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Abstract: High-throughput sequencing technologies have made it possible to study 

bacteria through analyzing their genome sequences. For instance, comparative genome 

sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene 

exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that 

pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from 

other bacteria, and these regions are also known as pathogenicity islands (PAIs). PAIs have 

some detectable properties, such as having different genomic signatures than the rest of the 

host genomes, and containing mobility genes so that they can be integrated into the host 

genome. In this review, we will discuss various pathogenicity island-associated features 

and current computational approaches for the identification of PAIs. Existing pathogenicity 

island databases and related computational resources will also be discussed, so that researchers 

may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms. 
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signature; mobility gene; virulence factors; pathogenicity island database 
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1. Introduction 

In past decades, researchers have used comparative genome analyses to study bacterial evolution. 

When studying genome sequences, researchers discovered that some genes were missing in these 

genomes, but were present in their phylogenetically closely-related genomes. On the other hand, some 

genes were present in some genomes but were missing in the genomes of the same species. It has been 

now generally understood that gene loss and gene gain in the genomes are the driving forces for 

genome evolution [1]. 

The cause of gene loss might be related to the change of living niches, where the existence of such 

genes in the host genome may confer the fitness cost [2]. Gene loss could also be a positive selection. 

For instance, the loss of gene cadA in Shigellae results in the loss of its product [3]. The absence of 

this product can trigger the production of plamid-encoded virulence factors, and, thus, making 

Shigellae more pathogenic. 

Gene gain in bacterial genomes might also be selected by the change of their living environment, and 

acquiring genes make them more selective. For instance, some marine Actinobacteria Salinispora tropica 

and Salinispora arenicola were discovered to harbor genes associated with secondary metabolite 

biosynthesis to adapt their living niches [4]. The process of transferring the genes from alien genomes 

into the host genomes is known as horizontal gene transfer, which is in contrast to lateral gene transfer, 

where gene transfers occur within the host genomes. Due to the fact that horizontally transferred genes 

have their alien origin, such regions are known as genomic islands (GIs). 

The concept of GIs was from Pathogenicity Islands (PAIs), which was first created by Hacker and 

his colleagues [5]. They used it to describe a functionality of a genomic region of Escherichia coli that 

harbors clusters of virulence factors that can be simultaneously deleted. Later on, researchers found 

more clusters of genes with different functionalities, including groups of genes which encode antibiotic 

resistance, also known as antibiotic resistance islands, or some other gene group that encode adaptive 

metabolic properties such as phenolic compound degradation, also known as metabolic islands. 

The studies of GIs are very important to biomedical and bioinformatics research. This is because  

we can use GIs to explain why some strains of bacteria within the same species are pathogenic while 

others are not, why some specific species could survive in extremely critical living environment while 

others do not; we can also use GIs to understand the functionalities of a bacteria and genome 

evolution. Therefore, the identification of GIs represents one of crucial tasks for genome evolution and 

gene transfer mechanism studies. 

In this review, we will focus on the identification of PAIs, one of the most important GI groups. We 

will look into PAI-related features, and then review current available computational approaches for 

PAI identification. We will highlight some of important PAI databases and related resources for 

community access. It should be noted that most of computational tools and database available are for 

genomic islands in general, meaning that they provide not only predicted PAIs, but also other groups 

of genomic islands, such as resistance islands or metabolic islands. 
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2. PAIs-Related Features 

When comparing the genomic region of PAIs and the remaining parts of the host genome, we can 

usually find that PAIs have their own genomic characteristics such as containing mobility genes, 

containing virulence genes, and having their own sequence signature. Figure 1 illustrates a schematic 

view of a PAI. The PAI associated features and corresponding measurement methods summarized  

in Table 1. 

Figure 1. A schematic view of a pathogenicity island with associated features. The PAI 

region has biased sequence composition. The PAI regions are associated with virulence 

genes (vir1, vir2, vir3, and vir4), phage-related genes (phag1 and phag2), mobile genes  

(int and trans), hypothetic protein genes (hypo1, hypo2, and hypo3), insertion sequence 

elements, direct repeats, and tRNA gene. 

 

Table 1. A list of Pathogenicity Islands (PAI)-associated features and measurement methods. 

PAI-Associated Features Feature Measurement Methods 

Different genomic sequence signature 
Compute G+C content, GC-skew, codon usage, or other 
sequence signature tools 

Presence of virulence factors Search through virulence factor database such as VFDB 
Presence of mobility genes  
(integrases, transposes) 

Search through NCBI-nr/nt, UniprotKB, Pfam or COG database 

High percentage of phage-related genes Search through NCBI-nr/nt, UniprotKB, Pfam or COG database 
Presence of tRNA genes Use tRNA gene search tool of tRNAscan-SE 
High percentage of hypothetic  
protein genes  

Search through NCBI-nr/nt, UniprotKB, Pfam or COG database 

Presence of direct repeats Use repeat finder software REPuter 
Presence of insertion sequences Search through ISfinder database 

2.1. Genomic Sequence Signature 

In general, each genome has its unique genome signature, which can be measured by G+C content, 

dinucleotide frequencies (or other k-mer frequencies), and codon usage. This is because PAIs were 

originally transferred from other pathogenic bacteria, plasmids, or phages, and, thus, the genomic sequence 

structure of PAIs is different from that of the rest of host genome. 

