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Abstract: Staphylococcus aureus is a significant human pathogen with a formidable propensity for
antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic
arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-
associated settings. Although often grouped by methicillin resistance, both methicillin-resistant
(MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and
injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity
of community-associated strains. In our study, we examined the genetic variability and acquired
antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating
from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically
relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA,
sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had
a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry
several virulence factors compared to MSSA strains. Further, the carriage of various genes was found
to vary significantly based on the infection type (SSTI, blood, urine).

Keywords: virulence factor; immune evasion; antibiogram; community associated; complement
evasion; infection; MRSA; drug resistance; whole-genome sequencing

1. Introduction

Staphylococcus aureus causes a multitude of infections that affect various bodily sys-
tems, including the skin and soft structure, bone, joints, heart, bacteremia, and implant-
or surgical site-affiliated infections [1,2]. Whilst healthcare-associated (HA) infections
are often the focus of preventative measures imposed by care facilities and hospitals,
community-associated (CA) infections, which originate outside of a healthcare setting,
remain a significant contributor to the overall burden of S. aureus on healthcare systems
worldwide [3–6]. Both its persistence within environmental and animal reservoirs [2,7,8],
as well as a high rate of benign carriage within most healthy populations (about 30%) [2,9],
contribute to this ongoing threat to community health. In recent years, the rate of infection
by methicillin resistant S. aureus (MRSA) has decreased, stabilizing increases seen in the
late 1990s to early 2000s [4,10], with a shift in concern to vancomycin and clindamycin resis-
tance currently [11–15]. MRSA infections remain a significant source of disease worldwide,
particularly within vulnerable populations. Risk factors include previous hospital stays,
catheterization, advanced age or infancy, intravenous drug use, being of an ethnic minority,
or lower socioeconomic status [3–6,16].

S. aureus wields a plethora of virulence factors (VFs) designed to facilitate infection and
cause disease. To survive within the host environment, S. aureus adheres to host surfaces,
utilizes host elements for metabolic needs, and subverts host immunity through a variety
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of VFs. The complement system, operating through a catalytic cascade, plays a significant
role in the host innate defense by labeling pathogens as foreign (opsonization), lysing
susceptible cells, and actively recruiting effector cells for pathogen clearance. As such, the
complement system and its various components are primary targets of S. aureus VFs [17].

Adhesins, which allow S. aureus to bind to a host substrate and promote biofilm
development, can be subdivided into cell wall-bound MSCRAMMs (microbial surface
components recognizing adhesive matrix molecules) and secreted SERAMs (secretable
expanded repertoire adhesive molecules). MSCRAMMs have at least two IgG-like folds
and a “dock, lock, and latch” mechanism for binding to ligands (reviewed in [18]). SERAMs
mediate bacterial adhesion with host components (such as cells, molecules, or tissues),
whilst also interfering with host defense mechanisms [19].

Secreted proteins, which are actively released away from the bacterium, can harm the
host by affecting host immunity [20]. SCIN (staphylococcal complement inhibitor, scn) and
CHIPS (Chemotaxis inhibitory protein of S. aureus, chp) negatively affect the progress of
complement by impeding the activity of complement-associated enzymes [21] or phagocyte
recruitment, respectively [22,23]. Panton Valentine Leukocidin (pvl), a well-known toxin
that targets immune cells directly, forms β-barrel pores, resulting in cellular lysis and the
subsequent death of phagocytes [24].

Many S. aureus VFs are multifunctional and have additional—or often redundant—
roles. For example, ClfA (clumping factor A) and SdrE (serine aspartate repeat protein E)
belong to the MSCRAMM family of adhesins, yet also participate in immune evasion by
binding host complement regulators to subvert complement-mediated opsonization on the
S. aureus surface [25,26]. Both staphylococcal Protein A (spA) and staphylococcal binder
of immunoglobulin (sbi) bind antibody by the Fc region [27] and can be surface-bound or
secreted. Thus, functional redundancies and/or multipurpose VFs create challenges for
elucidating the role of VFs and specific disease manifestations. However, in the context of
toxin-related diseases, some causative genes have been identified, such as eta/etb (staphylo-
coccal scalded skin syndrome [28]) and tsst-1 (toxic shock syndrome) [29]. Further, some
VFs are designated as risk factors for specific infections, such as bbp in osteomyelitis [30],
and pvl in osteomyelitis, lung infection, and severe infections [30–32]. Evidence also sug-
gests that the presence of pvl or tsst-1 may indicate elevated antibiotic resistance [33,34].
Thus, determining VF-associated gene carriage in clinical isolates will shed light on the
potential for S. aureus to cause disease.

