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Abstract: Millions of indwelling devices are implanted in patients every year, and 

staphylococci (S. aureus, MRSA and vancomycin-resistant S. aureus (VRSA)) are 

responsible for a majority of infections associated with these devices, thereby leading to 

treatment failures. Once established, staphylococcal biofilms become resistant to 

antimicrobial treatment and host response, thereby serving as the etiological agent for 

recurrent infections. This study investigated the efficacy of octenidine hydrochloride (OH) 

for inhibiting biofilm synthesis and inactivating fully-formed staphylococcal biofilm on 

different matrices in the presence and absence of serum protein. Polystyrene plates and 

stainless steel coupons inoculated with S. aureus, MRSA or VRSA were treated with OH 

(zero, 0.5, one, 2 mM) at 37 °C for the prevention of biofilm formation. Additionally, the 

antibiofilm effect of OH (zero, 2.5, five, 10 mM) on fully-formed staphylococcal biofilms 

on polystyrene plates, stainless steel coupons and urinary catheters was investigated. OH 

was effective in rapidly inactivating planktonic and biofilm cells of S. aureus, MRSA and 

VRSA on polystyrene plates, stainless steel coupons and urinary catheters in the presence 

and absence of serum proteins. The use of two and 10 mM OH completely inactivated  

S. aureus planktonic cells and biofilm (>6.0 log reduction) on all matrices tested 

immediately upon exposure. Further, confocal imaging revealed the presence of dead cells 

and loss in biofilm architecture in the OH-treated samples when compared to intact live 

biofilm in the control. Results suggest that OH could be applied as an effective 

antimicrobial to control biofilms of S. aureus, MRSA and VRSA on appropriate hospital 

surfaces and indwelling devices.  
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1. Introduction 

The Nosocomial Infections Surveillance System recognizes Staphylococcus aureus as the most 

frequently isolated nosocomial pathogen from patients [1]. Additionally, a high percentage of these 

isolates were found to be methicillin resistant (89% of identified S. aureus isolates).  

Methicillin-resistant S. aureus (MRSA) is the most commonly identified antibiotic resistant  

pathogen [2]. It is responsible for causing complicated skin and skin-structure infections and serious 

hospital-acquired infections [3]. Vancomycin has long been used as the antimicrobial agent for the 

treatment of MRSA infections in patients. However, this has led to the emergence of  

vancomycin-resistant S. aureus [4] (VRSA). It is estimated that staphylococci normally colonize  

20%–25% of healthy adults permanently and 75%–80% transiently [5]. Millions of indwelling devices 

are implanted in patients every year, and staphylococci are responsible for a majority of infections and 

treatment failures linked to these devices [6]. Indwelling devices become coated with host-derived 

extracellular matrix proteins that provide a rich surface for bacterial attachment [7]. This ability to bind 

proteins facilitates pathogen attachment to plastic surfaces and other matrices [8]. Once established, 

staphylococcal biofilms are resistant to antimicrobial treatment and host response, besides serving as 

the etiological agent for recurrent infections [9]. Biofilm-associated staphylococci can lead to several 

diseases, including osteomyelitis, chronic wound infection endocarditis, polymicrobial biofilm 

infections and indwelling medical device infections [10]. 

The most commonly followed approach in the management of such infections is the removal and 

replacement of the contaminated devices [10]. An alternative to this is the use of antimicrobials or 

other technologies to prevent and control bacterial biofilms on indwelling devices. A variety of 

antimicrobials, including plant essential oils, phages, EDTA, nitric oxide, quorum sensing inhibitors 

and biofilm dispersants, such as oxidizing biocides, have been evaluated for controlling staphylococcal 

biofilms [10,11]. Although these approaches have shown promise in the control of staphylococcal 

biofilms, it is essential that these compounds maintain their efficacy in the presence of host proteins.  

Octenidine hydrochloride (OH) is a positively-charged bispyridinamine exhibiting antimicrobial 

activity against plaque-producing organisms, such as Streptococcus mutans and S. sanguis [12]. Recent 

studies have also demonstrated its antimicrobial effect against E. coli O157:H7, Salmonella Enteritidis, 

Acinetobacter baumannii, Candida albicans and Fusobacterium nucleatum, S. aureus and  

Pseudomonas aeruginosa [13–17]. Toxicity studies in a variety of species have shown that OH is not 

absorbed through the mucous membrane and gastrointestinal tract, with no reported carcinogenicity, 

genotoxicity or mutagenicity [18]. 

