
Citation: Thomson, P.; García, P.; Río,

C.d.; Castro, R.; Núñez, A.; Miranda,

C. Antimicrobial Resistance and

Extended-Spectrum Beta-Lactamase

Genes in Enterobacterales,

Pseudomonas and Acinetobacter

Isolates from the Uterus of Healthy

Mares. Pathogens 2023, 12, 1145.

https://doi.org/10.3390/

pathogens12091145

Academic Editors: Fábio P. Sellera,

João Pedro Rueda Furlan and

Danny Fuentes-Castillo

Received: 14 June 2023

Revised: 31 August 2023

Accepted: 5 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Communication

Antimicrobial Resistance and Extended-Spectrum
Beta-Lactamase Genes in Enterobacterales, Pseudomonas and
Acinetobacter Isolates from the Uterus of Healthy Mares
Pamela Thomson 1,*, Patricia García 2 , Camila del Río 1, Rodrigo Castro 3, Andrea Núñez 4,5

and Carolina Miranda 6

1 Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias
de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; mcm@unab.cl

2 Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica,
Santiago 8940000, Chile; pgarciacan@uc.cl

3 Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo
Tomás, Talca 3473620, Chile

4 Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule,
Curicó 3340000, Chile

5 Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago 7500975, Chile
6 Laboratorio de Microbiología Red de Salud UC-CHRISTUS, Pontificia Universidad Católica,

Santiago 8940000, Chile; cmirandt@uc.cl
* Correspondence: pamela.thomson@unab.cl

Abstract: Antibiotic-resistant bacteria are a growing concern for human and animal health. The
objective of this study was to determine the antimicrobial resistance and extended-spectrum beta-
lactamase genes in Enterobacterales, Pseudomonas spp. and Acinetobacter spp. isolates from the
uterus of healthy mares. For this purpose, 21 mares were swabbed for samples, which were later
seeded on blood agar and MacConkey agar. The isolates were identified using MALDI-TOF and the
antimicrobial susceptibility test was performed using the Kirby–Bauer technique. To characterize
the resistance genes, a polymerase chain reaction (PCR) scheme was performed. Of the isolates
identified as Gram-negative, 68.8% were Enterobacterales, represented by E. coli, Enterobacter cloacae,
Citrobacter spp., and Klebsiella pneumoniae; 28.1% belonged to the genus Acinetobacter spp.; and 3.1% to
Pseudomonas aeruginosa. A 9.3% of the isolates were multidrug-resistant (MDR), presenting resistance
to antibiotics from three different classes, while 18.8% presented resistance to two or more classes of
different antibiotics. The diversity of three genes that code for ESBL (blaTEM, blaCTX-M and blaSHV)
was detected in 12.5% of the strains. The most frequent was blaSHV, while blaTEM and blaCTX-M were
present in Citrobacter spp. and Klebsiella pneumoniae. These results are an alarm call for veterinarians
and their environment and suggest taking measures to prevent the spread of these microorganisms.

Keywords: uterus; mares; antibiotic resistance; ESBL

1. Introduction

The presence of microorganisms in the uterus of mares without reproductive patholo-
gies has shown the existence of a uterine microbiota, of which nearly 200 microorganisms
have been identified by molecular techniques [1–5]. These microorganisms play funda-
mental roles [6] in processes such as embryo implantation, prevention of the growth of
pathogenic microorganisms, and protection of the epithelium [7–9]. It has been described
that alteration or dysbiosis is related to the direct entry of bacteria through mating, arti-
ficial insemination, gynecological examination [1,6,10,11], malformation of the vulva or
perineal region [12,13], and lesions of the cervix or vagina. These situations have been posi-
tively associated with bacterial endometritis [9,14], where Streptococcus equi, Escherichia coli,

Pathogens 2023, 12, 1145. https://doi.org/10.3390/pathogens12091145 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12091145
https://doi.org/10.3390/pathogens12091145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-5983-2392
https://doi.org/10.3390/pathogens12091145
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12091145?type=check_update&version=1


Pathogens 2023, 12, 1145 2 of 12

Klebsiella spp., and Pseudomonas spp. are the most frequently isolated microorganisms in
this pathology [15–19].

In some countries in Europe, India, and the United States, bacteria such as Enter-
obacterales, Pseudomonas spp., and Acinetobacter spp. isolated from the uterus and vagina
of healthy mares [11,16,18,20–23] show resistance or multidrug resistance (MDR) to an-
tibiotics [24–31]. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae
and carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa were clas-
sified by the World Health Organization (WHO) as critically important pathogens [32]
and are among the main antimicrobial resistance (RAM) threats in humans [33,34] and
animals [35–39]. These situations are a cause of concern for the medical environment
due to the probable dissemination of microorganisms and the limitation of therapeutic
options [40]. The objective of this study was to determine the antimicrobial resistance
and extended-spectrum beta-lactamase genes in Enterobacterales, Pseudomonas spp., and
Acinetobacter spp. isolates from the uterus of healthy mares.

