1 automodifies itself, unless two DNA binding sites are closely adjacent,
leading to trans modification activity.

More recently, other reports have described the dynamic nature of the interactions
between PARP1/ARTD1 and DNA [44], either using its DNA-binding domain (DBD)
along with zinc finger domains I and II (ZI and ZII, respectively) for short-term inter-
actions [45], or using histone H4, which leads to a prolonged interaction with the DNA
strand [46]. Short-term interactions between the DBD of PARP1/ARTD1 and DNA were
associated with activation of DNA repair pathways at specific stages of DNA damage,
while long-term interactions between the C-terminal domain of PARP1/ARTD1 and hi-
stone H4 were associated with promotion of gene expression [44]. This dual action of
PARP1/ARTD1 on DNA illustrates the complexity of this enzyme and provides indications
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that PARP1/ARTD1 may be associated with chronic inflammation not only as a repair
mechanism secondary to inflammation-driven DNA damage [47] but also promoting the
expression of pro-inflammatory and/or anti-inflammatory genes.
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Figure 1. Graphical representation of PARP1/ARTD1 and its role during inflammation. (A): Tridi-
mensional representation of PARP1/ARTD1 structure, indicating the catalytic, the WGR, and the
BRCT domains. (B): Flowchart depicting the cell stimuli able to promote PARP1/ARTD1 activity
(catalytic and non-catalytic) during prolonged inflammatory processes, leading to PARylation and
transcription of mRNA.

Reactive oxygen species (ROS) generated during pro-inflammatory responses lead
to DNA damage [48], triggering short-term PARP1/ARTD1-DNA interactions [44,45].
However, in a study using a model of elastase-induced emphysema and chronic lung
inflammation in mice, prolonged inhibition of PARP1/ARTD1 with olaparib reduced the
number of macrophages in the bronco-alveolar lavage after 21 days of treatment when
compared with the control group [49]. Levels of ROS and malondialdehyde (MDA, a marker
of lipid peroxidation) increased in lung tissues of the control group (four-fold and seven-
fold, respectively) due to the inflammation and macrophage activity induced by elastase,
but daily treatment with olaparib restored ROS and MDA to normal levels, indicating an
improvement in the inflammatory and redox balances [49,50]. These results exemplify how
PARP1/ARTD1 may have a dual and contrasting role in chronic inflammation, repairing
DNA following ROS while promoting the production of ROS in macrophages.

2.2. PARP1/ARTD1 Promotes Transcription of Pro-Inflammatory and Apoptosis-Related Genes

Inhibition of PARP1/ARTD1 ameliorates inflammation in chronic conditions and
innate immune responses, and this effect was found in multiple pathologies driven by
long-term inflammatory processes. Kunze et al. [51] demonstrated that stimulation of bone
marrow-derived monocytes (BMDMs) from genetically modified mice expressing catalyti-
cally inactive PARP1/ARTD1 induced the expression of a pro-inflammatory signature of
almost 2500 genes, including genes regulating IL-12, IFN-γ, and TNF-α production. In the
same study, they reported that mice transplanted with catalytically inactive PARP1/ARTD1
myeloid progenitors were colonized by H. pylori at higher levels when compared to their
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control littermates [51], suggesting that PARP1/ARTD1 contributed to controlling gas-
tric bacterial colonization. In another disease model, inhibition of PARP1/ARTD1 with
3-aminobenzamide, an anti-inflammatory compound classically used for PARP1/ARTD1
inhibition [52], improved rectal hemorrhage, blood sugar levels, blood IL-1β levels, weight
loss, and the histological score of colonic sections in mice with colitis-associated dia-
betes [53]. Similar findings were reported by Kovács et al. [54] after using olaparib to
inhibit PARP1/ARTD1 activity in a mouse model of Crohn’s disease (a type of inflam-
matory bowel disease). They found that olaparib increased the levels of IL-10, while it
suppressed the concentration of IL-1β and IL-6 [54]. Also, olaparib generated a reduction
in the number of monocytes in the blood of treated mice when compared with controls [54].
Gupte et al. [55] stimulated BMDMs from wild-type and PARP1/ARTD1-deficient mice,
demonstrating that PARP1/ARTD1-mediated STAT1-α PARylation influenced the tran-
scriptional program upon IFN-γ stimulation [55].