As such, we sought to gain a better understanding of S. aureus virulence potential
in isolates associated with communities of Southeastern Virginia. Using whole-genomic
sequencing and targeted genomics, we screened 122 clinical isolates collected from pa-
tients of a children’s hospital in Norfolk, VA USA, to characterize lineage information
(clonal complex and sequence type) as well as the carriage of a panel of clinically rele-
vant VF-associated genes (Table 1). These data were analyzed against identified drug
resistance/sensitivity profiles from isolate-specific antibiogram data. Infection type and
methicillin resistance/sensitivity were used as additional discriminators to examine the
relationship between lineage, VF gene carriage, and antibiotic resistance. Thus, this study
provides information on VF prevalence and their association with infection type or antibi-
otic resistance and identifies common pathogenic determinants to support the development
of targeted treatment strategies.

Table 1. Virulence factors of interest.

Gene VF Type 1 Group 2 Immune-Evasive Ref.

bbp Bone Sialoprotein Binding Protein CW MSCRAMM Yes [18]

clfA Clumping Factor A CW MSCRAMM Yes [25,35]

chp Chemotaxis Inhibitory Protein S Exoprotein Yes [22,23]

cna Collagen Adhesin CW MSCRAMM Yes [36]
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Table 1. Cont.

Gene VF Type 1 Group 2 Immune-Evasive Ref.

eap Extracellular Adherence Protein S SERAM Yes [37]

ecb Extracellular Complement Binding Protein S SERAM Yes [19,38,39]

efb Extracellular Fibrinogen-Binding Protein S SERAM Yes [19,40,41]

emp Extracellular Matrix Protein S SERAM No [42]

eta Exfoliative Toxin A S Ex. Toxin No [28]

etb Exfoliative Toxin B S Ex. Toxin No [28]

hla α-hemolysin or Alpha Toxin S PF Toxin Yes [43]

hlg γ-hemolysin or Gamma Toxin S PF Toxin Yes [44]

lukAB/GH Leukocidin AB or Leukocidin GH S PF Toxin Yes [44]

pvl Panton-Valentine Leukocidin S PF Toxin Yes [24]

sak Staphylokinase S Protease Yes [45]

sbi Staphylococcal Binder of Immunoglobulin CW and S Exoprotein Yes [27,41,46]

scn Staphylococcal Complement Inhibitor S Exoprotein Yes [21]

scpA Cysteine Protease Staphopain A S Protease Yes [47]

sdrC Serine-Aspartate Repeat Protein C CW MSCRAMM No [48]

sdrD Serine-Aspartate Repeat Protein D CW MSCRAMM No [49]

sdrE Serine-Aspartate Repeat Protein E CW MSCRAMM Yes [18,26]

sea Staphylococcal Enterotoxin A S Enterotoxin;
Superantigen Yes [50]

sep Staphylococcal Enterotoxin P S Enterotoxin No [51]

spA Staphylococcal Protein A CW and S Exoprotein Yes [52]

splB Serine Protease-Like Protein B S Protease Yes [53]

spn Staphylococcal Peroxidase Inhibitor S Exoprotein Yes [54]

ssl7 Staphylococcal Superantigen-Like 7 Protein S Exoprotein Yes [55]

tst Toxic Shock Syndrome Toxin S Superantigen Yes [29]

vwb von Willebrand Factor-Binding Protein S SERAM Yes [19,56]
1 Type: secreted (S); cell-wall (CW). 2 Group: exfoliative toxin (Ex. Toxin); pore-forming toxin (PF Toxin).