2. Materials and Methods
2.1. Ethical Approval

This research was approved by the Scientific Committee of Ethics of the Central-South
macrozone of the Santo Tomás University, Chile (Approval number 60-21) and was carried
out in the Maule region (35◦25′ S, 71◦39′ W) during October 2021.

2.2. Subjects and Criteria Selection

The group consisted of 21 purebred Chilean mares, between 4 and 15 years old, who
were fed in a mixed meadow of ryegrass and white clover with free access to water. All
participants were off antibiotic treatment for at least one month before being sampled

Clinically healthy mares in the ovulatory phase were included; this was determined
by a gynecological clinical examination, transrectal ultrasound (Chison Eco 6 ultrasound,
5 MHz linear transducer), and cytology [13]. No mare presented a record of abortion,
embryonic losses, endometritis, dystocia, or any reproductive pathology.

2.3. Uterine Samples, Collection, Isolation, and Identification

To avoid contamination, the tail was covered with sterile gauze and the fecal material
was removed from the rectum. Subsequently, the perineum, clitoral fossa, and vulva were
washed with soap and lukewarm water. The vulva was dried with bleached paper and
the procedure was repeated until the area was visibly clean. Sample contamination was
minimized using a sterile rectal glove, and a double-guarded occluded swab (IMV, Legler,
Limoges, France) [18].

The uterine swabs were introduced directly in Amies transport medium (Linsan,
Santiago, Chile) and were immediately transferred to the Clinic Microbiology and Micro-
biome laboratory, where they were seeded within 24 h on blood agar and MacConkey agar
(Merk, Darmstadt, Germany). All plates were incubated at 37 ◦C for 18 to 24 h. Semi-
quantitative evaluation of the different morphotypes was carried out, so that those that
showed abundant growth in the second quadrant of the clock were selected with the help
of a magnifying glass, observing standard patterns such as colony shape, borders, topogra-
phy, color, and texture [41]. Later, each morphotype was isolated on blood agar (Linsan,
Santiago, Chile) and was identified using matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) mass spectrometry analysis (MALDI Biotyper, Bruker, Singapore)
following the manufacturer’s instructions and as described previously [42,43]. Importantly,
Citrobacter spp. were analyzed as members of the C. freundii complex due to the impossibil-
ity of identification down to the species level using the MALDI-TOF technique [44].

2.4. Antimicrobial Susceptibility Testing

All isolates corresponding to Enterobacterales, Pseudomonas spp., and Acinetobacter
spp. were tested against a panel of 13 antibiotics using the disk diffusion Kirby–Bauer
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method following CLSI guidelines in the M100 and VET01S [45,46]. Antibiotics tested
included amikacin (AMK, 30 µg); ampicillin (AMP, 10 µg); amoxicillin/clavulanic acid
(AUG 20/10 µg); ceftazidime (CAZ, 30 µg); ciprofloxacin (CIP, 5 µg); ceftriaxone (CRO,
30 µg); doxycycline (DXT, 30 µg); enrofloxacin (ENR, 5 µg); ertapenem (ETP, 10 µg);
gentamicin (GEN, 10 µg); imipenem (IPM, 10 µg); ampicillin/sulbactam (SAM, 10/10 µg);
and trimethoprim/sulfamethoxazole (SXT, 1.25/23.75 µg). All of these were supplied by
OXOID (Hampshire, UK). The AMP disc was not used for Pseudomonas spp., Enterobacter
spp., Citrobacter spp., and Klebsiella spp. In addition, for Acinetobacter spp. we only tested
carbapenems, within the group of beta-lactams [46].

The screening of organisms producing extended-spectrum b-lactamases (ESBLs) and/or
AmpC was performed using Cefotaxime 30 µg (CTX), CTX + clavulanic acid, and CTX
+ cloxacillin disc (Liofilchem, Teramo, Italy). For Acinetobacter spp. and P. aeruginosa,
CTX + clavulanic acid + cloxacillin disc (Liofilchem, Teramo, Italy) were used to inhibit
the chromosomal AmpC b-lactamase, which can antagonize the synergistic effect with
clavulanate [46].

