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Abstract: Trillions of microorganisms that inhabit the intestinal tract form a diverse and 

intricate ecosystem with a deeply embedded symbiotic relationship with their hosts. As more 

detailed information on gut microbiota complexity and functional diversity accumulates,  

we are learning more about how diet-microbiota interactions can influence the immune 

system within and outside the gut and host health in general. Heat shock proteins are a set of 

highly conserved proteins that are present in all types of cells, from microbes to mammals. 

These proteins carry out crucial intracellular housekeeping functions and unexpected 

extracellular immuno-regulatory features in order to maintain the mucosal barrier integrity 

and gut homeostasis. It is becoming evident that the enteric microbiota is one of the major 

determinants of heat shock protein production in intestinal epithelial cells. This review will 

focus on the interactions between diet, gut microbiota and their role for regulating heat shock 

protein production and, furthermore, how these interactions influence the immune system 

and the integrity of the mucosal barrier. 
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1. Introduction 

Through evolution, mammalian hosts have developed a symbiotic relationship with their microbial 

partners, a relationship that in many cases is mutualistic, i.e., beneficial for both partners [1]. The 

interactions between the host and gut microbiota are responsible for the health of individuals from birth, 

during early life, adulthood and ageing [2–4]. At birth, the mammalian gut is immediately colonized by 

maternal and environmental microorganisms [5]. Once developed into an adult pattern, temporal 

variations in bacterial composition are minimal in the absence of external stress [6]. In order to 

understand the mutualistic relationships between gut microbiota and the host, it is of utmost importance 

to determine the ‘normal’ microbial community profile and to learn how changes in the composition is 

linked with health and diseases. The large variation of the microbial community between individual 

subjects obscures the vision of defining a ‘normal’ gut microbiota. However, due to the revolution in 

using culture-independent methods and a massive improvement of sequencing technology, our 

understanding of microbiota diversity has grown tremendously [7]. 

Normal functioning of the gut relies on the maintenance of a mucosal barrier that is lined with a single 

layer of columnar epithelial cells. This monolayer, covered with mucus, represents a frontline defense 

barrier that separates the internal tissue from the external environment, while maintaining nutrient 

uptake. The epithelial lining is a crucial innate immunity component and has the ability to modulate the 

adaptive immune response [8]. The intestinal barrier defense strategy includes commensal microbiota, a 

stratified mucus layer, epithelial integrity, cell turnover and, finally, the underlying lamina propria 

enriched with immune cells [9]. Given that heavy loads of bacteria reside in the gut lumen and in the 

vicinity of the epithelium, it is not surprising that intestinal epithelial cells (IECs) actively sense and 

interact with microbes to achieve homeostatic immune responses [10] (Figure 1). In this review, we will 

focus on the role of heat shock proteins (HSPs), a family of highly conserved proteins that are present 

and can be induced in all types of cells in all species, their interactions with the gut microbiota and other 

immune components, in the context of intestinal microenvironment homeostasis. The significance of 

HSPs in host natural defense and immune regulation is only starting to become clear [11], and future 

research is needed to elucidate its role in health and disease. 

2. The Microbiota in Health and Disease 

2.1. The Healthy Gut Microbiota 

The introduction of molecular tools to study the gut microbiota has visualized a tremendous microbial 

diversity in the gastrointestinal (GI) tract of mammals restricted to a few bacterial divisions [12]. Among 

the bacterial phyla that are normally found in a healthy gut (Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria, Fusobacteria and Verrucomicrobia), Firmicutes and Bacteroidetes constitute the largest 

fraction of the bacterial community in mammals [13]. The microbial community structure differs along 

the length of the gut, with Bacteroides, Prevotella and bacteria belonging to clostridial Cluster XIVa and 

Cluster IV dominating the distal parts, whereas the small intestine has a clear dominance of Lactobacilli 

and Streptococci [14–16]. The fecal microbiota is commonly used as a reflection of the intestinal 

bacterial composition, due to difficulties in obtaining mucosal samples, especially from the small 

intestine [17]. Several studies have, however, reported that the composition of the fecal microbiota 
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differs from the composition found in colonic biopsies [18–20]. Given that biopsies from healthy human 

subjects are more difficult to obtain, the axial distribution of gut microbiota (luminal to mucosal), 

especially in the small intestine, is less clearly described [17]. In addition, molecular fingerprinting of 

the bacterial community in pig ileal digesta and mucosa and colonic digesta and mucosa revealed that 

the composition of the microbiota differed clearly and clustered according to sample type [21]. 

Due to its proximity to IECs, the mucosa-associated microbiota may play a pivotal role in shaping the 

host mucosal immune system [17]. An earlier study has shown that the mucosa-associated microbial 

community is markedly altered in inflammatory bowel disease (IBD) patients compared with healthy 

individuals [22]. It is commonly accepted that microbial communities with high diversity are less 

susceptible to pathogen intrusion [23,24]. However, diversity alone cannot determine whether the state 

of an ecosystem is more or less resistant. In addition, community stability should be considered. A 

higher diversity may indicate a more chaotic community, especially during the early life of the animal. 