2. Materials and Methods
2.1. Bacteria

Community-associated S. aureus isolates were obtained as de-identified, discarded
specimens from a children’s hospital in Norfolk, VA, and transferred in accordance with
IRB 18-05-EX-0109; no human samples were used in this study. Isolates were identified as
S. aureus via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass
spectrometry using the MALDI Biotyper Sirius CA System. Characterization of antibiotic
resistance or sensitivity was determined using BD Phoenix PMIC 109 panel, a broth mi-
crodilution method utilizing cation-adjusted BD broth with 2-fold serial dilutions, and read
every 20 min up to 16 h. Clinical and Laboratory Standards Institute and Antimicrobial Sus-
ceptibility Testing (CLSI AST) guideline rules were applied for validation, with six reference
strains (S. aureus ATCC 29213, 25923, BAA-976 and BAA-977; Enterococcus faecalis ATCC
29212 and 51299) for quality control. See Table 2 for associated antibiotics and applied
ranges. Isolates with demonstrated resistance or sensitivity to oxacillin were considered to
be MRSA or MSSA, respectively. Infections of the blood or urine were deemed invasive
due to infection location. SSTI infections were not classified as invasive or superficial.
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Table 2. BD Phoenix panel.

Infection Type *

Antibiotic Range (µg/mL) Blood/SSTI Urine

Clindamycin 0.5–2 X N/A

Erythromycin 0.5–4 X N/A

Gentamycin 1–8 X X

Oxacillin 0.25–2 X X

Penicillin G 0.125–8 X X

Rifampin 0.5–2 X X

Tetracycline 0.5–8 X X

Trimethoprim-
Sulfamethoxazole 0.5/9.5–2/38 X X

Vancomycin 0.5–16 X X

Nitrofurantoin 16–64 N/A X
* Isolates associated with various infection type (blood, SSTI, or urine) were subjected to antibiotics as indicated
by the X symbol. N/A indicates test not performed.

2.2. DNA Extraction

Isolates were cultured on Columbia agar (BD Difco, Franklin Lakes, NJ, USA) with 2%
NaCl. Bacteria were resuspended in sterile deionized water then heated at 99 ◦C for 10 min to
lyse the cells. Lysates were subjected to phase extraction with phenol/chloroform/isoamyl
alcohol, 25:24:1 (Sigma-Aldrich, St. Louis, MO, USA), followed by ethanol precipitation,
and washed with 70% ethanol to purify gDNA. Concentration and purity of gDNA were
assessed with a Nanodrop spectrophotometer or Qubit 4 fluorometer. gDNA samples were
stored at −80 ◦C until use.

2.3. Whole-Genome Sequencing and Assembly

gDNA samples were prepared using the Illumina DNA LP (M) Tagmentation and
Nextera DNA CD index kits, per manufacturer’s instructions. Prepared samples were
subjected to whole-genome sequencing (WGS) using the Illumina iSeq 100 system, with
paired-end read length of 150 bp and depth of 30× reads. Assembly of contigs was accom-
plished with the Assembly module of the Local Run Manager (Illumina, San Diego, CA,
USA), which contains onboard algorithms for error correction and quality control of raw
sequence reads. Genome annotation was performed using the Prokka prokaryotic genome
annotation software (Version 1.14.6) [57], available via the Galaxy Project. Individual gene
searches were conducted using the NIH NCBI database BLAST tool.

2.4. Sanger Sequencing and PCR

Clonal complex (CC) and sequence type (ST) were determined using WGS contigs
screened via the PubMLST database [58]. For reads in dispute, Sanger sequencing was
performed (EVMS Molecular Core Facility) as previously described [59]. MRSA isolates
were further characterized for SCCmec type using multiplex PCR, as described by Zhang,
et al. [60,61]. For unsuccessful WGS (n = 2, blood), gDNA was investigated for select VF
presence by end-point PCR (Table 3).

Table 3. PCR primers used for VF identification.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Ref.

bbp AACTACATCTAGTACTCAACAACAG ATGTGCTTGAATAACACCATCATCT [62]

clfA ATTGGCGTGGCTTCAGTGCT CGTTTCTTCCGTAGTTGCATTTG [62]
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Table 3. Cont.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Ref.

chp GGAATCAGTACACACCATCATTCAG ATTTCTCAAACGTTCATCTAATTTTCC [63]

etb GTGGTAAAGGCGGACAACAT TCAAATCGTTCCCCAAAGTG [64]

hla TATAGTCAGCTCAGTAACAACAACA TGCATGCCATTTTCTTTATCATAAGTGAC [63]

pvl ATCATTAGGTAAAATGTCTGGACATGATCCA GCATCAAGTGTATTGGATAGCAAAAGC [65]

scn GTTGATATTTTGCTTCTGACAT AACGAAAAGTTAGCTAATGAAT [66]

sdrE AGAAAGTATACTGTAGGAACTG GATGGTTTTGTAGTTACATCGT [67]

spA CAAACGGCACTACTGCTGAC CATGGTTTGCTGGTTGCTTC [68]