The regulation of PARPs/ARTs’ catalytic activities in chronic inflammation also relates
to NAD+ metabolism. Gerner et al. [56] inhibited nicotinamide phosphoribosyltransferase
(NAMPT), a rate-limiting enzyme in the NAD+ salvage pathway, to reduce NAD+ levels in
human cells and mice with intestinal colitis. They found that depletion of NAD+ reduced
PARP1/ARTD1 catalytic activity, suppressed the expression of IL-6, IL-1β, and TNF-α,
and skewed monocytes/macrophages from pro-inflammatory towards anti-inflammatory
phenotypes [56]. In the same line, reduction of NAMPT-derived NAD+ via pharmacolog-
ical inhibition of NAMPT reduced the pathological changes in psoriasis [57] and atopic
dermatitis [58] and diminished the expression of pro-inflammatory biomarkers.

In addition to promoting cytokine/chemokine gene expression, PARP1/ARTD1 also
influences the cellular fate in apoptosis [59], a fundamental element of inflammation [60].
PARP1/ARTD1 has been extensively associated with caspases in a mechanism known
as parthanatos [61,62] (not reviewed in this manuscript). For instance, Zhang et al. [63]
analyzed cleaved caspase 3 in liver samples from mice with chronic alcoholic liver in-
jury [63], and demonstrated that pharmacological inhibition with PJ-34 [64] or genetic
depletion of PARP1/ARTD1 decreased the number of cleaved caspase 3-positive cells in
diseased livers when compared to controls. They found that long-term ethanol consump-
tion promoted PARP/ART activation, hepatic steatosis, and intense cytokine expression
in liver samples, while in vivo pharmacologic inhibition of PARP1/ARTD1 with PJ-34
attenuated triglyceride content and serum alanine transaminase levels in liver, suggesting
a milder injury phenotype [63]. Erener et al. [65] also identified an association between
caspase 1, caspase 7, and PARP1/ARTD1. They found that stimulation with LPS promoted
the translocation of caspase 7 to the nucleus (mediated by caspase 1 and NLRP3 inflam-
masome activation), where it cleaves PARP1/ARTD1 at the caspase cleavage site D214,
generating free PARP1/ARTD1 fragments, decondensation of chromatin, and expression
of NF-κB dependent-genes. They generated human THP-1 cells expressing non-cleavable
PARP1/ARTD1, stimulated them with LPS, and compared them with genetically unmodi-
fied controls, confirming that caspase 7 cleaved PARP1/ARTD1 mostly at the D214 site.
Martínez-Morcillo et al. [66] found that PARP1/ARTD1 activation leads to skin inflamma-
tion and cell death via parthanatos-mediated apoptosis in psoriasis, and pharmacological
inhibition of NAMPT decreased the expression of genes associated with psoriasis.

Together, those findings suggest that PARP1/ARTD1 can influence gene expression
during chronic inflammation via ADP-ribosylation of macromolecules and can initiate
apoptosis upon interaction with caspases. Controlling NAD+ levels via NAMPT regulation
in such immune responses may be a potential source of new targets to suppress pathogene-
sis derived from ADP-ribosylation, although a deeper understanding of these mechanisms
is still needed.