2.1.1. G+C Content and GC-Skew 

The G+C (%) contents (i.e., the percentage of guanine and cytosine bases) in PAIs are often 

different from that of the host organisms. For instance, the G+C content of the Uropathogenic E. coli 

core genome was 51%, while the G+C content was 41% in PAI I, II, IV, and V [6–8]. In the genome of 
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Enteropathogenic E. coli, the G+C content of PAI of LEE was only 39% [9]. G+C content differences 

between PAIs and the core genomes have also been found in other genomes, such as D. noddosus [10], 

H. pylori [11], and Y. pestis [12]. 

A slightly different measure can also be used for measuring the difference between PAI and core 

region. For instance, a large scale comparative genomic analyses of 1,088 bacterial and Archaeal 

genomes showed that PAIs were anchored around switch sites of GC-skew (sGCS), which was 

measured by [G−C]/[G+C] [13]. 

2.1.2. k-Mer Frequency 

The measurements of dinucleotides or high-order oligonucleotide frequencies have been 

increasingly used [14]. Theoretically, the higher-order measurement used, the more accurate to differentiate 

two genomes, given the assumption that the genomic region for measurement is long enough to evaluate all 

combinations of oligonucleotide patterns (or words). For instance, if 6-mer frequency is used, then 

there will be 46 = 4,096 words, and, thus, a genomic region with at least several kb is required if 6-mer 

frequency is used. We have seen several approaches such as AlienHunter [15] and Centroid [16] that 

used k-mer frequencies to predict island regions. 

2.1.3. Codon Usage 

Codon usage is another useful feature to tell the differences between two genomes. Generally 

speaking, each genome has its own preferred codon usage, and thus the codon usage in a genome 

region will be significantly different than the rest of host genome if this region was transferred from 

outsider. SIGI-HMM software uses codon usage bias to predict GIs [17]. 

2.1.4. Caveat 

While PAIs have skewed sequence composition, highly expressed genes (HEGs) (including ribosomal 

related genes, chaperonin genes, transcription and termination factor genes, energy metabolism genes, 

recombination and repair genes, and electron transport genes) may also have codon usage bias and 

dinucleotide bias [18]. In this scenario, using sequence composition information only to detect islands 

in pathogenic bacteria will lead to the problem of false positives (i.e., predicted PAIs might actually  

be HEGs). 

On the other hand, it is possible that the donor and recipient organisms have similar sequence 

composition, thus, making it difficult to dig out those real PAIs sporadically distributed in the core 

genome. Furthermore, even the donor and recipient organisms have different sequence compositions, it 

is very likely that the PAI region will be eventually ameliorated, a process that makes the sequence 

composition (or codon usage) of the alien genomic region (i.e., PAIs) be similar to that of the core 

genome, so that the integrated region can be adapted to enhance expression [19]. A recent large scale 

genomic study of 1,088 bacterial and Archaeal genomes has shown the newer acquired PAIs were closer 

to sGCS than the older ones, implying that the older PAIs are in the process of amelioration [13]. In this 

scenario, using sequence composition information only will lead to the problem of false negatives  

(i.e., the actual PAIs may not be discovered easily). 
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2.2. Virulence-Associated Genes 

Another important property of PAIs is that PAIs contain virulence-associated genes. Depending on 

the environment that bacteria live in, the proteins encoding virulence-associated genes in PAIs can 

include the following categories: (a) Adhesins, which are cell-surface components that facilitate 

bacteria adhere to eukaryotic cells; (b) Type III and IV secretion systems, which have needle-like 

structures that detect the presence of host organisms, and secrete effector proteins into the host cell;  

(c) Invasins, which facilitate bacteria to invade eukaryotic epithelial cells; (d) Toxins, which can be 

exotoxins, proteases, lipases, and enterotoxins; and (e) Iron uptake systems. The details of virulence 

factors existed in PAIs of pathogenic bacteria can be found in other reviews [20–22]. 

In a recent large-scale analysis study between virulence factors and GIs [23], the researchers found 

that virulent factors were disproportionately found in GIs. Furthermore, Offensive virulence factors, 

such as toxin, type III secretion system, and type IV secretion system, were found more in pathogenic 

genomes than in non-pathogenic genomes. On the other hand, other categories of virulence factors 

such as motility, antiphagocytosis, and iron uptake were found more in non-pathogenic genomes than 

in pathogenic genomes. These findings indicate that PAIs contain manly offensive virulence factors 

rather than other categories. Virulence factors in any genomic sequence can be identified through a 

BLAST search against virulence factor database [24], or virulent factor prediction tools, such as 

VirulentPred [25]. 

2.3. Mobility Genes 

Two kinds of mobility genes, integrase gene and transposase gene, are often found in PAIs. The 

integrase gene is involved in the integration, recombination, or excision of mobile elements. Transposase is 

an enzyme that helps the movement of transposons from one region to another. The mechanisms of 

how alien genes are transferred, stabilized, or excised from the host genome, or how mobility genes get 

involved in such processes can be found in other reviews [26]. The identification of the mobility genes 

can be done through searching Pfam protein database using HMMER3 [27,28]. 