2.5. Statistics

Statistical analyses were performed using R (Version 4.2.3) and the packages “readxl”,
“dplyr”, “ggplot2” and “ggcorrplot” [69–73]. The associations between categorical data
were evaluated using Fisher’s exact test with the addition of Mehta and Patel’s (1985)
hybrid algorithm [74]. We evaluated the relationships between the antibiograms and
the infection type or methicillin resistance using chi-squared tests. We ran appropriate
nonparametric tests for the response variables that exhibit non-normal characteristics. All
statistical tests of inferences were assessed at the 5% alpha level.

3. Results
3.1. Sample Pool Composition

The isolate pool included in this study is depicted in Figure 1 and described in Table 4,
categorized by infection type and methicillin resistance/sensitivity (n = 122). In total, 44%
of sequenced isolates were MRSA (n = 54), and 56% were MSSA (n = 68), with most isolates
from SSTI, followed by blood, then urinary tract infections. Two blood MRSA isolates
were characterized using Sanger sequencing and end-point PCR for select VF genes, due to
unsuccessful WGS runs.
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Table 4. Sample pool composition.

Category n Isolates

MRSA 54 44%
MSSA 68 56%

Blood 19 15.6%
SSTI 96 78.7%

Urine * 7 5.8%

Blood MRSA 10 8.2%
Blood MSSA 9 7.4%
SSTI MRSA 44 36%
SSTI MSSA 52 42.6%

n = 122; * All urine samples were CA-MSSA.

3.2. Sequence Type, Clonal Complex, and SCCmec Distribution

To understand the lineage composition of the isolate pool (n = 122), we performed
genomic analysis, revealing 31 unique sequence types (ST) within 9 recognized and 12 un-
known/unrecognized clonal complexes (CCs). The most common lineage was CC 8 and
ST 8; however, CC 8 isolates also represented the STs 72, 1159, 1181, 2176, and 7361 [58]. STs
with low representation comprised 34 isolates, with 9 CA-MRSA and 25 CA-MSSA belong-
ing to an additional 7 and 19 STs, respectively, and 3 additional CCs. See Supplementary
Materials for a complete tally.

As the pool contained both MRSA and MSSA, we used methicillin resistance as a
discriminator, indicating a significant relationship for CC and ST distribution (Figure 2A,B).
A selection of four CCs and their corresponding STs (excluding urine isolates) were further
analyzed to determine the direction of the significance (Figure 2C,D). Significance was
retained for both CC and ST (p < 0.01).
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Figure 2. Isolate lineage analyses for MRSA vs. MSSA. Distribution of CC (A) and ST (B). Analysis of
the most common CC (C) and corresponding ST (D). CCs and STs that contain ≥ 3 are shown. Groups
not meeting this requirement were placed in “Other”. N/A represent members with recognized STs
and no defined CC.

To determine whether infection type was a significant factor in lineage, we analyzed
infection type with CC or ST. Whilst most isolates were from SSTI and belonged to CC 8
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(as well as ST 8)—see Figure 3A,B—a significant relationship was found between infection
type and CC or ST (p = 0.048, p < 0.01, respectively); however, the categories contributing
to this test statistic are unknown. To further investigate this relationship, we examined the
four most well represented CC and corresponding ST (excluding urine); see Figure 3C,D.
However, no significant relationship was determined (p = 0.1214).
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As an additional feature relevant for characterizing the MRSA isolates, we examined
the distribution of SCCmec (Figure 4), which demonstrated SCCmec type IVa to be dominant
(77.8%). Four MRSA isolates were untypeable and may belong to an unknown type or
those outside the tested type I–V distribution.
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3.3. Antibiogram Data