2.3. PARP1/ARTD1 Mediates Host–Pathogen Interactions in Chagas Heart Disease

Chagas heart disease is caused by the protozoan parasite Trypanosoma cruzi (T. cruzi).
The classical phenotype seen in this condition is the result of chronic (years to decades) of
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sustained myocyte inflammation, oxidative stress, and macrophage infiltration into cardiac
muscle [67,68]. Ba et al. [69] demonstrated that T. cruzi infection of cardiomyocytes leads
to mitochondrial production of ROS that diffuse to the cytosol and nucleus, leading to
DNA damage and PARP1/ARTD1 activation. As a result, the expression of genes related
to pro-inflammatory cytokines increased either due to the interaction between ROS and cy-
tosolic NF-κB or due to PARP1/ARTD1-mediated PARylation of proteins that interact with
RelA(p65) (an NF-κB subunit). Further evidence indicated that depletion of PARP1/ARTD1
(with genetic deletion or PJ-34 administration) in infected mice prevented cardiac hyper-
trophy and left ventricle dysfunction and restored the mitochondrial antioxidant/oxidant
balance [70]. PARP1/ARTD1 is associated with chromatin during T. cruzi infection but
its mRNA levels did not change when compared to non-infected states, indicating that a
translocation of PARP1/ARTD1 to chromatin-dense regions occurred [71,72]. These results
suggest that PARP1/ARTD1 influences the response to mitochondrial stress during T. cruzi
infection. Evidence also connects PARP1/ARTD1 to macrophages in the host–pathogen in-
teraction. Macrophage-like RAW264.7 cells treated with extracellular vesicles (EVs) derived
from infected mouse plasma released higher levels of TNF-α, IL-1β, and IL-6 than did con-
trol cells [73]. EVs derived from T. cruzi-infected RAW264.7 cells induced lower expression
levels of TNF-α, IL-1β, and IL-6 in BMDMs harvested from PARP1/ARTD1-deficient mice
compared to wild-type control [73]. Thus, it is possible that the previously described role of
macrophages in Chagas heart disease [74] may be mediated by PARP1/ARTD1, but more
studies are needed.

2.4. PARP1/ARTD1 in Cardiovascular Inflammation

Von Lukowicz et al. proposed that PARP1/ARTD1 mediates macrophage adhe-
sion to endothelial cells in the process of atherogenesis [75]. Both PARP1/ARTD1 and
PARP2/ARTD2 inhibition with PJ-34 and PARP1/ARTD1 genetic deletion without PJ-34
reduced plaque formation and the expression of adhesion molecules such as E-selectin,
P-selectin, VCAM1, and iNOS. Another study linked high glucose and PARP1/ARTD1
levels in streptozocin-induced diabetes mellitus in apolipoprotein E-deficient mice [76]. In a
rat model of cerebral aneurysms, treatment with 3-aminobenzamide, an anti-inflammatory
compound classically used for PARP1/ARTD1 inhibition [52], decreased macrophage
accumulation and PARP1/ARTD1 expression [77]. These studies indicate that differ-
ent forms of inflammatory arterial injury (i.e., atherosclerosis, aneurysm formation, and
hyperglycemia-induced inflammation) share PARP1/ARTD1 as a common mediator of the
inflammatory process.

3. MARylation, Macrophages, and Chronic Inflammation

Although most studies to date have focused on PARylation and PARP1/ARTD1, evi-
dence suggests that MARylation also regulates macrophage activation, inflammation, and
host–pathogen interactions. For instance, in an evolutionary analysis of the PARP/ART
genes, Daugherty et al. [78] demonstrated that PARP9/ARTD9, PARP14/ARTD8, and
PARP15/ARTD7 had signs of genetic adaptation in primates, notably in their macrodomains,
and evolved under positive selection. In another example, our own research demon-
strated that PARP9/ARTD9 and PARP14/ARTD8 regulate pro-inflammatory activation of
macrophages upon stimulation [79,80]. Therefore, considering the accumulated evidence
that MARylation and mono-PARPs/ARTs are involved with the innate immune system, in
this section we will review recent articles investigating the interplay between PARPs/ARTs,
MARylation, and macrophage activation and explore how these findings provide insight
into mechanisms that drive chronic inflammation and host–pathogen interactions.