2.4. Phage-Related Genes 

High percentage of phage-related genes has been found in PAIs [29,30]. In actuality, phage 

transduction and prophage integration are the major mechanisms of horizontal gene transfer in 

prokaryotes [31]. The food pathogen E. coli O156:H7 strain Sakai has been discovered to contain 

around 16% prophage of its own total genome sequence [32]. The identification of the phage-related 

genes can be done through searching Pfam protein database using HMMER3 [27,28]. 

2.5. Transfer RNA 

Many PAIs are flanked by tRNA genes, and other elements, such as integrases and insertion 

sequence elements. tRNAs may be involved in insertion process at the insertion points when PAIs are 

inserted into the host genome. It is generally considered that not all tRNAs loci are targeted for 

insertion sites, but with some bias. For example, in a study of 328 tRNA orthologs from four genomes, 

researchers found that there were only 18 tRNA loci for insertion sites [33]. Further, tRNA loci bias 
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may be different in different genomes. One study showed that preferred insertion site were tRNA-Arg, 

tRNA-Leu, tRNA-Thr, and tRNA-Ser, but few at tmRNA sites [34]. In another study of 168 islands, 

the most frequently targeted tRNA loci were tmRNA and tRNA-Ser [35]. While finding tRNA genes 

can be achieved using the software tool of tRNAscan-SE [36], it can be difficult to find tRNA loci for 

insertion sites, given that different genomes have their preferred tRNA loci. 

2.6. Hypothetical Protein Genes 

Compared to the core genome, PAIs have high percentage of hypothetical protein genes (i.e., 

proteins with unknown function) [37]. This can be explained that the donors (might also include 

plasmids or pro-phages) might have not been cultured and sequenced yet, and the functions remain to 

be determined. Hypothetic protein genes can be obtained by finding open reading frames (ORFs) with 

gene-finding programs, such as GeneMark [38] and Glimmer [39], and then excluding proteins with 

known functions, which be searched against NCBI-nr/nt [40], UniprotKB [41], Pfam [28], or COG 

database [42]. 

When measuring inter-genic distances (i.e., the distances between any two adjacent genes) between 

the known island regions and the core regions, Wang et al. [43] found that, on average, island regions 

had longer inter-genic distance than those of the core genome. Island regions might bring some alien 

genomic sequences that have yet to be predicted as ORFs, but involved in some unclear activities such 

as transposon-related activity. 

2.7. Direct Repeat 

PAIs are usually flanked by direct repeat (DR) sequences, in which each DR is 16–20 bp long with 

nearly perfect sequence repetition. The DR sequences might be generated when mobile elements were 

integrated into the host genome, and act as target sequences for the excision of mobile elements from 

the host genome [44]. DRs can be detected by genomic sequence analysis software tool of REPuter [45]. 

2.8. Insertion Sequence (IS) Elements 

PAIs may also contain IS elements, which are usually flanked by inverted repeat sequences. Unlike 

DR sequences (usually flanked by PAIs), IS elements are very often part of PAI segment. IS elements 

may medicate DNA rearrangements by transpositional events, and act as the target sequences for the 

excision of mobile elements in the host genome. IS elements can be identified by searching ISfinder 

database [46]. 

3. Computational Identification of PAIs 

Currently there are a number of island prediction approaches, which are generally based on either 

(i) comparative genomics to find unique regions which are absent in several related isolates or  

(ii) sequence features and sequence composition differences. The first category can be considered as 

comparative genomics based approach, and the second one can be termed as sequence composition 

based approach. 
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3.1. Comparative Genomics Based Approach 

Comparative genomics-based approach compares the incongruence of the gene tree versus its 

associated species tree [47]. A “gene tree” is the phylogeny of alleles or haplotypes for any specified 

stretch of DNA [48]. Several kinds of computational tools have been developed based on the rule that 

states that the genomes of closely related species should be highly assumed to share similar 

preferences and signatures. Therefore, if a genomic sequence of one species contains some special 

signatures that other species do not have, it is highly recommended that this genomic sequence has a 

foreign origin. The comparative genomic-based approach consists of three general steps: (1) Collecting 

all genome sequences from closely related species for a query genome; (2) Aligning these genome 

sequences together; and (3) Considering those gene segments present in the query genome but not 

present in others to be islands. Figure 2 shows a schematic diagram of comparative genomic-based 

approach for island prediction. Below, we describe three comparative genomics approaches for 

predicting GIs in general. 

Figure 2. A schematic view of genomic region alignment in the comparative genomic 

based approach for island prediction. Three phylogenetically closely-related reference 

genomes (G1, G2, and G3) are shown here for the detection of island region in the query 

genome (G4). 

 

IslandPIck [49] is one of the popular comparative genomic-based sequence approaches. This 

approach starts with using a distance function to measure the phylogeny relatedness of the reference 

genomes with the query genome using a tool named CVTree [50], and then picks appropriate genomes 

for genome alignment. After the genome selection step, IslandPick uses the Mauve [51] program to 

pairwise genome alignments and identify unique regions of the query genomes, which are considered to 

be GIs. It uses Mauve again to do multiple genome alignments and identifies the genomic regions that 

are common to all genomes, which are considered as non-GIs. 