For example, pigs raised in an outdoor environment have been found to have more reduced microbial 

diversity than their indoor-raised littermates and higher abundances of Lactobacillus species that are 

health promoting [25,26]. 

Figure 1. The intestinal microenvironment: small intestine vs. large intestine. Intestinal 

epithelial cells (IECs) constitute a single cell layer barrier that is sealed by tight junction 

proteins and, therefore, separate the internal tissue from the external environment. Goblet 

cells in the intestine produce mucin, which is organized into a stratified mucus layer. The 

stratification is more apparent in the large intestine, where a firm inner mucus layer is largely 

impervious to bacterial penetration. At the mucosal interface, there is a constant signaling 

between bacteria and the host, including the lamina propria and the underlying Peyer’s 

patches (PPs) containing abundant myeloid and lymphoid cells. The interactions between 

microbes and IECs and between IECs and immune cells extends beyond the gut (i.e., in 

circulation) and is pivotal regarding adaptive immune response activation and the 

maintenance of host homeostasis. 
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2.2. Dysbiosis and Enteric Diseases 

It is becoming clearer that microbe-associated diseases are not confined to the action of ‘one 

microbe’. Major perturbation of gut microbiota can be caused by single strains of bacteria and/or 

imbalance of the community structure (dysbiosis) [27]. Dysbiosis is best exemplified in IBD, where the 

bacterial composition is shifted into a community that contains fewer Bacteroidetes, fewer Firmicutes, 

and more bacteria from the phyla, Actinobacteria and Proteobacteria, than in healthy subjects [28]. This 

is in line with studies on ileal Crohn’s disease, in which patients are characterized by lower  

microbial diversity and a community structure that deviates from a healthy gut [29,30]. A reduction in 

Faecalibacterium prausnitzii is concomitant with the loss of anti-inflammatory effects and may increase 

the risk of the recurrence of ileal Crohn’s disease [30]. Bacteria are highly interdependent in the 

intestinal microenvironment; therefore, depletion of one bacterial species can provoke a chain of 

reactions that leads to a perturbed community. Whether dysbiosis is a cause or effect of gut disorders is 

still unknown. Nevertheless, evidence from dietary interventions, including antibiotics, prebiotics and 

probiotics, indicates that the state of microbial imbalance can be modified and reversed [31]. In the 

livestock sector, there is a broad spectrum of enteric diseases that can cause morbidity and mortality in 

young animals, of which diarrhea is the most common one. For instance, post-weaning diarrhea, swine 

dysentery and necrotic enteritis (which also occur in chickens) constitute great challenges for the pig and 

poultry industry and significant economic losses in many parts of the world every year [4,32,33]. Studies 

on gnotobiotic pigs have shown that swine dysentery may be associated with dysbiosis and that 

colonization by the spirochete alone does not cause severe colonic lesions, unless it co-occurs with 

colonization by other anaerobic species [34]. 

2.3. Diet-Driven Changes in Bacterial Community Composition 

Diet is the primary lifestyle or environmental factor influencing the intestinal microbial composition. 

Studies have underscored the importance of ensuring diet balance and diversification in human nutrition 

and health; which is particularly true for young people and the elderly [2,35]. A minimal inclusion of 

dietary fiber is suggested in human and animal nutrition in order to achieve normal gut function. There is 

also a need for an adequate amount of dietary fiber to optimize intestinal health and well-being [35,36]. 

Rural African children living on a fiber-rich diet harbor a gut microbiota in which Prevotella 

dominates, while this fraction of the community is completely lacking in European children living on a 

‘Western’ diet (typically high in animal protein, sugar, starch and fat and low in fiber) [37]. Maslowski 

and MacKay (2011) postulated a diet-microbiota hypothesis that the modern “Western” diet type and the 

subsequent alteration of gut microbiota are associated with the increasing incidence of inflammatory 

disease, such as type 1 diabetes in European countries [38,39]. A dietary intervention study (from 

high-fat/low-fiber to low-fat/high-fiber diet) showed a response to the diet in the gut microbiota 

composition already after 24 h [40]. Similarly, in humanized gnotobiotic mice, a low-fat/fiber-rich diet 

shifts intestinal bacterial composition within one day [41]. These studies together indicate the fundamental 

role of diet in the host and gut microbiota co-evolution process. Dietary interventions can therefore be an 

easy and efficient approach to affect gut health via changing the bacterial community composition. 
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Dietary fiber generally increases the bacterial fermentation and production of short chain fatty acids 

(SCFA, including acetate, propionate and butyrate) in the large intestine, which reduces the pH and 

creates a microenvironment that favors the growth of specific members of the microbiota. In the 

proximal colon, a pH of 5.5 results in a dominance of Gram-positive butyrate-producing bacteria rather 

than Gram-negative bacteria, including the opportunistic pathogen, E. coli. [42]. Moreover, SCFA serve 

as energy substrates for colonocytes (butyrate) and peripheral tissues (acetate and propionate). 