Antibiotic resistance is summarized in Figure 5. More than half of the pool (58%)
were resistant to erythromycin (81% of MRSA, 40% of MSSA; p < 0.01, X2 = 16.797, df = 1);
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Figure 5A. Clindamycin resistance was equally distributed between MRSA and MSSA at
13%. Tetracycline resistance was present in 7% of isolates, and slightly more common in
MRSA strains than MSSA (7% vs. 6%, respectively). Trimethoprim-sulfamethoxazole (TMP-
SMZ) and gentamycin resistance were less common, with TMP-SMZ resistance evident in
5% (6% of MSSA, 4% of MRSA) and gentamycin resistance in 2% (MSSA). No significant
difference in antibiotic resistance was determined based on infection type, blood vs. SSTI;
however, clindamycin and erythromycin resistance were higher in isolates from blood
infections vs. SSTI (Figure 5B). With the exception of penicillin, all urine samples were
sensitive to the entire antibiotic panel. Excluding oxacillin and penicillin, MRSA isolates
were found to have significantly higher average resistances (1.09 antibiotics/isolate) than
the MSSA isolates (0.647 antibiotics/isolate) (Mann–Whitney U, W = 2449.5, p < 0.01).
Analysis of the predominant CA-MRSA group (ST 8 with SCCmec IVa, n = 36), revealed no
resistance to clindamycin (p = 0.02448, X2 = 5.0602, df = 1) compared to the entire CA-MRSA
group (n = 54).
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3.4. Virulence Factor Carriage

As shown in Figure 6, most of the VF genes investigated were present in 50–80%
of isolates, with higher frequency for MRSA strains in general. Some VFs, i.e., eta and
etb, were only found in MSSA strains, whereas others (bbp, cna, sea, sep, tst), were less
common (<10%) and not associated with methicillin resistance or sensitivity. clfA, spA, sbi,
scpA, and vwb were present in all isolates and are described in Table 5. The carriage of six
genes varied significantly based on methicillin resistance, according to Fisher’s exact test:
chp (p = 0.004), cna (p = 0.0213), ecb (p = 0.009), pvl (p < 0.0001), sak (p = 0.0387), and splB
(p = 0.0403); see Table 5. Whilst the direction of the significance could not be determined,
their prevalence was proportionally higher for MRSA than MSSA for all but cna, where the
trend was reversed.

We also investigated whether any trends were evident for VF gene carriage based on
lineage, excluding those identified as present in all isolates (Table 5). As shown in Figure 7,
several genes are conserved across CC and ST for presence or absence as demonstrated by
bold red (100% carriage) or bold green (no carriage).

In comparing VF carriage by infection type (Figure 8), four genes varied significantly
chp (p = 0.0185), pvl (p < 0.01), sea (p < 0.01), and sep (p < 0.01), described in Table 6. A
higher proportion of SSTI isolates carried chp and pvl, whilst sep carriage was highest in
blood isolates. sea prevalence was similar for blood and urine isolates, with a much lower
carriage in SSTI isolates.

Using Pearson’s correlation, two pairs of genes showed a strong relationship and are
associated with lukGH. A strong positive correlation was found between lukGH and splB
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(0.76), whilst a strong negative correlation was found between lukGH and cna (−0.81), as
shown in Figure 9. All other correlations were moderate to low.
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Table 5. Genes with 100% carriage.

Gene VF Description of Action Ref.

clfA Clumping Factor A
Binds human fibrinogen, involved in biofilm formation and S.
aureus-mediated platelet aggregation. Contributes to immune evasion by
binding complement regulator Factor I.

[25,35,75]

scpA Cysteine Protease
Staphopain A

Protease with inhibitory effects on complement pathways. Impairs
phagocytosis by neutrophils. [47]

sbi Staphylococcal Binder
of Immunoglobulin

Binds IgG Fc; binds and activates host plasminogen to intefere with
complement-mediated opsonization. [27,41]

spA Staphylococcal
Protein A

Binds IgG Fc and cross-links the Fab domain of IgM to subvert opsonization
and phagocytosis. [52]

vwb von Willebrand
Factor-Binding Protein

Secreted adhesin that binds to plasma components and induces blood clots.
Assists in strengthening abscess walls. [56]
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Table 6. Genes with significant variation due to methicillin resistance or infection type.

Gene VF Description of Action Carriage (%) * Ref.

chp Chemotaxis Inhibitory Protein Inhibits fMLP- and C5a-induced chemotaxis of
neutrophils and monocytes.

All: 68;
85 R, 54 S;
74 SSTI, 47 B, 43 U

[22,23]

cna Collagen Adhesin Binds host collagen. Inhibits complement by binding
the initiator protein C1q.

All: 19;
10 R, 26S [36,76]

ecb Extra-cellular Complement
Binding Protein

Impairs complement-mediated phagocytosis by
binding complement C3b or C3, and reduces the
cofactor activity of CR1.

All: 82;
92 R, 74 S [38,39]

pvl Panton-Valentine Leukocidin Bi-component leukocidin that forms β-barrel pores in
host cells, with high specificity to human neutrophils.