MobilomeFINDER is another tool that uses comparative genomics-based approach for GI 

prediction [33]. The basic idea of this approach is quite similar to that of Islandpick, but it includes the 

information of tRNAs, as tRNA has been found to be involved in GI insertion process. However, the 

disadvantage of this approach is it may lead to false negative GI prediction. This is because not all GIs 

contain tRNAs as insertion points, therefore, MobilomeFINDER will miss some of GIs without tRNA 

present. 
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MOSAIC [52,53] is another comparative genomic approach, and the authors built an online 

database that provides the alignment results of bacterial genomes. The genome segmentation process 

includes four major steps: (1) selecting related genomes using Mummer3 [54] and Multiple  

Genome Alignment (MGA) [55]; (2) aligning genomes using MGA; (3) generating backbone  

(i.e., conserved regions) and loops (strain-specific segments); and (4) database integration. This database 

considers variable regions (i.e., loops) in the alignment results to be GI regions. There is a user-

friendly web interface that facilitates the browsing and downloading of these GI regions, which 

illustrates the important properties of these regions. Such segmentation results along with the 

visualization of these bacterial genomes are useful to the researchers for functional analysis.  

The advantage of comparative genomic approaches is that it is easy to identify the difference 

between closely related genome sequences, which are supposed to share same gene contents and 

signatures. The disadvantage, however, is that we do not have enough close-related genomes available 

for some query genome, and, thus, this approach cannot be applied to any sequenced genome. Another 

disadvantage of this approach is, most of the computation tools need manually adjustment and 

selection, which is hard to perform and control as it may lead to inconsistent selection criteria due to 

the unfamiliarity of different genome structure [33]. 

3.2. Sequence Composition Based Approach 

Theoretically, all genomic regions inside the host genome are supposed to share same genomic 

signature. If a piece of genomic sequence has been detected with different gene signature or contents, 

it is highly recommended that this region is horizontally transferred from other sources. Sequence 

composition approach is based on this concept that enables us to make genomic region comparison 

within one single genome to identify special signatures. These genomic signatures include G+C content, 

dinucleotide frequencies, codon usage, mobility genes, tRNA genes, and flanking direct repeats. In the 

case of PAIs, that region also contains virulence factor genes. The advantage of this approach is that it 

relies on only the query genome sequence, and closely-related species genomes are not needed, thus 

making it possible to predict GIs of all genomic sequences. Below, we describe sequence composition 

approaches, based on the alphabetic order of programs. It should be noted that all programs, except 

PIPS, are for GI detection in general. The summary of these programs as well as their websites can be 

found in Table 2. 

AlienHunter is one of popular software packages that use sequence composition-based approach [15]. 

This key idea of this software is to describe the sequence signatures by using interpolated variable 

order motifs (IVOM). Specifically, this method exploits compositional biases at various levels by 

implementing variable order motif distributions, and, thus, it can capture sequence signature accurately 

with variable length of sequence. AlienHunter focuses on higher order motifs if the gnomic region is 

long enough, so that it can make accurate prediction results. When the genomic region to be tested is 

short and the information is not sufficient, it considers lower order motifs. Generally speaking, the 

higher the IVOM score is the more GI segment the genome sequence looks like. 
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Table 2. The summary of a list of sequence composition based software. 

Software a Main Principle System Setup b Website 

AlienHunter HMMs on various mer words 
Unix/Linux OS, Java and 

Perl environment setup 

http://www.sanger.ac.uk/resources
/software/alien_hunter/ 

Centroid Centroid on k-mer word 
Unix/Linux OS and C++ 

environment setup 
Upon request 

EGID 

Ensembles the results of AlienHunter, 

IslandPath, SIGI-HMM, 

INDeGenIUS and PAI-IDA 

Unix/Linux OS, Java, 

C++ and Perl 

environment setup 

http://www5.esu.edu/cpsc/bioinfo/
software/EGID 

GIDetector 

Decision-tree based bagging on 

IVOM score, insertion point, size, 

gene density, repeats, integrase, 

phage and non-coding RNA 

Windows OS, C# with the 

support of Perl  

and Cygwin 

http://www5.esu.edu/cpsc/bioinfo/
software/GIDetector/ 

GI-GPS 

SVMs on sequence composition 

(including GC content, dinucleotide 

frequency, codon usage, and codon 

adaption usage), and with filtering 

steps including length of candidate 

segment, tRNA and repeat elements 

Not available http://gipop.life.nthu.edu.tw 

GIHunter 

Decision tree based bagging model 

using sequence composition, gene 

information and inter-genic distance, 

mobile genes, phage genes, tRNA, 

and gene density 

Unix/Linux OS, Java, 

C++ and Perl 

environment setup 

http://www5.esu.edu/cpsc/bioinfo/
software/GIHunter 

INDeGenIUS Clustering/Centroid on k-mer word 
Unix/Linux OS and C++ 

environment setup 
Upon request 

IslandPath 
G+C, dinucleotide, mobile genes, 

and codon usage 

Unix/Linux OS and Perl 

environment setup 

http://www.pathogenomics.sfu.ca/
islandpath 

PAI-IDA 
Discriminant analysis on G+C, 

dinucleotide and codon usage 

Unix/Linux OS, C++ and 

Perl environment setup 

http://compbio.sibsnet.org/ 
projects/pai-ida  

PIPS 

G+C content, codon usage deviation, 

virulence factors, hypothetical 

proteins, transposases, flanking 

tRNA and its absence in 

nonpathogenic organisms 

Unix/Linux OS and Perl 

environment setup 

http://www.genoma.ufpa.br/lgcm/
pips 

SIGI-HMM HMM on codon usage 
Unix/Linux OS and Java, 

environment setup 

http://www.tcs.informatik.uni-
goettingen.de/colombo 

a PIPS is used for predicting PAIs specifically, the rest of software tools are used for predicting GIs in general, including 

PAIs; b System setup include the operating systems in which software tools are run, and additional software may be 

installed such as Java/Perl/C++ environments. 