3.1. PARP7/ARTD14 Mediates Epithelial Inflammation

In a mouse model of a dextran sodium sulfate-induced ulcerative colitis study,
PARP7/ARTD14 deletion increased mRNA levels of IL-1β, IL-6, IL-17, and Lcn2 and
decreased survival rate [81]. Aryl hydrocarbon receptor (AHR), which induces the ex-
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pression of PARP7/ARTD14, mediates pro-inflammatory responses in this model. The
PARP7/ARTD14 catalytic domain MARylates AHR, which represses AHR signaling in a
negative feedback loop. AHR responsiveness was enhanced by short-chain fatty acids in
mouse colonocytes [81], supporting the hypothesis that chronic inflammation related to
toxic lipid particles in cells of epithelial origin involves PARP7/ARTD14 [82].

3.2. PARP9/ARTD9 Mediates Viral and Bacterial Host–Pathogen Interactions

In a cohort with patients infected with pulmonary tuberculosis (TB) and healthy
controls, Chen et al. [83] identified an inversely proportional association between TB
infection severity and methylation status of PARP9/ARTD9 DNA in PBMCs extracted
from participants. Severe TB clinical phenotypes were associated with hypomethylation of
the PARP9/ARTD9 gene, suggesting that lower expression of PARP9/ARTD9 may lead
to impaired innate response to TB infection in individuals with that epigenotype. Novel
data from Thirunavukkarasu et al. [84] further support this hypothesis. They reported
that PARP9/ARTD9 mRNA was increased in humans and mice infected with TB, and
Parp9-/- mice were more susceptible to TB infection and developed more severe phenotypes
compared to controls.

Similarly, PARP9/ARTD9 appears to be involved in innate immune responses against
RNA viruses. Xing et al. [85] demonstrated that PARP9/ARTD9 is able recognize and
bind RNA virus in human and mouse dendritic cells and macrophages, deploying an
IFN-mediated response independent of the mitochondrial anti-viral signaling (a major
mechanism for recognizing RNA viruses during infection). Furthermore, Parp9-/- deletion
made mice more susceptible to RNA virus infection [85], reinforcing that PARP9/ARTD9
participates in the host–pathogen interactions. Curiously, PARP9/ARTD9 was associated
with persistent hepatitis B virus (HBV) infection in a transcriptome-wide association study,
in which chronic HBV carriers had increased expression of PARP9/ARTD9 when compared
to non-infected individuals [86]. HBV is a DNA virus with unique features that approximate
it to RNA viruses [87], which may relate to the results above (PARP9/ARTD9 acting as a
recognizer of viral RNA).

3.3. PARP14/ARTD8 Mediates Chronic Inflammation and Response to Arboviruses

Recent data indicate that PARP14/ARTD8 participates in the establishment of an im-
mune response to arboviruses. Eckei et al. [88] reported that the macrodomains of Chikun-
gunya virus (a positive single-strand RNA virus) have strong hydrolase activity on proteins
that were ADP-ribosylated by PARP10/ARTD10, PARP14/ARTD8, and PARP15/ARTD7.
Fernandez et al. [89] reported that Zika virus infection in human PBMCs induced the
expression of PARP14, IL-6, CCL8, CXCL1, and CXCL5, suggesting that the infection pro-
moted changes in the transcriptional and post-transcriptional levels. These results indicate
that PARP14/ARTD8 influences the host–pathogen dynamic in arbovirus infections.