The objective of this study was to investigate the efficacy of OH for inhibiting biofilm formation by 

S. aureus, MRSA and VRSA and inactivating pre-formed S. aureus, MRSA and VRSA biofilms at 37 °C 

in the presence and absence of serum proteins on polystyrene matrix, stainless steel coupons and 

urinary catheters. 
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2. Results and Discussion 

OH was found to be equally effective against S. aureus, MRSA and VRSA biofilms. No significant 

differences were observed between the different isolates (p < 0.05). Therefore, the results obtained 

with one representative isolate of S. aureus (ATCC 35556), VRSA (VRS 8) and MRSA (NRS 123) are 

provided here. OH was found not only to be effective at killing planktonic cells and preventing biofilm 

formation, but also at inactivated fully established staphylococcal biofilms. 

2.1. Prevention of Biofilm Formation 

The efficacy of OH in preventing biofilm formation on polystyrene and stainless steel coupons is 

depicted in Figures 1 and 2. OH was effective in rapidly inactivating planktonic staphylococci cells, 

thereby preventing the establishment of biofilms on polystyrene and stainless steel surfaces. With 

planktonic cells, 2 mM of OH completely inactivated staphylococcal populations immediately upon 

exposure, whereas 1 mM of OH reduced bacterial counts by greater than 3.0 log CFU/mL on contact 

(Figures 1 and 2). As expected, staphylococcal populations in negative control samples remained the 

same throughout the sampling period. A set of samples were also assayed after 24 h to investigate 

biofilm formation. It was observed that the negative control samples had a fully formed biofilm, while 

the treated samples did not have any surviving population at 24 h (data not shown). When the efficacy 

of OH was tested for its ability to prevent biofilm formation in the presence of serum protein, OH 

retained its antimicrobial efficacy and resulted in a similar antibiofilm effect, as observed in the 

absence of protein (data not shown). 

Figure 1. Inhibition of S. aureus (ATCC 35556), vancomycin-resistant S. aureus (VRSA) 

(VRS 8) and MRSA (NRS 123) biofilm formation on polystyrene by octenidine 

hydrochloride (OH). Duplicate samples were used for each treatment, and the experiment 

was replicated three times. Data are represented as the mean ± SEM. 
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Figure 2. Inhibition of S. aureus (ATCC 35556), VRSA (VRS 8) and MRSA (NRS 123) 

biofilm on stainless steel by octenidine hydrochloride. Duplicate samples were used for 

each treatment, and the experiment was replicated three times. Data are represented as the 

mean ± SEM (Standard Error of Mean). 

 

2.2. Inactivation of Established Biofilm 

OH was also effective at killing fully formed biofilms of S. aureus, MRSA and VRSA on 

polystyrene and stainless steel (p < 0.05). Staphylococcus has been demonstrated to form biofilms on 

stainless steel implants, such as screws and fragment implants [19]. Therefore, the antibiofilm effect of 

OH was also investigated on a stainless steel matrix. At 10- and 5-mM levels, OH completely 

inactivated the biofilm immediately after addition (0 min) and 5 min of exposure, respectively (Figures 

3 and 4). As observed with planktonic cells, the biofilm inactivation by OH was not affected by the 

presence of serum albumin (data not shown). A similar reduction in biofilm populations was observed 

by Junka and others [16], who tested the antimicrobial efficacy of octenisept, a commercially available 

antiseptic that contains octenidine dihydrochloride. They observed a complete inactivation of the  

S. aureus biofilm on polystyrene discs within 1 min of contact time. Another study by  

Sennhenn-Kirchner [20] evaluated the antimicrobial efficacy of OH on biofilm formed by aerobic oral 

bacteria on rough titanium surfaces. Their study revealed that rinsing with OH for 8 min reduced the 

biofilm by 99.8%. However, our study demonstrates that exposure of the biofilm to 10 mM OH 

completely inactivated it immediately after addition. Besides biofilm inactivation, it is also interesting 

to note that the antibiofilm effect of OH was irrespective of the strains employed. It was equally 
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effective on the antibiotic-resistant strains (MRSA and VRSA), especially in light of their association 

with nosocomial and community-acquired infections. 

Figure 3. Inactivation of S. aureus (ATCC 35556), VRSA (VRS 8) and MRSA (NRS 123) 

biofilm on polystyrene by octenidine hydrochloride. Duplicate samples were used for each 

treatment, and the experiment was replicated three times. Data are represented as the  

mean ± SEM (Standard Error of Mean). 

 

Figure 4. Inactivation of S. aureus (ATCC 35556), VRSA (VRS 8) and MRSA (NRS 123) 

biofilm on stainless steel by octenidine hydrochloride. Duplicate samples were used for 

each treatment, and the experiment was replicated three times. Data are represented as the 

mean ± SEM (Standard Error of Mean). 