Since AlienHunter predicts islands only based on genomic sequence, not on pre-existing annotation 

or gene position information, thus it can be applied on the newly sequenced genome. It has been 

reported that AlienHunter has high prediction sensitivity (i.e., detecting most of actual existing 

islands), but with high false positives too [49]. One of the causes is that AlienHunter does not exclude 

the region with highly expressed genes, which also show high IVOM scores. 
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Centroid [16] is an approach that identifies compositionally distinct regions in genomes using word 

frequencies. In particular, the query genome is separated into non-overlapping groups of equal length. 

For any given group, this tool finds the frequencies for all possible words with the length of m. Since 

there are four possible symbols A, C, G, and T, the total number of possible words is  

n = 4m. The average of each word frequency based on the whole genome can be calculated, and this is 

considered to be the centroid. The distances between any genomic region and the centroid based on 

word frequencies are computed. The outliers can be determined based on the distance calculation, and 

these regions are considered to be the GIs. 

EGID [56] is an ensemble algorithm for island detection, which takes the prediction results of 

existing computational tools (including AlienHunter [15], IslandPath [57], SIGI-HMM [17], 

INDeGenIUS [58], and PAI-IDA [59]), and then generates consensus results by using voting 

algorithm. Performance comparisons between this ensemble algorithm and individual programs 

showed that the ensemble algorithm was better than any other program in terms of prediction sensitivity 

and specificity. 

To make the software user-friendly, Hasan et al. [60] later developed Genomic Island Suite of 

Tools (GIST). GIST provides a platform so that third-party programs were embedded in EGID. GIST 

also includes a downloadable feature to facilitate collecting genome sequences automatically from the 

FTP server of the National Center for Biotechnology Information (NCBI). 

GIDetector [61] is a J48-based decision tree-bagging model for island prediction. The authors tested 

different ensemble algorithms including adaBoost, bagging, multiboost, and random forest [62,63], 

and found bagging was the best classifier model. The model was trained based on the features of 

IVOM score (collected from AlienHunter [15]), insertion point, size of the genomic region, number of 

genes per kb, repeats (computed through REPuter [45]), integrase, phage, and non-coding RNA. The 

program has the feature of collecting genome sequences from public websites directly, and then predict 

island regions based on the training model. 

GI-GPS (Genomic Island Genomic Profile Scanning) [64] is a support vector machines (SVMs) 

based GI prediction model. This construction of SVMs is based on four categories of feature 

information, including: (1) codon usage frequency; (2) dinucleotide frequency; (3) codon adaption 

index; and (4) GC content. The GI-GPS starts with truncating the whole genome into fixed sized 

segments, with each segment will be classified into potential GI segments using SVMs, and then 

merges them into large segments, followed by some filtering steps, based on the length of the segment 

and the existence of Mobile Genetic Elements (MGE). In the final stage, GI-GPS refines the 

boundaries of predicted GIs by locating the positions of tRNA genes and repeating elements. 

GIHunter [43] uses gene information and inter-genic distance along with sequence information to 

predict genomic islands. This tool uses a training set obtained from 113 genomes and developed a 

decision tree based bagging model for genomic island prediction. The features of gene information 

(i.e., highly expressed genes) and inter-genic distance were found to improve the genomic island 

prediction accuracy, which have not been reported in other studies. The authors recently incorporated 

the features of phage genes, mobility genes, tRNAs and gene density, and, thus, prediction accuracy 

was improved further. 

INDeGenIUS [58] is a method named as Improved N-mer based Detection of Genomic Islands 

Using Sequence-clustering (INDeGenIUS). This algorithm basically uses the principles of hierarchical 
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clustering to find the real “centroid”. This tool first divides the query genome into “n” overlapping 

groups of equal size. For each group, the frequencies of word length of “k” are computed, and a vector 

of 4k words is computed. The word enumeration process for each group, thus, can generate “n” 

clusters. By computing the distances of all possible pairs of groups and using the hierarchical 

clustering schemes, this tool can iteratively merge groups into some number of clusters.  

At this stage, the cluster that meets the percentage threshold (in terms of the number of groups) is 

considered to be “major cluster”, otherwise “minor clusters”. Based on the members of the “major 

cluster”, this tool finds the real “centroid” of the host genome, and uses it for GI prediction as the 

original centroid approach. 

IslandPath [57] incorporates multiple DNA signals and genome annotation features to predict GIs. 