Alterations of bacterial community structure are accompanied by changes in the bacterial metabolite 

profiles. The relative abundance of each bacteria species in gut microbiota influences the final mixture 

of fermentation end-products by direct production and interactions with other bacteria [43]. There is 

great interest in bacteria belonging to clostridial Cluster XIVa and Cluster IV, as they are major butyrate 

producers that utilize lactate and acetate in the large intestine. This group of bacteria plays a central role 

in colonic bacterial cross-feeding [44]. Several lines of evidence suggest that SCFA can act as molecular 

signals and exert immune modulatory properties beyond the mucosal surface. Butyrate has been  

studied as a de-acetylase inhibitor (a new class of anticancer agents) involved in NF-κB-dependent 

transactivation regulation [45]. In addition, acetate is suggested to contribute to the protective effect 

provided by Bifidobacteria against enterohemorrhagic E. coli infection by inhibiting toxin translocation 

into the blood [46]. 

A diverse group of dietary fiber fractions arrives at the distal GI tract undigested, thus allowing 

intensive microbial fermentation. The type and amount of dietary fiber available will shape the microbial 

community [47]. Dietary supplementation with prebiotics (a selectively fermented dietary substrate that 

induces specific changes, both in the composition and/or activity in the gut microbiota that confers 

benefits on host well-being and health [48]), such as inulin, can promote specific groups of bacteria, 

including Lactobacillus spp. and Bifidobacterium spp. in the human and animal gut [49,50]. By 

combining data on controlled dietary fiber intake and utilization, we identified specific changes in the 

bacterial species composition in small and large intestine of pigs fed diets containing chicory forage 

alone or in a mixture with chicory roots [51]. The change in the bacterial species composition was likely 

dependent on the content of the different dietary fiber fractions, uronic acid and inulin-type fructan, 

which were selectively fermented by bacteria in the gut. 

It appears that a given dietary fiber fraction can significantly interact with specific commensal 

bacteria in the gut. The bacterial species that belong to clostridial Cluster IV and XIVa plays an 

important role in the maintenance of intestinal homeostasis and butyrate production [52,53]. There was a 

marked increase in the relative abundance of these butyrate-producing bacteria (Clostridial species), 

including mucosa-associated members in the porcine gut, with increasing inclusion of chicory forage 

pectin in the diet. The stimulation of mucosa-associated butyrate producers by chicory uronic acids 

suggests a specific role of dietary fiber in sustaining colonocyte integrity [21], whereas another butyrate 

producer, Megasphaera elsdenii, was associated with dietary inulin inclusion [33,51], indicating 

different dietary substrate preference among intestinal bacteria species. Either way, in these studies, the 

relative production rates of SCFA has been able to provide potential links between diet and the  

gut microbiota. 
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3. Heat Shock Proteins (Concept Revisited) 

As detailed information on gut microbiota complexity and functional diversity accumulates, we are 

learning more about how diet-microbiota interactions can influence the immune system within and 

outside the gut and host homeostasis in general [38]. Since trillions of bacteria have lived inside the 

mammalian body for millions of years, an interdependent symbiotic relationship must be deeply 

embedded. One important example is that the gut commensal microbiota dictates the host immune 

system, especially the maturation of intestinal mucosa and its abundant immune cells. Without 

appropriate signals from the microbiota, abnormal immune responses, such as autoimmune reactions 

and non-reaction to pathogens, can take place [9]. In germ-free mice, the absence of commensal bacteria 

results in an undeveloped intestinal mucosal immune system that contains hypoplastic Peyer’s patches 

(PPs), fewer germinal centers, largely reduced numbers of various lymphoid cells (e.g., IgA-producing 

plasma cells and lamina propria CD4+ (cluster of differentiation 4) T-cells) [54], lack of regulatory T-cells 

(Tregs) [55] and minimal expression of cytoprotective HSP25 and HSP70 [56]. 

Heat shock proteins are a set of highly conserved proteins that are present and can be induced in all 

types of cells in all species. HSP70 is one of the most conserved and inducible proteins known to date, 

with ~60% phylogenetic similarity between microbes and mammals [57]. HSPs are categorized into 

seven families on the basis of their approximate molecular weight (Table 1). It should be noted that 

different families of HSPs show no homology of genes. However, they are commonly induced in similar 

situations, cooperating to promote cellular homeostasis. In response to stress, small HSPs (e.g., HSP27, 

a homologue to HSP25) will first trap the partially folding client protein to avoid aggregation and then 

deliver it to ATP-dependent HSPs (e.g., HSP 70 or HSP gp96), either to refold the client protein and 

send it to proper cellular locations or to go to protease-oriented pathways for the elimination of  

damaged polypeptides [58]. 
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Table 1. Major mammalian heat shock proteins (HSPs). HSPs are classified into seven families on the basis of their monomeric molecular 

weight, i.e., HSP10, small HSPs, HSP40, HSP60, HSP70, HSP90/HSP90B1 grp94 gp96 and HSP110. Each family includes at least one member, 

but often more. Intracellular HSPs are highly conservative and localized in different compartments in all type of cells in mammals. Most HSPs 

function as chaperones, involved in client protein assembly, stabilization, folding, refolding and translocation of proteins to proper intracellular 

space in physiological and/or stress conditions. Some HSPs are detected in the body fluid of healthy individuals or in cell secretion under 

non-stressed situation (e.g., HSP70), indicating a novel role of these proteins. BIP, immunoglobulin heavy chain binding protein; gp96, grp94, 

glucose-regulated protein; HDJ, DnaJ homologue; HSC, heat shock cognate; HSF1, heat shock factor 1; mHSP70, mitochondrial HSP70. 