In all experiments, Klebsiella quasipneumoniae ATCC 700603 and E. coli ATCC 25922
were used as resistant and susceptible controls, respectively. Bacterial isolates resistant to
≥1 agent in >3 antimicrobial different classes were cataloged as multidrug-resistant (MDR)
following previously standardized criteria [47].

The genes encoding ESBLs (blaCTX-M, blaSHV, blaTEM, blaPER and blaGES) were detected
by a conventional PCR scheme, as previously reported [30,48,49]. Briefly, PCR was per-
formed in a volume of 25 µL in a Veriti® thermal cycler (Applied Biosystems). The reaction
mix contained 1× Green GoTaq®Flexi Buffer (Promega, Madison, WI, USA), PCR buffer,
800 nM of each primer (Table 1), 200 nM of dNTPs, 1.5 nM of MgCl2, 5 µL of DNA, and
1 U of Taq polymerase. The amplification program was an initial denaturation of 5 min at
94 ◦C, then 35 equal cycles of 40 s at 94 ◦C, 40 s at 52/57 ◦C, and 60 s at 72 ◦C. Finally, a final
extension of 7 min at 72 ◦C occurred (Table 1). Tubes were stored at 4 ◦C until detection of
the PCR product on 1.5% agarose gel. In cases where there was doubt that the size obtained
in the PCR product was a non-specific amplification, it was decided to sequence them to
confirm that they corresponded. For this, they were sequenced by the Sanger method using
the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA,
USA) in the SeqStudio Genetic Analyzer (Applied Biosystems). The obtained sequences
were compared with the GenBank database using the BLAST program. The sequences
were deposited in the NCBI GenBank database (accession numbers OR242737, OR242738,
OR242739, OR242740, and OR242741).

Table 1. Primers used for ESBL PCRs.

β-Lactamase
Gene Primer Sequence (5′ → 3′)

Product
Length

(bp)

T◦

Annealing

blaCTX-M
MA1: SCSATGTGCAGYACCAGTAA

554 57 ◦CMA2: CCGCRATATGRTTGGTGGTG

blaSHV
SHV F: TCGGCCTTCACTCAAGGATG

785 57 ◦CSHV R: ATGCCGCCGCCAGTCATATC

blaTEM
TEM F: TTAGACGTCAGGTGGCACTT

972 52 ◦CTEM R: GGACCGGAGTTACCAATGCT

blaPER
PER F: AAAGAGCAAATTGAATCCATAGTC

835 57 ◦CPER R: GTTAATTTGGGCTTAGGGCAG

blaGES
GES F: ATGCGCTTCATTCACGCAC

864 57 ◦CGES R: CTATTTGTCCGTGCTCAGG

2.5. Data Analysis

Data analysis was performed using Excel (Microsoft 365), open-source statistical
computing package release 1.3.4; upset plots [50] were made employing the UpSetPlot
package (https://github.com/jnothman/UpSetPlot, access on 25 April 2022), release 0.6.0.

https://github.com/jnothman/UpSetPlot
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3. Results

The group of 21 mares studied were composed of purebred Chilean females, with
more than two births, between 4 and 15 years old, with an average age of 8 years.

As a result, each mare had a mixed bacterial growth in 100% of the cases, isolating at
least two or three different bacteria, corresponding to 42.8% and 52.4%, respectively. In
contrast, the largest bacterial population with four isolates was present in only one mare,
representing 4.8%.

Of the 55 bacterial isolates, 39 (70.9%) were Gram-negative bacteria of which 22
(56.4%) belonged to Enterobacterales, represented by 17 Escherichia coli, 3 Enterobacter cloacae,
1 Citrobacter spp., and 1 Klebsiella pneumoniae; and 17 were Gram-negative non-fermenting
rod bacteria, represented by 9 Acinetobacter spp. (2 A. lwoffii, 1 A. johnsonii, and 6 Acinetobac-
ter spp.), 3 Brevundimonas diminuta, 3 Sphingobacterium spp., 1 Pseudomonas aeruginosa, and
1 Ochrobactrum anthropi. In contrast, 16 (29.1%) of the isolates were Gram-positive bacteria:
10 Enterococcus spp. (6 E. casseliflavus, 2 E. faecalis, and 2 E. faecium), 4 Streptococcus equi, and
1 Corynebaterium sp. (Figure 1).
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Figure 1. Total number of isolates present in the uterus of healthy mares, represented by Escherichia
coli (17), Enterobacter cloacae (3), Citrobacter spp. (1), Klebsiella pneumoniae (1), Acinetobacter spp. (9),
Pseudomonas aeruginosa (1), Brevundimonas diminuta (3), Sphingobacterium spp. (3), Ochrobactrum
anthropi (1), E. casseliflavus (6), E. faecalis (2), E. faecium (2), Enterococcus spp. (10), Streptococcus equi (4)
and Corynebaterium spp. (2).