3.4. PARP9/ARTD9 and PARP14/ARTD8 Mediate Macrophage Activation in Atherosclerosis

PARP14/ARTD8 is also important in other chronic inflammatory responses. Using
a systems approach based on unbiased network analysis and artificial intelligence, our
previous studies discovered PARP14/ARTD8 and PARP9/ARTD9 as potential molecu-
lar switches of macrophage activation [79,80]. Proteome analyses from stimulated and
non-stimulated human and mouse macrophage-like cells detected an increase in the ADP-
ribosylated PARP14/ARTD8 and PARP9/ARTD9 peptide levels upon stimulation with IFN-
γ, and network analysis identified a close link between those PARPs/ARTs and the human
coronary artery disease gene module [79,80]. Additional in vitro experiments indicated that
PARP9/ARTD9 and PARP14/ARTD8 may function upstream of pro-inflammatory STAT1
and anti-inflammatory STAT6 signaling pathways, respectively [79,80]. Iqbal et al. [90]
reported that macrophages from PARP14/ARTD8-deficient mice express higher levels
of tissue factor mRNA and protein than do wild-type mice [90]. Mehrotra et al. [91]
reported that PARP14/ARTD8 specifically binds to STAT6, regulating its promoter ac-
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tivity upon stimulation with IL-4, and demonstrated that this interaction is dependent
on PARP14/ARTD8 catalytic domain [91]. Figure 2 provides a summary of the different
disease models mediated by PARPs/ARTs and macrophages in chronic inflammation.
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4. SARS-CoV-2, ADP-Ribosylation, and Innate Immune Response

ADP-ribosylation and PARPs/ARTs are important in viral host–pathogen interactions
and in the organization of the host’s innate immune response [92]. PARP/ART genes are
interferon-stimulated genes [93,94]. Stress granule formation is a major effect of interferon
stimulation during innate immune responses, and it is closely related to PARPs/ARTs and
ADP-ribosylation [95–97]. PARPs/ARTs and PARG probably mediate the assembly and
maintenance of stress granules in a dynamic way: PARylation of stress granule proteins
increases in stress conditions or with PARG silencing [15,98]. Together, these results suggest
that hydrolysis of PAR/MAR could limit the effectiveness of the host’s innate immune
response against viruses.

Even before the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 pan-
demic, different types of coronaviruses’ macrodomains belonging to non-structural protein
3 (nsp3) were identified as ADP-ribose-binding modules [99]. In 2006, Egloff et al. reported
that the crystal structure of the SARS-CoV macrodomain associates with ADP-ribose, be-
ing able to bind PAR and to function as an ADP-ribose 1”-phosphatase [100]. Evidence
suggests that nsp3 and its macrodomains were part of coronaviruses’ virulence mecha-
nisms [101–103], promoting virus replication and suppressing interferon-mediated host
responses (e.g., stress granule formation) [104–106].

With the onset of the pandemic, data connecting the new SARS-CoV-2 macrodomains
and ADP-ribosylation quickly became available [107]. The crystal structures of SARS-
CoV-2 nsp3 and its macrodomains were the initial focus of many research groups, often
associating structural studies [108–111] and computational methods [112,113] to identify
potential treatments for the infection. Alhammad et al. [114] reported that SARS-CoV-2
nsp3 macrodomain 1 (Mac1) hydrolyzes MARylated proteins, functioning as a mono-ADP-
ribosylhydrolase. This macrodomain’s function is preserved across the three coronaviruses
that caused pandemics in the recent past: SARS-CoV, SARS-CoV-2, and Middle East
respiratory syndrome (MERS) coronavirus. Brosey et al. [115] compared human PARG with
Mac1 crystal structures and identified homology between their active sites, revealing that
PARG inhibitor fragments PARG-345 and PARG-329 can fully interact with Mac1, appearing
as potential inhibitors for Mac1. Chea et al. [116] proposed that Mac1 has specific targets
and functionality when compared to Mac2 and Mac3. Their results indicate that Mac1 may
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act specifically in the ADP-ribose moieties on O- and N-linked groups, being able to cleave
ADP-ribosylated substrates via a-NAD+, ADPr-1”phosphate, and O-acetyl-ADP-ribose,
but not via b-NAD+, a-ADP-ribose-(arginine), and ADP-ribose-(serine)-histone H3.