Family HSPs Cellular Location (secreted) Function 
HSP10 HSP10 Mitochondrion (+) Co-chaperone for HSP60 activities 
 
Small HSPs αβ-crystallin Cytoplasm (+) Chaperone activity/cytoskeletal stabilization 
 HSP27 Cytoplasm/nucleus (+) Chaperone activity/actin dynamics 
 
HSP40 HDJ1, HDJ2 Cytoplasm/nucleus (+) Co-chaperone for HSP70 activities/binds to non-native proteins 
 
HSP60 HSP60 Cytoplasm/mitochondrion (+) Chaperone activity in folding/refolding/assembly of multimeric protein 

structures 
 
HSP70 HSP70 Cytoplasm/nucleus (+) Chaperone for nascent polypeptide chains, folding/refolding, transport 

through sub-cellular organelle membranes/ATP binding/ATPase 
activity/regulates HSF1 activity 

 HSC70 Cytoplasm/peroxisome (unclear) 
 BIP Endoplasmic reticulum (+) 
 mHSP70 Mitochondrion (not studied) 
 
HSP90 
HSP90 paralog 

HSP90 
grp94/gp96 
HSP90B1 

Cytoplasm (unclear) 
Endoplasmic reticulum (unclear) 

Chaperone activity for secretary proteins/involved in cell proliferation 
and growth/binds to other proteins/assisting the maintenance of the 
HSF1 monomeric state under normal conditions 

 
HSP110 HSP110 Cytoplasm/nucleus (+) Chaperone activity/thermal tolerance 
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HSPs were discovered in 1962 following a laboratory mistake in which the temperature of an 

incubator where Drosophila melanogaster larvae were kept was accidentally increased, which induced 

new puffing patterns of the polytene chromosomes in salivary glands [59]. They comprise about 

5%–10% of total protein constitutively expressed and could amount to 15% of total protein once they are 

induced by an array of stimuli besides elevated temperature, from oxidative stress, nutritional 

deprivation (glucose), chemicals, ethanol, ischemia-reperfusion injury, heavy metal, inflammatory 

mediators to commensal microbiota, dietary components (fiber ingredient) and SCFA [60,61]. The 

transcription of HSP gene is regulated by the interaction between the heat shock factor (HSF) 

transcription factor and the heat shock element [62]. This regulation of HSPs has to be tightly controlled 

upon activation; they can immediately carry out essential housekeeping functions to promote 

cytoprotection and cell recovery [63,64]. Strikingly, the stress-inducibility of HSP70 declines in 

monocytes and lymphocytes from aging people, concomitant with increasing pro-inflammatory 

cytokine production in circulation [65]. This results in a loss of the ability to withstand various 

environmental challenges and may elicit chronic inflammatory diseases over time. Indeed, 

inflammation-associated downregulation of HSPs has been shown to contribute to more severe colonic 

mucosal injury in dextran sodium sulfate-induced colitis of mice [66]. In IBD patients, similar responses 

are observed [67], whereas the regulation of HSPs relies on the translation factor, HSF1 [68]. In addition 

to decreased HSP expression, HSP gene 70-2 polymorphism has been suggested to contribute to the 

clinical severity of IBD [69]. Taken together, a defective induction of HSPs is intimately linked with the 

maintenance of self-tolerance and inflammation onset. 

3.1. HSPs in Cellular Homeostasis and Cytoprotection 

The biology of the HSPs has been an enigma for almost half a century since their discovery, mainly 

for two reasons: firstly, because of the highly conserved gene sequence of HSPs between prokaryotes 

and eukaryotes; secondly, due to the diversity and plasticity of HSP function. Human HSP70 is known to 

share >50% homology with bacterial HSP70, while the sequence homology with other HSPs can be  

>90% [11]. Thus, they have for long been suspected to be auto-antigens, contributing to both 

autoimmunity and infection [70]. The un-resolved question was why the host body harbors self-HSPs 

highly conserved with bacterial-HSPs with the predisposition for recognition by the immune system, 

especially in a microenvironment like the intestine, where there is an overwhelming density of bacteria. 