All: 43;
70 R, 22 S;
52 SSTI, 16 B, 0 U

[24]

sak Staphylokinase
Binds and activates host plasminogen to break down
host extracellular matrices. Also removes IgG and
C3b (opsonins) from the bacterial surface.

All: 89;
96 R, 84 S [45]
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Table 6. Cont.

Gene VF Description of Action Carriage (%) * Ref.

splB Serine Protease-Like Protein B
Cleaves and inactivates several complement
components, inhibiting all three pathways, reducing
bacterial killing via phagocytosis.

All: 79;
88 R, 72 S [53]

sea Staphylococcal Enterotoxin A

Commonly associated with food poisoning; causes
emesis, diarrhea, and GI inflammation. Also known
for nonspecific activation of T-cells, resulting in acute
toxic shock.

All: 8;
4 SSTI, 4 B, 29 U [50,77]

sep Staphylococcal Enterotoxin P Related to and often on the same pathogenicity island
as sea, though produces much milder symptoms.

All: 10;
5 SSTI, 35 B, 14 U [51,78]

* Superscript denotes the following: resistance type: R MRSA, S MSSA; infection type: SSTI SSTI, B blood, U urine.
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4. Discussion
4.1. Sequence Type, Clonal Complex, and SCCmec Distribution

Clonal analysis of S. aureus revealed important lineage information of the genomic
makeup of the isolates found in communities of Southeastern Virginia. Although isolates
were from a children’s hospital, pediatric trends reflect those of adults in the US, thus
providing valuable data on S. aureus presence in this region [79]. CC 8, specifically ST 8,
dominated for both MRSA and MSSA, as well as SSTI and blood isolates. Within the small
set of urine-associated isolates, two were of CC 8, whereas none were ST 8, which may
point to a clonal proclivity for a particular infection setting. A wider variation in ST was
evident for the CA-MSSA isolates, which coincides with an expected greater diversity in
this group, and perhaps a higher degree of unpredictability.

To further characterize the CA-MRSA isolates, we determined the type of SCCmec, a
mobile genetic element that contains the mecA gene affording methicillin resistance [80]. In
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the CA-MRSA group, the most common SCCmec type was IVa. Of interest, USA300, the
predominant CA-MRSA in the US, is ST 8 and contains SCCmec IVa, indicating that most of
our CA-MRSA isolates may be USA300 clones. Although at low levels, additional SCCmec
types were identified, which supports a varied presence in communities of Southeastern
Virginia. USA300 has a well-documented history of infection across the US [81–84]. Given
its success as a pathogen, having this lineage dominate our CA-MRSA pool is not surprising.

To investigate whether lineage correlates with infection, we cross-referenced the clonal
data with infection type (SSTI, blood, and urine) revealing a significant difference for both
CC and ST, thus identifying a connection between lineage and a particular disease state.
Some CCs are reported to be highly associated with virulence models, such as infections
of the blood or bone, indicating tropism for particular areas of the body [85,86]. Our
analyses support these findings, providing additional sequence-type evidence to validate
the usefulness of identifying lineage data.

4.2. Antibiograms

Community-associated S. aureus infections are commonly treated with dicloxacillin or
cephalexin; however, patients allergic to penicillin may be prescribed erythromycin or simi-
lar antibiotics [87]. When MRSA is suspected or confirmed, sulfonamides or oxazolidinones
are typically administered [87]. Serious infections are treated by considering documented
sensitivities in the case of MRSA, or oxacillin for MSSA. Patients with penicillin allergy
may be treated with clindamycin or vancomycin, but the former is not recommended when
MRSA is suspected or confirmed [87]. Our data broadly support these guidelines. MRSA
are known for frequent erythromycin resistance, but our finding of 40% erythromycin
resistance in MSSA is still concerning and indicative of a potential change in the antibiotic
resistance landscape [10]. The lack of rifampin or vancomycin resistance in our sample
pool indicates that these antibiotics may remain viable treatment options for the near term.
Clindamycin and erythromycin resistance were highest in blood isolates, indicating that
this infection type may be at the highest risk of limited treatment options; this, coupled
with the serious outcomes associated with S. aureus bacteremia, is of major concern. Whilst
SSTI isolates exhibited a relatively low occurrence of clindamycin resistance, this trend
may increase due to S. aureus’ proclivity to developing resistance to antimicrobials. This
is particularly worrisome for treating patients with drug allergies [11,14,15,87]. Interest-
ingly, the predominant CA-MRSA lineage, ST 8 SCCmec IVa, exhibited no resistance to
clindamycin. As USA300 isolates are resistant to fewer classes of antibiotics than their
cohorts, this further supports that these isolates may be USA300 clones [83].