Other studies also investigated the link between Mac1 and innate immunity responses
against SARS-CoV-2. Russo et al. [117] demonstrated that ectopic nsp3 (macrodomain not
specified) is able to hydrolyze downstream ADP-ribosylation mediated by PARP9-DTX3L
dimers following IFN-γ stimulation. Preliminary data indicated [118] that deletion of Mac1
in SARS-CoV-2 (∆Mac1) led to a faster clearance of the virus in a mouse model of severe
infection when compared to wild-type SARS-CoV-2. ∆Mac1 also promoted the expression
of ISGs and interferons and sharply reduced the number of inflammatory neutrophils
and macrophages.

There is another mechanism by which SARS-CoV-2 may intervene in the host–pathogen
interaction via ADP-ribosylation. PARP/ART catalytic activity depends on NAD+ for the
covalent transference of ADP-ribose to biological macromolecules. It is also well estab-
lished that increased PARP/ART catalytic activity leads to depletion of NAD+ [119,120].
Reports before SARS-CoV-2 already suggested that restoration of NAD+ would enhance
host immune responses against viruses, aiding macrophage function and the interferon
cascade [121]. Based on this background, authors hypothesized that NAD+ may also be
a key element of pathogenesis in acute and chronic (post-acute sequelae of COVID-19)
SARS-CoV-2 infection [120,122,123]. Heer et al. [23] demonstrated that varied human lung
cell lineages infected with SARS-CoV-2 have increased expression of PARP7/ARTD14,
PARP10/ARTD10, PARP12/ARTD12, and PARP14/ARTD8 (among other PARPs/ARTs)
and that NAD+ concentration was the limiting factor for these enzymes. In addition,
the authors of the same study demonstrated that infection of human cells with murine
hepatitis virus (a model of coronaviruses) leads to NAD+ and NADP+ depletion and that
SARS-CoV-2 changes the expression of genes related to NAD biosynthesis [23]. Using
SARS-CoV-2-infected mice, Jiang et al. [124] confirmed that SARS-CoV-2 infection alters the
expression of genes related to NAD and NADPH biosynthesis. They also demonstrated that
NAD+ supplementation alleviated the pathological phenotypes of pneumonia in infected
mice and partially rescued the imbalance in NAD+ genes. Table 1 provides an overview of
the enzymes discussed in this review, with their respective activities and disease processes.

Table 1. PARPs/ARTs and ADP-ribose hydrolases and their action in chronic inflammation.

Enzyme Activity Disease/Biological Process(s)

PARP1/ARTD1 PARylation, MARylation, or
non-catalytic activity

Emphysema/Chronic lung inflammation [49,50]
H. pylori infection [51]
Colitis/Inflammatory bowel diseases [53,54,56]
Psoriasis [57,66]
Atopic dermatitis [58]
Alcoholic liver injury [63]
Chagas heart disease [69–72]

PARP7/ARTD14 MARylation SARS-CoV-2 infection [23]
Colitis/Inflammatory bowel diseases [53,54,56]

PARP9/ARTD9 MARylation

Pulmonary tuberculosis [83,84]
RNA-viruses infections [85,86]
Atherosclerosis/arterial inflammation [79,80]
SARS-CoV-2 infection [117]

PARP10/ARTD10 MARylation SARS-CoV-2 infection [23]
Arboviruses infections [88]

PARP12/ARTD12 MARylation Assembly and maintenance of stress granules [15]
SARS-CoV-2 infection [23]

PARP13/ARTD13 Non-catalytic activity Assembly and maintenance of stress granules [15]
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Table 1. Cont.

Enzyme Activity Disease/Biological Process(s)

PARP14/ARTD8 MARylation

Atopic dermatitis (Clinical Trial No.: NCT05215808)
SARS-CoV-2 infection [23]
Atherosclerosis/arterial inflammation [79,80,90,91]
Arboviruses infections [88,89]

PARP15/ARTD7 MARylation Assembly and maintenance of stress granules [15]
Arboviruses infections [88]

PARG Hydrolysis (PAR) Assembly and maintenance of stress granules [15,98]

Macrodomain 1 (nsp3) Hydrolysis (MAR) SARS-CoV-2 infection [114,117,118]