Possibly, the HSP-specific immune response is immunodominant, programmed to be constantly 

exposed to the highly conserved HSPs from gut commensal microbiota to initiate a strong recognition by 

memory cells. Such exposure may result in a cross-recognition of self-HSPs to ensure immune 

regulation under normal conditions. Upon infection (perhaps coinciding with downregulated self-HSPs 

and/or skewed commensal bacterial-HSP profiles), the host immune system would easily target the 

invading microorganisms and act on them [66,71,72]. However, the immunodominance of HSPs cannot 

resolve the second issue we addressed: that the marked conserved HSPs are able to perform multiple 

functions. It could be hypothesized that self-HSPs have endowed themselves to be well tolerated by the 

host immune system while carrying diverse features that go beyond the intracellular chaperon function. 

The bacterial-HSP function and properties have been discussed elsewhere [60,73] and will not be further 

dealt with in this review. 
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HSP27 is involved in cytoskeleton dynamics and plays an essential role in maintaining the intestinal 

epithelium integrity [21,74,75]. It has been demonstrated that HSP27 modulates cytoskeleton dynamics 

by directly interacting with F-actin filament (the two proteins share a common structural motif). The 

phosphorylated HSP27 oligomers interact with F-actin and prevent the filaments from breakage, while 

the non-phosphorylated monomers coat the actin filament and are involved in microfilament assembly, 

thus achieving cytoskeleton stabilization [74]. Under normal conditions, the interaction is actively 

engaged in cell motility, whereas inhibiting HSP27 expression will result in disorganized actin filaments 

and aggregated cytoskeleton, indicating the loss of cellular homeostasis [76,77]. At the other end of this 

essential interaction are the tight junction (TJ) proteins. In order to serve as an efficient barrier, the 

intercellular space of IECs must be sealed by TJ proteins, which regulate the intestinal permeability. The 

TJ complex consists of the transmembrane proteins, occludins, claudins, tricellulin, scaffolding protein 

zonula occludens (ZO) and junctional adhesion molecules, comprising over 50 proteins in total. The TJ 

structure is constantly being remodeled in response to external stimuli, including microbes and food 

antigens [78]. Both pathogen and pro-inflammatory cytokines can induce TJ disruption, resulting in a 

leaky gut, as in IBD [79,80]. In contrast, increasing evidence suggests that commensal bacteria and 

probiotics can enhance the intestinal barrier function by altering TJ protein expression and distribution 

in association with F-actin dynamics [81,82]. It has been suggested that F-actin can bind directly to the 

C-terminus of the TJ protein, ZO-1. In a study using a Madin-Darby canine kidney cell model, depletion 

of ZO-1 resulted in actin disruption that coincided with increased paracellular permeability, indicating 

an impaired barrier [83]. We found both increased expression of HSP27 and preserved TJ protein in 

cultured intestinal porcine epithelial cells-jejunum (IPEC-J2) with Lactobacillus spp. treatment under 

enterotoxigenic Escherichia coli (ETEC) challenge [21]. It is tempting to speculate that two groups of 

fundamental proteins for sustaining cellular integrity may cooperate with each other in the intestinal 

microenvironment. In other words, we propose that intracellular HSP27 could function as a TJ stabilizer 

(Figure 2). The commensal bacteria or molecular signals they produce may be captured by TLR2, which 

is constitutively expressed in IECs. These further induce protein kinase C activation and result in apical 

ZO-1 tightening, indicating barrier function augmentation [84]. Increasing expression of both ZO-1 and 

HSP27 in IECs would interact with F-actin dynamics and eventually enhance the intestinal integrity. 

However, a link is missing between ZO-1 and HSP27, i.e., the protein that is the main regulator in this 

pipeline. It was shown that HSP70 is co-localized with ZO-1 in the small IECs of mother’s milk-fed rat 

pups, contributing to the maintenance of gut barrier function in the face of oxidant stress [85]. 

HSP gp96 (also known as grp94 and HSP90B1, shown in Table 1) is another important example of 

chaperone involvement for sustaining cell homeostasis. Genetic studies have unraveled that HSP gp96 is 

an essential and obligatory master chaperone for TLRs, particularly for TLR4. Without HSP gp96 

functional presence, TLR4 remains intracellularly unresponsive to bacterial stimuli [86–89]. 

Furthermore, a study in mice shows that the loss of gp96/grp94 elicited gut-intrinsic defects in crypt 

proliferation, which were comprised of nuclear β-catenin translocation and, subsequently, disruption of 

the crypt-villus structure and loss of IEC integrity [90]. 
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Figure 2. Schematic diagram showing the proposed mechanisms of intracellular HSP27 

function as a tight junction (TJ) stabilizer. The TJ is composed of multiple interacting 

proteins, including occludins, claudins, junctional adhesion molecules (JAM) and ZO-1, that 

can bind to F-actin to stabilize the cytoskeleton. Intracellular HSP27 can also modulate 

F-actin, which may further regulate TJ through this pipeline, achieving TJ stabilization. This 

reaction can be initiated by toll-like receptor 2 (TLR2) in intestinal epithelial cells sensing 

microbial signals followed by protein kinase C (PKC) inductions. 