Features includes in this approach are: (1) the %G+C of predicted open reading frames;  

(2) dinucleotide bias for gene-clusters; (3) the location of known or probable mobility genes; (4) the 

location of tRNAs. The final results of GIs prediction are graphically displayed in this software 

package, so users have the options to determine if a region is a real GI or not, based on their expertise. 

PAI-IDA [59] uses interactive discriminant analysis for GI prediction. In particular, the authors 

define genomic islands that deviate most from the rest of the genome in three compositional criteria: 

G+C content, dinucleotide frequency and codon usage. In this tool a small list of known PAIs from 

seven genomes was used for building up the training dataset. This dataset was used to generate the 

parameters of the linear functions that extract the anomalous regions from the rest of the genome. The 

discriminant function is improved through iteration by taking additional predicted anomalous regions 

into account. 

PIPS (Pathogenicity Island Prediction Software) [65] is a software suite designed for predicting 

pathogenicity islands. This approach uses multiple features in order to predict PAIs. Unlike most of 

other prediction tools that are used to predict islands in general, this is one of a few tools used for 

predicting PAIs specifically. Features used in PIPS include atypical G+C content, codon usage 

deviation, virulence factors, hypothetical proteins, transposases, flanking tRNA, and its absence in 

nonpathogenic organisms. 

SIGI-HMM [17] predicts GIs based on the codon usage bias. It first analyzes the codon usage of 

each gene, provides the score for each gene based on the codon usage, and thus it can find alien genes 

based on codon usage scores. The way of finding genomic islands based on codon scores is called 

SIGI [66]. Later on, the authors also applied Hidden Markov Model (HMM) to SIGI approach to 

improve GIs prediction. As GIs usually have a considerable length, HMM was implemented to  

access GI prediction on the gene level. This approach is sensitive for the identification of GIs in 

microbial genomes. 

Out of all software tools introduced above, only PIPS predicts PAI specifically. Other software 

tools are used to predict all genomic islands, including pathogenicity islands. It should be noted that 

different software tools were implemented with various computer languages such as C++, Java or perl 

script, and they might only be executed in certain operating systems such as Linux. 
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4. Databases and Related Computational Resources 

Other than those GI prediction software tools discussed above, there are a number of PAI related 

databases and online resources that can be accessed directly. The online resources will be especially 

useful for microbiologist and medical scientists who are not familiar with computer languages, and 

thus find it difficult to execute command line programs under Linux systems. Below, we describe these 

online databases and servers. The summary of these resources as well as their websites can be found  

in Table 3. 

Table 3. The summary of public island databases and web resources. 

Category Description Website 

GI Databases/Servers 

DGI 
A database that contains genomic islands of more 
than 2,000 bacterial genomes, many of which are 
PAIs, and displays GIs in circular graphic images 

http://www5.esu.edu/cpsc/bioinfo/dgi 

GI-POP 
A database that provides ongoing microbial gnome 
annotation, including ORF annotation, non-coding 
RNAs and GIs. GIs are predicted using GI-GPS 

http://gipop.life.nthu.edu.tw 

IGIPT 
A web server that identifies islands based  
on standard deviation from sequence  
composition average 

http://bioinf.iiit.ac.in/IGIPT/ 

Islander 
A database that contains a list of 89 islands in  
106 bacterial genomes that harbor tRNA and 
tmRNA genes, and integrase genes 

http://www.indiana.edu/~islander 

IslandViewer 
A database that contains predicted GI based on 
IslandPick, IslandPath-DIMOB and SIGI-HMM, 
and displays GIs in circular graphic images 

http://www.pathogenomics.sfu.ca/ 
islandviewer/query.php 

MOSAIC 
A database that contains conserved segments and 
various regions (i.e., GIs) in bacterial genomes, 
predicted by comparative genomic approach 

http://genome.jouy.inra.fr/mosaic 

PAI Databases/Servers 

PAIDB 
A database contains known PAIs, candidate PAIs 
which are homologous to known PAIs 

http://www.gem.re.kr/paidb  

PredictBias 
A web server that calculates PAIs based on %G+C, 
dinucleotide, codon usage, virulence factor and 
absence of non-pathogenic species 

http://www.davvbiotech.res.in/ 
PredictBias 

Virulence Factor Databases/Servers 

MvirDB 

A database that contains a collection of publicly 
available and organized sequences representing 
known toxins, virulence factors, and antibiotic 
resistance genes 

http://mvirdb.llnl.gov/ 

VFDB 
A database that contains all known virulence 
factors, as well as homologous genes through 
similarity search 

http://www.mgc.ac.cn/VFs/ 

VirulentPred 
A web server that predicts virulence factors based 
on input protein sequences 

http://bioinfo.icgeb.res.in/virulent/ 
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4.1. PAI Databases and Servers 

DGI (Database of Genomic islands) contains predicated genomic islands of more than  

2,000 microbial genomes, including pathogenic bacteria. The genomes were downloaded from the 

NCBI web server, and predicted by GIHunter program. For each genome, a circular representation of 

genomic island image was generated by GIV (Genomic Island Visualization) [67], which is basically a 

customized Circos [68]. Each genomic island image displays the locations of genomic islands, and 

supportive features including IVOM, HEG, tRNA, gene density, phage, integrase, inter-genic distance, 

and transposases. 