 

 



Pathogens 2014, 3 409 

 

 

Staphylococci have been shown to infect and form biofilms on orthopedic implants, stents, 

intravenous catheters, infusion pumps, mechanical heart valves, pacemakers and cosmetic surgical 

implants [19]. Treatment of these foreign-body-associated infections caused by MRSA and VRSA are 

difficult because of the limited availability of antibiotic options that are effective against bacterial 

biofilms [21]. The current treatment protocol against MRSA involves the use of vancomycin (plus 

rifampin when the bacteria are susceptible) [22]. However, the increase in the MICs of vancomycin and 

rifampicin needed for the treatment against MRSA and VRSA is of significant concern [23]. 

Chaudhury and others [24] investigated the ability of ethanol for the eradication of MRSA biofilms. 

They observed that the use of ethanol at a 40% concentration could inactivate the biofilms in 1 h. 

Although efficacious, there are several concerns regarding ethanol use. These include concerns about 

systemic exposure to ethanol, an increase in catheter dysfunction [25] and the effect of prolonged 

exposure to ethanol on catheter integrity, which have limited the widespread use of ethanol locks. 

Besides ethanol, recent study by Rosenblatt and others [26] demonstrated that the use of lock solution 

containing 7% citrate, 20% ethanol and 0.01% glyceryl trinitrate was able to inactivate MRSA biofilm 

in 2 h of exposure. Although these approaches have shown promise in the control of MRSA biofilms, 

it is essential that these compounds maintain their efficacy in the presence of host proteins. A study by 

Zumbotel and others [17] evaluated the ability of OH to prevent or delay S. aureus biofilm formation 

in OH-coated tracheostomy tubes. This study demonstrated that OH-coated tubes reduced the biofilm 

associated S. aureus population by 2 log compared to the negative control. However, reprocessing of 

the OH-coated tubes did not result in any significant reduction in biofilm formation. Therefore, in this 

present study, we investigated the antibiofilm effect of OH as a lock solution using urinary catheters as 

a model for indwelling devices. Inoculation of catheters with S. aureus, MRSA or VRSA resulted in a 

mature biofilm by the fifth day of incubation at 37 °C. A fully-formed staphylococcal biofilm was 

recovered from negative control catheters even after 24 h of incubation, whereas no biofilm was 

detected on catheters within 15 min of exposure to 10 mM of OH (Figure 5). After 60 min of exposure,  

5 mM of OH also completely eliminated staphylococcal biofilms (Figure 5). However, staphylococcal 

biofilm counts on negative control catheters remained at 6.0 log CFU/mL throughout the experiment 

(Figure 5). A similar antibiofilm effect of OH was also observed in the presence of serum albumin. 

The ability of OH to retain its antibiofilm efficacy in the presence of serum albumin is of significance, 

since the presence of host proteins on the indwelling devices enhances the ability of pathogens to 

attach and form biofilms [1]. The antibiofilm effect of OH was compared with that of tetrasodium 

EDTA at a concentration of 40 mg/mL [11]. No significant decrease in staphylococcus populations in 

the biofilm was observed, even after an exposure time of 60 min to the EDTA (data not shown).  

OH exerts its antimicrobial effect by binding to the negatively charged bacterial cell envelope, 

thereby disrupting the vital functions of the cell membrane and killing the cell [27]. It has a high affinity 

towards cardiolipin, a prominent lipid in bacterial cell membranes, making it selectively lethal to 

bacterial cells without adversely affecting eukaryotic cells [21]. In addition, Al-Doori and  

coworkers [28] reported that repeated exposure of S. aureus to OH for up to three months did not 

induce resistance to the compound. 
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Figure 5. Inactivation of S. aureus (ATCC 35556), VRSA (VRS 8) and MRSA (NRS 123) 

biofilm on urinary catheters by octenidine hydrochloride. Duplicate samples were used for 

each treatment, and the experiment was replicated three times. Data are represented as the 

mean ± SEM (Standard Error of Mean). 