 

3.2. HSPs in Microenvironment Homeostasis 

A growing body of evidence shows that HSPs exert various immunoregulatory features in gut 

homeostasis and breakdowns, highly depending on the microenvironment and cellular events with 

which HSPs are associated. The effects of HSP27 promoting IL-10 while inhibiting pro-inflammatory 

cytokine production have been demonstrated in human monocytes and macrophages in vitro, as well as 

in a mouse model of atherosclerosis [91,92]. A similar response has been shown for HSP70. Several 

studies revealed that HSP70 and/or the peptide can enhance specific regulatory T-cells and IL-10 

production, thereby ameliorating arthritis in animal models [68,72,93]. In addition, HSP gp96 has been 

suggested to enhance Tregs function in vivo in mice and to induce lupus-like autoimmune diseases in a 

TLR4-dependent manner [94]. This has led to the assumption that the biological action of HSPs may be 

multi-factorial. Indeed, the molecular chaperones are one of the major groups of ‘moonlighting’ proteins 

(an individual protein that has multiple functions) that are increasingly being shown to exert unexpected 

actions [60,95]. Furthermore, a variety of HSPs (e.g., HSP10, HSP27, HSP70 and HSP90) are secreted 
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in cell culture and/or detected in extracellular fluids from healthy individuals [60,96–98]. It has also 

been shown that HSP70 and HSP gp96 are involved in bacterial lipopolysaccharide (LPS) signal 

transduction and become part of the LPS cell receptor complex [86,99,100]. These findings seem to 

redefine the role of HSPs in host homeostasis. In contrast, much of the early studies have focused on 

HSPs as purely intracellular proteins involved in pro-inflammatory signaling. One complication may be 

the contaminating bacterial component in recombinant HSPs using vesicles, such as the E. coli 

expression system, which would cause bacterial-like immune responses [11]. However, it is believed 

that HSPs can carry out various extracellular functions, for instance intercellular signaling for immune 

cells in health and disease states. Several possible mechanisms by which HSPs exit cells have been 

suggested [101]. 

3.3. Heat Shock Proteins As Intestinal Gatekeepers 

The multiple roles played by HSPs in host homeostasis are remarkable. Hence, they fit ideally in the 

context of the intestinal microenvironment that uniquely houses the complex and rapidly changing 

commensal microbiota. This inherent dynamic environment is confronted with the largest reservoir of 

immune cells in the body, in particular the highly versatile antigen presenting cells (APCs, including 

dendritic cells (DCs) and macrophages) and T-cells that are locally abundant in the intestinal lamina 

propria or are active in circulation [4,102]. Studies of HSP expression along the GI tract emphasize the 

differences of their localization and levels in health and diseases [56,103–105]. The gut sites with a more 

challenging microenvironment seem to call for higher expression of HSP27 and HSP70 in IECs, namely 

the stomach (highly acidic) and the large intestine (diverse microbiota and extensive fermentation), 

rather than the small intestine [75,106,107]. Given that limited information is available on the role of 

HSPs in the normal porcine gut [103], we investigated the expression of HSP27, HSP70 and the 

constitutive HSC70 along the GI tract of young pigs. Surprisingly, ileal mucosa exerted a stronger 

expression of HSP27 and HSP70 than the proximal colonic mucosa, whereas HSP27 was found to be 

expressed at a high basal level in IPEC-J2 cells representing jejunal epithelium [21]. Several studies in 

humans and rodents have demonstrated that HSPs are almost undetectable in the normal proximal small 

intestine, due to the lack of bacterial richness and diversity [56,75,107]. The discrepancy in HSP 

expression could be due to animal species differences in association with their varied digestion capacity 

of dietary fiber and bacterial colonizers in the small intestine [7,51,108]. Another reason could be the 

impact of the enriched ileal PPs containing myeloid and lymphoid cells in pigs. Nevertheless, current 

knowledge suggests that the physiological expression of HSP27 and HSP70 is region-specific, 

indicating their fundamental role in fulfilling certain physiological niches. Moreover, we and others 

found a cell type-specific expression of both HSP25/27 and HSP70 along the villus/crypt axis in the gut, 

with the highest expression in the surface epithelium, lower in crypt cells and limited in the lamina  

propria [56,106,107,109]. We suggest that the axial gradient HSP expression is dependent on dietary 

components, microbes and their metabolites to which the mucosa surface is exposed. Indeed, enteric 

flora is one of the major determinants of HSP physiological expression in IECs. This has been clearly 

demonstrated in antibiotic-treated mice, in which a significant reduction of HSP25 and HSP70 occurs in 

colonic mucosa [106]. In germ-free mice, the longitudinal expression of HSPs along the GI tract is 

abolished, which is not the case in conventionally colonized mice [56]. Furthermore, in contrast to 
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antibiotic-treated mice, significant HSP25 and HSP70 production was observed in the colon of 

non-antibiotic treated mice, which protected the tissue against Clostridium difficile toxin A [106]. 