GI-POP [64] is a web-based tool that is used not only for predicting GIs, but also for assembling 

genome sequences and annotating gene functions. Users can submit draft microbial genomes of the 

ongoing genome projects in contigs or scaffolds to the GI-POP web server and can get the functional 

annotation and predicted GI results. GI-POP uses the DIYA assembler [69] to assemble contigs or 

scaffolds. The annotation pipeline in GI-POP includes: (1) coding region annotations which use the 

gene finding program such as Glimmer software and COG database; (2) non-coding region annotations 

using tRNA-scan and RNAmmer; and (3) GI prediction using GI-GPS. GI-GPS is basically a SVMs 

classifier, described in the previous section. GI-POP provides a number of nice user interfaces such as 

the feature of allowing multiple users to do online genome annotation and GI prediction. 

IGIPT [70] is a web-based integrated platform for GI identification. This tool incorporates thirteen 

parametric measures, which can be narrowed down into two kinds of signatures: (1) genomic 

signatures such as G+C content and k-mer frequencies; and (2) codon signature. The tool treats the 

regions to be putative GIs if measured feature values in that region deviate from genomic average. This 

tool provide an option for downloading the predicted GI and flanking regions so that users study 

various structural features, such as tRNA, integration sites and repeats. The limitation of this web tool 

is that it leaves users to decide standard deviation so only users who know reasonable deviation will be 

able to obtain meaningful GIs. In addition, these thirteen measures are redundant information and 

might not be additive for prediction. 

Islander [71] is a database that contains predicted GI regions from bacterial genomes. The islander 

algorithm performs the following major steps: (1) identify candidate island regions, which are the sites 

that contain tRNA and tmRNA genes (considered to be the end points of islands), searched by 

tRNAScan-SE [36] and BRUCE [72]; (2) search the regions that contain integrase genes using Pfam 

database [28]; and (3) combine candidate island regions with the regions containing integrase genes, 

which are considered as GI regions. Out of 106 bacterial genomes, the authors identified 143 candidate 

islands. Among the candidate islands, regions without integrase genes were filtered out and finally  

89 islands were stored in the database. 

IslandViewer [73] contains pre-computed GI predictions in all sequenced bacterial and Archaeal 

genomes. GIs are predicted using three popular prediction tools, IslandPick [49], IslandPath-DIMOB [37], 

and SIGI-HMM [17]. The graphical interface allows users to easily view and download the island data 

in multiple formats, at both the chromosome and gene level. The web-server is updated automatically 

on a monthly, so new sequenced gnomes can be predicted and uploaded to the website in time.  

In addition, users can upload their own genome sequence for GI prediction. A recent update of 

IslandViewer [74] has been released to facilitate custom genome analyses in a better fashion. This new 
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version provides additional gene information including virulence factors, antibiotic resistance genes 

and pathogen-associated genes. This tool also shows the comparisons of GIs between user-selected 

genomes through a side-by-side viewer. 

PAIDB [75] is a comprehensive database that contains three kinds of PAIs: (1) previously reported 

PAIs, which were obtained through literature search; (2) candidate PAIs (cPAIs), which are 

homologous to known PAIs and overlap with predicted GIs; and (3) non-probable PAIs (nPAIs), 

which are homologous to known PAIs but do not overlap with predicted GIs; The authors previously 

developed a pathogenicity island search tool PAI Finder [76] to identify cPAIs and nPAIs. PAI Finder 

first identifies PAI-like regions homologous to known PAIs using BLAST, and then uses %G+C and 

codon usage to detect GI regions. The overlapped regions are treated as cPAIs. PAIDB also provide 

functionalities to allow users to search for PAI regions by species, by text and also by using BLAST. 

To our best knowledge, PAIDB is the only database that contains annotated PAIs and predicted ones. 

Unfortunately, this database has not been updated since the release of PAIDB in 2006. Another main 

limitation of this database is that novel PAIs were excluded as candidate PAIs were homologous to 

previously described PAIs in the literature. 

PredictBias [77] is a web server for predicting GI and PAI regions in prokaryotic genomes. The 

authors used the features of sequence composition bias (i.e., %GC, dinucleotide and codon), virulence 

associated genes, and absence in related non-pathogenic species for their prediction. PredictBias first 

predicts GI regions using sequence composition biased information, and then compares the regions 

with entries of Virulence Factor Profile Database (VFPD). If any of the predicted regions shows 

significant composition bias and encodes at least one of the proteins listed in VFPD, then that region is 

considered as potential PAI (biased composition). If regions containing unsuspicious composition bias 

but harboring more than four VFPD proteins, then it can be considered as unbiased composition 

potential PAIs. By using “compare genome feature” to confirm the absence of potential PAIs in  

non-pathogenic species, users can confirm the validity of identified potential PAIs. 

4.2. Virulence Factor Databases and Servers 

MvirDB [24] hosts a collection of known toxins, virulence factors, and antibiotic resistance genes. 

This collection facilitates the rapid identification of sequences and characterization of genes for 

signature discovery, which is useful for the community involved in bio-defense research. The original 

data source were obtained from eight databases: Tox-Prot [78], SCORPION [79], PRINTS virulence 

factors [80], VFDB [81], TVFac toxin and virulence factor database, Islander [71], ARGO [82], and 

VIDA [83]. MvirDB data are maintained through microbial annotation database (MannDB) system. 