Of all antibiotics tested against the Enterobacterales and Pseudomonas spp. (n = 23), the
third generation cephalosporins were shown a 26.1% resistance, followed by GM. In the
strains of the Acinetobacter spp. tested, AMP was shown the greatest resistance with 44.4%
(Figure 2). Only 9.3% (n = 32) of isolates showed MDR, corresponding to Escherichia coli,
Enterobacter cloacae, and Klebsiella pneumoniae; also, 18.8% of isolates presented resistance to
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two or more classes of antibiotics. On the contrary, the carbapenems IPM and ETP were
sensitive to all isolates (Table 2).
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Table 2. Specific antibiotic resistance against 32 isolates: Enterobacterales, Acinetobacter spp. and
Pseudomonas spp.

Isolate Specific Antibiotic Resistance

Acinetobacter lwoffii AMP
Acinetobacter lwoffii -
Acinetobacter spp. -
Acinetobacter spp. AMP
Acinetobacter spp. AMP
Acinetobacter spp. AMP
Acinetobacter spp. -
Acinetobacter spp. -

Acinetobacter johnsonii -
Citrobacter spp. CAZ-SAM-CRO

Enterobacter cloacae CAZ-GM-CRO
Enterobacter cloacae SAM-CIP-SXT-GM-CRO-ENR
Enterobacter spp. CAZ-GM

Escherichia coli CAZ-CIP-SXT-GM-CRO-AMP-ENR-AUG-DXT
Escherichia coli DXT
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -
Escherichia coli -

Klebsiella pneumoniae CAZ-SAM-CIP-SXT-GM-CRO-ENR-AUG-DXT
Pseudomonas spp. -
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These results revealed the diversity of three ESBL genes (Table 3), blaTEM, blaCTX-M and
blaSHV, in four isolates found (Escherichia coli, Acinetobacter spp., Klebsiella pneumoniae and
Citrobacter spp.). The most frequent was blaSHV, being detected in all four isolates, while
blaTEM and blaCTX-M were only present in Klebsiella pneumoniae and Citrobacter spp., which
also exhibited coexistence of the three genes (blaCTX-M, blaSHV and blaTEM).

Table 3. Genetic characterization of extended-spectrum beta-lactamase (ESBL)-positive bacterial
isolates of equine origin.

Species ESBL bla Genes

Acinetobacter lwoffii − −
Acinetobacter spp. + blaSHV
Acinetobacter spp. + −
Acinetobacter spp. + −

Citrobacter sp. + blaCTX-M, blaTEM, blaSHV
Enterobacter cloacae − −
Enterobacter cloacae − −

Escherichia coli + blaSHV
Klebsiella pneumoniae + blaCTX-M, blaTEM, blaSHV

4. Discussion

It is currently recognized that mares and their reproductive environment are a source
of origin of different microorganisms, which can be disseminated to other animals and to
humans through direct and indirect contact [40,51].

Of the group of mares sampled, all presented between two and four different bacterial
isolates, information which is consistent with previous articles [4,11–23,52,53]. According
to these results, the Enterobacterales group was the most predominant, with Escherichia coli
being the most frequent bacterium [17,54–56]. Some studies indicate that the source of
origin of this agent would be fecal matter that contaminates the vulva and perineum,
associated with a bad anatomical conformation [12,13,15]. Likewise, Enterococcus spp.,
Acinetobacter spp., Streptococcus equi spp. and to a lesser extent Klebsiella pneumoniae and
Pseudomonas aeruginosa [4,53,56–61].

A retrospective study carried out with bacteria isolated from the reproductive tract
of 4122 mares with endometritis identified Escherichia coli and Streptococcus equi more
frequently, adding that over the years the antimicrobial efficacy of cefquinome against
E. coli decreased significantly, and the same is true of ampicillin, cefquinome, and penicillin
against S. equi [22]. Previously, Pseudomonas spp. were reported in mares with fertility
problems [62] in chronic endometritis and in those without response to antibiotic treat-
ments [63,64]. On the other hand, Klebsiella pneumoniae has been frequently found in
respiratory and digestive conditions in horses [65,66]. Enterococcus spp. are rare to find
in the uterus of healthy mares; however, E. faecalis has been isolated from mares with
chronic endometritis and infertility [67]. Acinetobacter baumannii has been found in the
uterus of healthy mares, and in equine patients with wounds, septicemia, eye infections,
bronchopneumonia, neonatal encephalopathy, and venous catheter [36,37,68,69]. Therefore,
Lupo et al. indicate that A. baumannii has become a nosocomial pathogen in veterinary
hospitals [70]. Finally, Citrobacter freundi, along with other species, has been detected in
a case of uterine infection with purulent discharge [71] and another of endocarditis in a
foal [72].