Possible Regulations 

HSPs can interact with several immune cell populations. In our studies, intense HSP27 expression 

was found in ileal PPs (furnished with myeloid and lymphoid cells) of pigs [21]. The list goes on with 

Tregs, tolerogenic DCs, macrophages, etc. [92,110,111]. The sequel of interaction between HSPs and 

immune cells in a microenvironment, such as the intestine, therefore, highly depends on the nature of 

self-HSPs, the presence or absence of antigens and/or inflammatory mediators and the immune cell 

populations HSPs encounter; in short, the context in which one or more HSPs are active. Several stages 

can be identified in which HSPs regulate the qualitative nature of cell-mediated immune responses.  

Firstly and classically, in stress situations, the HSPs are loaded on MHC Class I of APCs by default to 

achieve cross-presentation of antigens, thus inducing cytotoxicity T-cell responses and, eventually, 

eliciting pro-inflammatory cytokine production (Figure 3a). This process involves either direct 

recognition of bacterial HSPs, or, in tumor cells, self-HSPs may collect intracellular tumor antigens to 

cross-prime the T-cell responses [112–115]. The secretion of inflammatory cytokines, such as IL-1β, 

TNF-α and IL-6, is not always a solid effect (sometimes due to bacterial contamination of recombinant 

HSPs), but their presence in the microenvironment is suggested to be one of the important cues for 

self-HSPs to target different reservoirs of immune cells, in this case, the effector T-lymphocytes [11]. 

This scenario has been studied in the context of cancer to deepen our understanding of microbial 

stimulated inflammation and associated oncogenesis. Remarkably, HSP gp96 depletion in mice 

macrophage resulted in reduced mutation rates of β-catenin, increased DNA repair and reduced 

pro-inflammatory cytokine expression of colon cancer in an animal model, indicating that gp96 is a 

major effector chaperone in tumor-associated macrophage activity [115]. 

Secondly and alternatively, self-HSPs might modify the phenotype of APCs, possibly including 

tolerogenic DCs [116], and/or turn on the alternative activation of macrophages, which is found to play a 

central role in host immune homeostasis, henceforth, inducing the functional phenotype of T-cells, e.g., 

Tregs, and leading to the production of anti-inflammatory cytokines, such as IL-10 and  

TGF-β [102,116–118] (Figure 3b). Preferably, an uploading of self-HSPs in the MHC II molecule of 

APCs would occur to target Tregs. In the intestinal lamina propria, MHC II presentation of self-HSP 

peptide may involve signaling through TLR2, a pathogen recognition pattern receptor (PRR) that could 

exert both inflammatory and anti-inflammatory properties, depending on the nature of the ligand and its 

microenvironment dynamics [119,120]. In addition, another group of PRR, the scavenger receptor, 

might be needed to internalize self-HSPs [92]. 

Thirdly, self-HSPs may directly interact with functional immune cells. The mechanism of 

HSP-specific Tregs induction is assumed to be manifold, but could simply be a direct interaction  

(Figure 3c). This is also possible with APCs; that self-HSPs would induce tolerogenic equilibrium and a 

production of anti-inflammatory cytokines. Vice versa, the Tregs response might be reinforced by the 

presence of the IL-10 [110]. In both self-HSP-specific immune-regulation scenarios, IL-10 is always 

involved and contributing to the downregulation of inflammatory responses.  
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Figure 3. Heat shock protein (HSP)-specific immune responses in host homeostasis.  

(a) Classically, bacterial-HSPs are loaded on MHC I molecules of antigen presenting cells 

(APCs), thus cross-presented to CD8+ (cluster of differentiation 8) cytotoxic T-cells to 

ensure an inflammatory response with pro-inflammatory cytokine production, including 

IL-1β, TNF-α and possibly IL-6. (b) Alternatively, self-HSPs are loaded on MHC II 

molecules of APCs in alternatively activated states, e.g., macrophages, henceforth inducing 

a regulatory phenotype of functional T-cells, e.g., Tregs, and producing an 

anti-inflammatory signature (IL-10, TGF-β and possibly IL-4); or (c) self-HSPs could 

directly influence T-cells or APC responses to achieve an immune-regulatory effect, in 

which IL-10 is always important, contributing to the dampening of the ongoing 

inflammation. 

 

4. Exploiting the Interaction between Microbes and HSPs 

4.1. Microbiota 

One of the most profound results of self-HSP immune-regulation is from HSP60, where a HSP60 

peptide (known as DiaPep277) was developed for type 1 diabetes treatment targeting specific T-cell 

responses [121]. DiaPep277 has recently entered phase III clinical studies in humans. Thus, it seems as 

though we are approaching in vivo manipulation of HSP expression targeted at specific phenotypes and 

functions of immune cells to enhance host homeostasis. One approach to affect health and disease then 
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could be to change the gut bacterial community composition and utilize the interactions between the 

commensal microbiota and the mucosal immune components [27]. We have identified several interplays 

between HSPs and the microbiota in our studies. The correlation between ileal HSP70 expression and 

the relative abundance of Lactobacillus spp. is one important example [21], as an increasing body of 

evidence demonstrates that probiotic Lactobacilli, such as Lactobacillus brevis, Lactobacillus 

rhamnosus GG and VSL3# (a probiotic product comprising several strains of bacteria, including four 