 

2.3. Confocal Microscopy 

To investigate the effect of OH on biofilm structure, staphylococcus biofilms formed on glass 

coverslips were analyzed by confocal microscopy. Positive staining using SYTO
®

 (Green fluorescent 

nucleic acid stain) and propidium iodide (PI) was used for the imaging. The confocal images of the 

negative control biofilm (Figure 6A) with no added OH revealed the formation of dense biofilm 

(average thickness 15 µm) viewed as green cells (live) stained by the SYTO dye, while the image of 

OH-treated samples (Figure 6B) revealed patchy breaks in biofilm due to the loss of cells and the 

disruption of organization, viewed as red cells (dead) stained by PI. The average thickness of OH-

treated biofilms was 1 µm. These data collectively indicate that OH was effective at preventing biofilm 

formation by S. aureus, MRSA and VRSA, as well as rapidly inactivating pre-formed biofilms on 

polystyrene, stainless steel and urinary catheters. 
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Figure 6. Confocal microscopy of MRSA (NRS 385) biofilm without treatment (A) and 

after treatment with octenidine hydrochloride (B).  

 

3. Experimental Section 

3.1. Culture Preparation  

All bacteriological media were purchased from Difco (Becton Dickinson, Sparks, MD, USA).  

The antibiofilm effect of OH was investigated on S. aureus (ATCC 35556, and ATCC 12600), 

methicillin-resistant S. aureus (MRSA; NRS 123, NRS 385, NRS 194) and vancomycin-resistant  

S. aureus (VRSA; VRS 8, VRS 9, VRS 10). MRSA and VRSA strains were obtained from the 

Network on Antibiotic Resistant Staphylococcus aureus (NARSA, Chantilly, VI, USA). Stock cultures 

were stored at −80 °C
 
in brain heart infusion broth (BHI) with 50% glycerol. Prior

 
to each experiment, 

a loopful of culture was grown in 10 mL
 
of BHI with incubation at 37 °C for 24 h. The culture was 

sedimented by centrifugation (3600× g, 12 min, at 4 °C), washed and resuspended in phosphate 

buffered saline (1× PBS pH 7.2 consisting of 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4  

and 2 mM KH2PO4) and used as the inoculum. The bacterial count of the inoculum was determined by 

plating on BHI agar plates and incubation at 37 °C for 24 h. 

3.2. Octenidine Hydrochloride  

OH (>99%) was obtained from Dishman USA, Middlesex, NJ, USA.  

3.3. Prevention of Biofilm Formation by S. aureus, MRSA and VRSA on Polystyrene by OH 

The efficacy of OH in inhibiting S. aureus, MRSA and VRSA biofilm production was investigated 

according to the method of Amalaradjou et al. [29]. Briefly, S. aureus, MRSA and VRSA strains were 

separately grown overnight in BHI at 37 °C. Following incubation, the cultures were sedimented by 
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centrifugation (3,600× g for 15 min), washed twice with PBS and resuspended in 10 mL of BHI. Two 

hundred microliters of the washed culture were used as the inoculum (~6.0 log CFU). Sterile 96-well 

polystyrene tissue culture plates (Falcon, Franklin lakes, NJ) were inoculated with 200 µL of bacterial 

suspension, followed by the addition of 0 (negative control), 0.5 (0.25 μL), 1 (0.5 μL) or 2 (1 μL) mM 

OH (dissolved in 95% ethanol). The plates were incubated at 37 °C. Following 0, 2, 5 and 10 min of 

OH exposure, the surviving bacterial populations were enumerated by serial dilution (1:10 in PBS) and 

plating on duplicate BHI plates. When S. aureus was not detected by direct plating, samples were 

tested for surviving cells by enrichment at 37 °C for 24 h in 100 mL of BHI, followed by streak plating 

on mannitol salt agar (MSA). Representative colonies on BHI were confirmed as staphylococci based 

on colony morphology on MSA. Triplicate samples were included for each treatment, and the 

experiment was replicated three times. 

3.4. Inactivation of S. aureus, MRSA and VRSA Biofilms Formed on Polystyrene by OH 

The antibiofilm effect of OH was determined by microtiter plate assay [29]. Sterile 96-well polystyrene 

tissue culture plates (Costar, Corning Incorporated, Corning, NY, USA) were inoculated with 200 µL 

of the each bacterial cell suspension (~6.0 logCFU) and incubated at 37 °C for 24 h without agitation for 

biofilm production. Following biofilm formation, the effect of OH was tested at 0 (negative control), 

2.5 (1.5 µL), 5 (2.5 µL) and 10 (5 µL) mM concentrations with an exposure time of 0, 2, 5 and 10 min. 

After exposure to OH for the specified time, the wells were washed three times with 200 µL of sterile 

PBS, dried at room temperature and finally stained with 1% crystal violet for 15 min. After rinsing 

three times with sterile distilled water and subsequent destaining with 95% ethanol, the absorbance of 

the adherent biofilm was measured at 570 nm in a microplate reader (Model 550, Bio-Rad, Hercules, 

CA, USA). Uninoculated wells containing BHI were used as blanks. Blank-corrected absorbance 

values were used for reporting biofilm production. Five replicate wells were included for each treatment, 

and the assay was repeated three times. 