5. Mass Spectrometry and ADP-Ribosylation

Enzyme-catalyzed covalent modifications of amino acids such as phosphorylation,
ubiquitination, glycosylation, and ADP-ribosylation are post-translational modifications
(PTMs). PTMs regulate various processes related to cellular homeostasis [125]. The biologi-
cal complexity and the potentially ephemeral nature of PTMs make them challenging to
decipher; but innovative mass spectrometry technologies have enabled their widespread
investigations. Ribosylomics is the study of proteome-wide ADP-ribosylation, using mass
spectrometry. The last ten years have witnessed technological advances that have overcome
initial obstacles for ribosylome, including difficulties associated with precise identification
of amino acid acceptor sites, the unstable nature of its covalent binding to the amino acid
chain, and its complex pattern of fragmentation [126–132]. Several mass spectrometry-
based workflows are currently available to study ADP-ribosylation, but PARylated peptides
are not amenable to typical mass spectrometric acquisition methods. The conversion of
PAR to MAR peptides using poly-PARG [80,131,132] or the complete reduction to a phos-
phoribose using a phosphodiesterase [133] provides the means to detect ADP-ribosylated
proteins/peptides using mass spectrometry; however, these methods do not provide the na-
ture of the original modification, MAR vs. PAR. In parallel to the mass spectrometry-based
innovations to characterize ADP-ribosylated proteins are the ongoing efforts to develop
computational resources to confidently characterize and report ribosylome data.

5.1. Enrichment Strategies and Activation Methods Influence the Identification of
ADP-Ribosylated Proteins in Macrophages

Multiple research groups have tested the activation methods for identifying ADP-
ribosylated peptides, their ADP-ribose acceptor sites, and unique enrichment strategies.
Electron transfer dissociation (ETD) proved to be efficient in the identification of unambigu-
ous ADP-ribosylated peptides and their acceptor sites [127], with the combination of ETD
with higher-energy collisional dissociation (EThcD) being superior to ETD alone for the
same purpose [128,132]. Also, the enrichment protocol using an Af1521-Sepharose bead
workflow [134] can be combined with ETD for mass spectrometry analysis [131]. Different
activation methods may provide the identification of specific ADP-ribosylated peptide
groups, depending on their acceptor sites. Ion ETD seems to be superior to EthcD in the
occurrence of non-dissociative electron transfer for ADP-ribosylated precursor peptides,
and residues modified on arginine and lysine were more stable during HCD fragmentation,
whereas the annotation of residues modified on serine, glutamate, tyrosine, and aspartate
were more challenging [126]; this is interesting, as modifications on arginine were more fre-
quent during physiological conditions, while modifications on serine were scarce in similar
conditions [131], indicating that adjusting the activation method based on the biological
condition may provide more reliable results. It is worth noting that the studies mentioned
in this paragraph mainly used cancer cell lines and/or healthy mouse tissues, indicating
that technical optimization would potentially be needed for the study of inflammatory
biosystems related to macrophages and macrophage-like cells.
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In 2019, our group demonstrated that different ADP-ribosylation enrichment strate-
gies and activation methods influence the identification of ADP-ribosylated peptides in
IFN-γ-stimulated human THP-1 macrophage-like cells [80]. We compared the mass spec-
trometry results of two enrichment strategies: the Af1521-based workflow [134], in which
the macrodomain of the Af1521 compound is used to affinity-purify ADP-ribosylated
peptides; and the 10H anti-ADP-ribose antibody-based workflow, in which the antibody
is used in immunoprecipitation of ADP-ribosylated proteins. While the Af1521-based
workflow provided spectra rich in MARylated peptides and amino acid acceptor sites, the
antibody-based workflow only provides peptides suggesting candidate ADP-ribosylated
proteins since ADP-ribosylated peptides themselves are not detected. The 10H strategy
enriched 1,389 candidate ADP-ribosylated proteins, whereas the Af1521 strategy enriched
145 ADP-ribosylated proteins, resulting in 39 proteins commonly identified which included
PARP14/ARTD8 and PARP9/ARTD9 [80].