Although antimicrobial resistance (RAM) has been previously reported in bacteria
from the equine reproductive tract [11,22,62,73], it is unknown whether its origin is related
to local or systemic treatments. Similarly, it is considered that exposure to low levels
of antibiotics through semen diluents would be a probable cause of antibiotic resistance
in mares [62,73]. RAM has been identified as one of the major problems facing human
and animal health [74–76]; in this regard, the British Equine Veterinary Association has
indicated that the use of fluoroquinolones and third generation cephalosporins should be
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regulated in empirical or prophylactic therapies [77,78]. In addition, Benko et al., point
out that microorganisms such as Pseudomonas, Klebsiella, and Escherichia coli are considered
highly resistant to β-lactam class antibiotics and ampicillin [16].

These results exhibited high resistance to the third generation cephalosporins and
ampicillin, which coincides with what was mentioned in other studies [79–82] and
could be attributed to the empirical use of ceftiofur in equine Gram-negative bacterial
infections [78,83–86]. Likewise, the use of broad-spectrum cephalosporins could be a
selection factor for bacteria with ESBL. Generally, the resistance genes that code for
the expression of this ESBL phenotype, such as blaCTX-M, blaSHV, blaTEM, and blaCTX-M,
are in plasmids or integron-type structures, which would facilitate horizontal gene
transfer [30,40,66,87–90].

In 1998, the first ESBL strain was detected in bacteria of animal origin, an E. coli
carrier of the SHV-12 gene [91]. Currently, there are several authors who report the
presence of these bacteria in different animal species, emphasizing transmission to
humans [26,28,29,87,92–97]. A study carried out from rectal swab samples in pairs of
healthy mares and newborn foals reported the presence of ESBL in Escherichia coli strains
in 25% and 29%, respectively, noting that during hospitalization this number increased
significantly [98], the same as previously reported [99], suggesting an association with
high use of antimicrobials, even in untreated animals [26], and nosocomial acquisition of
ESBL in a hospital setting [100,101]. On the other hand, Klebsiella spp. have become a
major health problem, leading to treatment failure in humans and animals. A previous
report, carried out in healthy horses, reported only one K. pneumoniae isolate confirmed
as a producer of ESBL (blaCTX-M) [92]. Another study carried out in the USA recovered
E. coli isolates from clinical samples of equine patients over a period of five years, finding
resistance to ceftiofur in 13 out of 48 of them, while the CTX-M and SHV genes were
detected in 7 of them, which code for ESBL [84].

Interestingly, the literature reports that bacteria such as Acinetobacter spp., E. coli,
Klebsiella spp., and Pseudomonas spp. can survive on inanimate surfaces for months [102,103].
The persistence of these bacteria ranges from 3 days to 5 months for Acinetobacter spp. [104],
1.5 h to 16 months for E. coli, 2 h to 30 months for Klebsiella spp., and 6 h to 16 months
for Pseudomonas spp. [84,105,106]. The emergence of ESBL-producing bacteria is alarming,
necessitating surveillance studies to understand the transmission and epidemiology of
such microorganisms [30,84]. It is necessary to consider reinforcing measures such as
hygiene, hand washing, identification of infected patients, cleaning, and disinfection of
environmental sources of contamination.

ESBL-producing Enterobacteriaceae are a global public health alert, and so antimicrobial
efficacy monitoring programs are crucial to consciously use antibiotics and preserve their
effectiveness for both human and veterinary medicine.

The contribution of this study is its focus on antimicrobial resistance. So far, there is
no evidence related to the presence of ESBL in isolates of Enterobacterales, Pseudomonas, and
Acinetobacter obtained from a population of reproductively active mares in Chile. Although
the group of animals studied was limited, the results revealed the diversity of three ESBL
genes, blaTEM, blaCTX-M and blaSHV, which co-existed in Klebsiella pneumoniae and Citrobacter
spp. It would be interesting to continue with these studies and apply them to a larger
population to include other molecular techniques for the detection of resistance genes, such
as the sequencing of the complete genome, to better understand the situation at the national
level. This communication alerts us to the presence of multi-resistant bacteria in the uterus
of healthy mares and urges us to emphasize cleaning and disinfection protocols to prevent
dissemination at the animal–human–environment interface.
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