MvirDB provides users the features of querying a DNA or protein sequences using BLAST search 

from the database. In addition, the browser tool allows users to retrieve description, sequences and 

classification of virulence factors. MvirDB is automatically updated each week so that novel 

discovered genes and proteins can be deposited in the database. MvirDB has been used for finding 

virulence factors in one of the PAI software tools of PIPS [65]. 

VFDB [81,84] is an integrative and comprehensive database of virulence factors from bacterial 

pathogenes. This database provides detail information such as structure features, function and 

mechanisms of known virulence factors. Known virulence factors in VFDB were collected through 
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literature search of verified one on PubMed, and putative virulence factor liked genes are also stored  

in the database. VFDB allows users to browse this database by species, text search, BLAST, and  

PSI-BLAST. In a later version of VFDB [84], released in 2008, some new features were provided, 

including tabular comparison of pathogenomic composition in terms of virulence, multiple alignments 

and statistical analysis of homologous virulence genes, and graphical comparison of pathogenomic 

organization of virulence factors. In the most recent version of VFDB 2012 [85], more user interfaces 

such as expanded trees, collapsible menus, and tabbed panels have been added. These new features 

could help researchers do inter-genera comparative analysis of VFs, and, thus, to further understand 

the evolutions of VFs. VFDB has been used in a number of PAI detection approaches and web 

resources, including IslandViewer [74], PAIDB [75], and PredicBias [77]. 

VirulentPred [25] is a two-layer SVM based prediction tool for virulence factors. The virulentPred 

model was trained based on known virulence factors collected from SWISS-PROT [86]  

and VFDB [81]. The first layer SVM model was trained based on features of amino acid composition, 

dipeptide composition, and high-order dipeptide composition. The second layer SVM model was 

trained based on the SVM score from the first layer, and PSI-BLAST result. The accuracy of 

VirulentPred was reported to be as high as 82% from the experiments. The advantage of using 

VirulentPred is that we can discover potential virulence factors that were found in our current 

virulence factor database. 

5. Concluding Remarks 

We have reviewed existing computational approaches for PAI detection in bacterial genomes.  

For comparative genomics approaches, the query genome is aligned with its phylogenetically  

closely-related genomes, and unique acquired regions with virulence factors were predicted to be PAIs. 

For sequence composition based approaches, one or multiple PAI-associated features are applied, and 

then various scoring functions, such as HMMs and decision-tree-based ensembles, are used to evaluate 

these genomic regions based on their feature values. Additionally, we have provided a list of PAI 

related web resources for scientific community to access. 

It should be noted that there is no systematic performance evaluation on current PAI prediction 

tools, though each of these methods was evaluated in a limited number of genomes. Independent 

evaluations of prediction tools have been designed and performed in other bioinformatics areas, such 

as the evaluation for motif discovery tools [87], and the evaluation for operon prediction tools [88]. It 

might be useful to collect a number of independent known PAIs from previous studies, and evaluate all 

existing PAI prediction tools in a similar fashion. 

Additionally, using sequence based computational approaches cannot find all existing PAIs. They 

might not be able to identify the PAIs whose sequence composition is similar to that of the core 

genome. They cannot find PAIs acquired long time ago either, because amelioration can make the 

sequence composition (or codon usage) of the PAIs be similar to that of the core genome. The 

limitation of sequenced based approach can be complemented by using comparative genomic 

approach, which does not compare sequence compositions of the potential PAIs and those of the core 

genome. However, comparative genomic approaches themselves have their shortcomings, i.e., they 

need phylogenetically closely-related reference genomes for any query genome. Therefore, both 
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approaches have pros and cons, and it might be beneficial to use both approaches to identify all 

existing PAIs. 

The idea of the integration of comparative genomic and sequence based approaches for reliable GI 

identification has been used in IslandViewer [73,74] to some degree. However, the users’ must make 

their own decisions to select which predicted ones from multiple programs are reliable. Furthermore, 

there is no indication which predicted GIs by comparative genomic approach have similar sequence 

composition with the core genome, and thus the advantage of using comparative genomic approach 

becomes minimal. In the future work, an integrated version of PAI software tool can be developed 

similar to IslandViewer, but with the incorporation of pathogenic-associated gene information, and  

the feature of automatic evaluations of predicted results, which can be implemented similar to the 

development of EGID [56]. 

While there are a number of review papers summarizing a list of discovered PAIs in various 

pathogenic bacteria, there is only one annotated PAI database dated back to 2006, and there is no 

update since then. It will be useful to build a comprehensive annotated PAI database, which will host 

all discovered PAIs to this date. The construction of such databases might also improve computational 

prediction tools by reevaluating the PAI-associated features based on discovered PAIs. For example, 

we can have better understanding of which genomes prefer what kinds of tRNA genes after doing 

statistical analyses of tRNA genes in discovered PAIs. 

Finally, the development of computational approaches for finding the relationship between donor 

and recipient genomes through PAIs might also be very useful. The corresponding visualization tools 

for revealing their relationships might be needed so that researchers can use them to study gene 

transfer mechanisms. 
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