We also compared distinct activation (peptide sequencing) methods and demonstrated
that, while HCD provides a larger number of identified ADP-ribosylated peptides, ETD
dissociation provides a more reliable identification of the ADP-ribosylation acceptor site
in ADP-ribosylated peptides [80]. With these results, we were able to confirm that stimu-
lation of human THP-1 macrophage-like cells with IFN-γ increased PARP9/ARTD9 and
PARP14/ARTD8 ADP-ribosylation levels.

5.2. An Innovative Spectral Annotation Strategy Facilitates the Report of ADP-Ribosylated
Peptides in IFN-γ-Stimulated Mice

The investigation of ADP-ribosylated proteins using mass spectrometry methods
requires optimal annotation strategies to accurately identify such proteins after enrich-
ment protocols. The ADPriboDB (initially published by Vivelo et al. [135] and updated
by Ayyappan et al. [136]) was the first report of a publicly available database of ADP-
ribosylated proteins, in which users can find information about proteins reported in the
mass spectrometry literature, from as early as 1975. Each individual entry was revised
manually by two independent reviewers before inclusion in the database. Likewise, manual
annotation of peptide spectra is still commonly used in mass spectrometry studies in the
ADP-ribosylation field.

In 2022, our group capitalized on our optimized ADP-ribosylation enrichment and
activation methods to develop a new strategy for annotating ADP-ribosylated peptide spec-
tra (named “RiboMap”) from liver and spleen samples of IFN-γ-stimulated mice [129,137].
In this strategy, once a candidate ADP-ribosylated peptide fragment spectrum is assigned
and scored by the standard spectral search engine, RiboMaP then annotates and scores the
spectra for ADP-ribosylation-unique features [129].

With this unique spectral annotation tool, we could increase the confidence of the
reported ADP-ribosylated peptide spectra associated with pro-inflammatory responses
in liver and spleen. With that combination of mass spectrometry and computational
techniques, even ADP-ribosylated peptides with overall low biological abundances, such as
PARP9/ARTD9 and PARP14/ARTD8, could be identified. We further applied the RiboMap
strategy to publicly available data sets and even to our own previously published human
macrophage cell and mouse samples, and we found that, regardless of study and sample
type, RiboMap increased the number of ADP-ribosylated peptide spectral annotations in
all tests [129].

6. Future Perspectives

Since the seminal articles in the 1960s describing ADP-ribosylation as a post-translational
modification occurring in stimulated human monocytes/macrophages [21,22,138], the
field has expanded enormously. Although ADP-ribosylation is posited to regulate various
biological or pathological processes, the mechanisms remain barely understood. Mass
spectrometry and computational biology techniques appear to be some of the fundamental
tools for overcoming knowledge gaps in the study of ADP-ribosylation. Mass spectrometry
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technologies are continually developing, with the aim to sequence deeper into a proteome.
Ion mobility technology, such as field asymmetric waveform ion mobility spectrometry
(FAIMS), is one such development. We envision FAIMS to be a promising technology to
increase the sequencing depth of a given ribosylome, similar to what has been demonstrated
for the phosphorylation field [139].

There are also promising perspectives for the field of ADP-ribosylation and macrophage-
mediated chronic inflammation. A clinical trial is currently investigating the efficacy of
a PARP1/ARTD14 inhibitor compound in the treatment of atopic dermatitis, a chronic
inflammatory disease deeply associated with macrophage activation. Likewise, with the
help of the strategies mentioned above, other novel drug targets may emerge from bench
research. The cumulative evidence suggests that ADP-ribosylation is an important piece of
the sustained inflammatory response of macrophages in cardiovascular, gastrointestinal,
pulmonary, and hepatic diseases, as well as in prolonged infections. Therefore, we expect
that other potential candidate drugs may appear in a near future, translating bench results
into clinical tools for patient care.
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