4.3. Virulence Factor Carriage

Five of the genes of interest were found in all clinical isolates screened: clfA, scpA,
sbi, spA, and vwb. Whilst four of the five genes produce adhesins, all are involved in
immune evasion, thus promoting S. aureus survival within the host, particularly where these
properties intercept through the formation of biofilm [18]. As such, global carriage of these
genes highlights their significance to S. aureus pathogenicity in multiple disease settings.

Six VFs were found to vary significantly with methicillin resistance: chp, cna, ecb,
pvl, sak, and splB. Of these, only cna was more common in MSSA isolates than MRSA
isolates. This falls in line with the literature, as MRSA are typically considered to be more
virulent than MSSA. Again, these VFs are implicated in immune evasion, targeting the
complement system or effector cells directly. As chp and sak belong to the same phage-
encoded pathogenicity island, this suggests that their carriage would occur together [78]. pvl
presence is implicated in severe disease and is associated with USA300. A high percentage
of CA-MRSA in our sample pool were pvl+ (70%), indicating a high presence of this VF in
MRSA isolates associated with communities of Southeastern Virginia.

Four VFs varied significantly with infection type: chp, pvl, sea, and sep (Figure 7
and Table 6). SSTI isolates were found to carry chp and splB more frequently, but were
less likely to carry sea. Only sep was found most frequently in blood isolates, which
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supports a study by Calderwood, et al., demonstrating a significant link between sep
carriage and the development of bacteremia [88]. Interestingly, the carriage of chp and sea
was similar between blood and urine isolates, suggesting that their carriage may support
invasive infections.

Several other VF genes were well represented across isolates and infection type,
indicating their utility in S. aureus biology and corresponding pathogenicity. These included
adhesins, toxins, proteases, and inhibitors, implicating a measurable benefit for their
presence. A few of the VF genes were rare, namely the toxin genes eta, etb, and tst. Of
interest, these were found in CA-MSSA only, and were predominantly of SSTI (no blood;
one urine had etb). Some rare VFs were associated with a specific CC (e.g., eta/etb and
CC 121), indicating that VF gene carriage may be predicted based on lineage, highlighting
the benefit of isolate-specific data. CC 121 was uncommon in our sample pool (3%);
however, this clone is globally disseminated and associated with the exfoliative toxins, with
documented increasing resistance to vancomycin [89,90]. Although none of the isolates
included in this study demonstrated resistance to vancomycin, the probability of reduced
susceptibility to available antibiotics is likely to occur overtime, supporting the dire need
to develop novel treatment strategies.

5. Conclusions

In this study, we determined the genetic variability of 122 S. aureus clinical isolates
from patients of a pediatric hospital serving Southeastern Virginia. As pediatric trends
reflect those of adults in the US, this study provides valuable data on S. aureus presence
in this region [79]. Most of the isolates were associated with SSTI with significantly less
from systemic blood and urinary tract infections, mirroring the dominant role of S. aureus
as the largest single cause of SSTI worldwide. The most common lineage was CC 8, of
which most were ST 8. In combination with SCCmec IVa dominating for CA-MRSA isolates,
this lineage aligns with that of USA300. Additional STs identified for the CA-MSSA group
indicates that CA-MSSA are likely to be less predictable than CA-MRSA due to an increased
variability in lineage. Antibiogram data demonstrated a high prevalence of erythromycin
resistance for isolates from both SSTI and blood infections, with blood isolates exhibiting the
highest clindamycin resistance of any group analyzed. The carriage of select VF-associated
genes varied significantly based on methicillin resistance and/or infection type; however,
five genes were present in all isolates. The overwhelming commonality linking these
genes is their association with immune evasion, in particular targeting the complement
system and phagocytes. As S. aureus is often referred to as a master of immune evasion,
these conserved genes, as well as those with high carriage, present an opportunity for
further investigation. Understanding the level of VF gene carriage and pathogenic potential
coupled with readily accessible clinical characteristics may support the development of
better directed antistaphylococcal strategies.
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