Lactobacilli) enhance intestinal barrier function and IEC protection by inducing HSP27 and HSP70 

expression [122–124]. The protective effect of Lactobacilli has further been demonstrated using ETEC 

challenge in an IPEC-J2 cell model. The results showed that Lactobacillus reuteri provided a substantial 

protection to the IECs, and the protective effects was at least partly dependent on the induction of HSP70 

and by preserving TJ proteins [21]. Another correlation was found between colonic HSP70 and 

clostridia bacterial species [21]. The immune-modulatory effect of indigenous clostridia bacteria has 

been confirmed in the colon of mice [125] and in IBD patients [30], including IL-10 promotion. We 

speculate that the induction of HSP70 may be one arm of their immunomodulatory function. The 

interaction may thus be specified and possibly manipulated in order to achieve better host health 

maintenance. Nevertheless, the mechanisms behind these interactions have not been fully  

elucidated [122–124,126]. 

The interaction between HSP gp96 and microbiota is also critical due to the importance of this 

chaperone for TLR4 (to detect Gram-negative bacteria) recognition and activation. However, it may 

play a dual immune regulatory role depending on the context [86,94,127]. It has been demonstrated in a 

transgenic mice model that TLR4 and the commensal microbiota are essential for the immune 

complex-mediated glomerulonephritis to express surface HSP gp96 [128]. 

4.2. Dietary Components 

Dietary intervention can be used as a means to manipulate HSPs expression in vivo and to enhance 

host health by targeting specific immune components, such as Tregs. Intra-gastric administration of 

carvacrol (a major compound from the oil of Origanum species) in mice increased the expression of 

HSP70 in Peyer’s patches and Tregs systemically and suppressed experimental arthritis in an animal 

model [129]. The effect was reinforced by a food-HSP70 inducer readout study [130]. Several other 

nutritional components have also been shown to affect HSP expression in the GI tract in vivo and  

in vitro. For instance, the inclusion of butyrate, dietary pectin, glutamine, arginine and mother’s milk 

conferred beneficial effects through HSP induction in the gut [75,85,131,132]. We have identified a 

positive correlation between ileal HSP27 expression and the relative abundance of M. elsdenii, 

concomitantly with uronic acid intake (the building block of pectin) [21]. This bacterial species is 

suggested to effectively convert lactate to butyrate [33,133], indicating that uronic acid may be an HSP 

booster in vivo and play a specific role in intestinal mucosa homeostasis. This is supported by a study in 

rats using a pectin-rich diet that specifically induced ileal HSP25 [75]. In great contrast, lectin, a harmful 

agent of dietary origin (e.g., kidney bean), significantly decreased the intestinal expression of HSPs, 

downregulating their gene expression and damaging the intestinal mucosa, thus leaving the IECs very 

vulnerable to environmental challenges from the gut lumen [134]. 
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5. Perspective 

A number of highly dynamic interactions are involved in maintaining GI homeostasis, i.e.,  

(i) bacterial communities cross talk with the local mucosal immune system and elicit alterations of 

immune cell profiles and functions, whereas host immunity and gut anatomy help to define bacterial 

composition and distribution; (ii) gut microbiota constantly interacts with dietary substrates in the 

intestinal microenvironment, while releasing fermentation products that can be used by the host;  

(iii) dietary substrates, such as fiber, are one major component with an impact on host nutritional status 

and health overall. When any of these interactions is disturbed, dysfunction of the immune system, often 

seen as autoimmune responses or inflammation, may occur. This review intended to outline some recent 

findings related to host-microbial immune mutualism in health and disease. We have tried to show the 

role of bacteria in intestinal homeostasis and to what extent diet is driving the changes of the microbiota 

community. There is increasing evidence showing that the microbiota plays a central role for gut 

homeostasis, and the association between the microbiota and HSPs may be one important link for 

keeping the gut epithelium in balance. 

The next challenge is to identify immune markers that can reflect local interactions between microbes 

and host, as well as systemic changes and that, hopefully, help to meet the gaps between innate and 

adaptive immune regulations and responses. HSPs are emerging immunoregulatory molecules that 

inherently function as intracellular chaperones and that, in addition, exhibit unexpected extracellular 

signaling features. The understanding of the physiological role for these proteins has led us to connect 

two important immune regulators, i.e., immune cell populations (e.g., Tregs and APCs) and HSPs, 

which have been investigated as separate issues in intestinal microenvironment dynamics [110]. 

Hopefully, this will stimulate further studies focusing on how the host natural defense is acting against 

the microorganisms inside the body and, furthermore, help gain deeper insight into the precise phenotype, 

quantity, and locations of these HSP-specific immune cells and their mechanism of activation in vivo, in 

parallel with a detailed molecular pathway activated by HSPs in response to microbiota changes. 

The use of HSP peptides as therapeutic agents for inflammatory disease treatment [121] and the 

manipulation of the microbiota through HSPs activation, including probiotics, seem to be possible and 

look promising. More attention should also be paid to dietary manipulation of the intestinal microbiota 

and HSPs, by using diet in targeted prebiotics strategies for the prevention and management of gut disorders. 
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