3.5. Enumeration of Bacterial Counts in Biofilm 

In addition to the microtiter plate assay, the antibiofilm effect of OH was also assayed by 

enumerating surviving bacterial populations in the biofilm using the viable plate count method [29]. 

Following exposure to OH, the wells were washed three times with PBS, and the adherent biofilm was 

scraped and plated directly or after serial dilution in PBS on BHI plates. The plates were incubated  

at 37 °C for 24 h before enumerating the bacterial colonies.  

3.6. Biofilm Assay on Stainless Steel Matrix 

Stainless steel (type 304 with a 4b finish) was used for making coupons (diameter: 1 cm) [30]. 

Stainless steel coupons were washed and cleaned prior to use, as described by Amalaradjou et al. [27].  

3.6.1. Biofilm Assay  

S. aureus, MRSA and VRSA cells were grown and diluted 1:40, as described before. Two hundred 

microliters of the inoculum were then dispensed onto the stainless steel coupons submerged in a  
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24-well plate (Falcon, Becton Dickson Labware, Franklin Lakes, NJ, USA). Biofilm was formed at  

37 °C, as before, and treated with 0 (negative control), 2.5, 5 and 10 mM of OH for an exposure time 

of 0, 2, 5 or 10 min. A procedure described by Ayebah and coworkers [30] was used to remove, 

disperse and enumerate the cells in biofilm. Duplicate coupons were included for each treatment, and 

the experiment was replicated three times. 

3.7. Biofilm Assay on Catheters 

The efficacy of OH for inactivating fully-formed S. aureus, MRSA and VRSA biofilms on catheters 

was determined according to a previously described protocol [29]. A latex 12 F Foley urinary tract 

catheter (AtHomeMedical) was cut into 3-cm pieces. Each catheter piece was sealed at one end, filled 

with 1 mL of bacterial culture (~6.0 log CFU) and sealed at the other end. The catheter pieces were then 

incubated at 37 °C for 5 days to facilitate biofilm formation onto the catheter lumen surface. After  

5 days, each catheter piece was washed with sterile saline to remove unattached cells, sealed at one 

end, filled with 1 mL of sterile normal saline (negative control) or saline containing 2.5, 5 and 10 mM 

of OH, sealed at the other end and incubated at 37 °C. The biofilm-associated bacterial population was 

determined following OH exposure (0, 15, 30 and 60 min) by enumerating bacteria after dislodging the 

biofilm from the catheter surface. This was achieved by vortexing the catheter pieces in separate tubes 

containing 10 mL of PBS for 1 minute, followed by sonication at 40 KHz for 5 min in a bath sonicator 

(Branson, North Olmstead, OH, USA). After sonication, viable bacterial counts in PBS from each tube 

were enumerated after serial dilution (1:10 in PBS) and plating on duplicate BHI plates. Three catheter 

pieces were included, and the experiment was repeated three times.  

3.8. Antibiofilm Effect of OH in the Presence of Serum Protein 

The efficacy of OH for inhibiting and inactivating the biofilm of S. aureus, MRSA and VRSA in 

the presence of serum protein was determined according to the method of Edmiston and others [31]. 

Rehydrated bovine serum albumin (20%) was used to simulate the presence of proteins on indwelling 

devices. To determine the efficacy of OH in preventing S. aureus, MRSA and VRSA biofilm from 

planktonic cells in the presence of serum proteins, bovine serum albumin was added to each 

well/stainless steel coupon prior to microbial challenge followed by OH addition (0 (negative control), 

0.5, 1 or 2 mM) for 0, 1, 2 and 5 min at 37 °C. Following exposure to OH, the surviving population of 

bacteria was enumerated by the viable plate count, as described previously. Three samples were 

included for each treatment, and the assay was replicated three times. For determining the efficacy of 

OH for killing established bacterial biofilms in the presence of proteins, biofilms were grown in the 

presence of bovine serum albumin on the different matrices tested and exposed to OH (0 (negative 

control), 2.5, 5 and 10 mM)| for 0, 2, 5 and 10 min on polystyrene and stainless steel and 0, 15, 30 and 

60 min on catheters. The biofilms were assayed, as described before. This study was done at 37 °C. 

Five replicate wells were included for each treatment, and the assay was repeated three times. 
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3.9. Confocal Microscopy 

To obtain depth-selective information on the three-dimensional structure of the biofilm, in situ 

confocal laser scanning microscopy was performed. For microscopic assessment, biofilms were grown 

at 37 °C in BHI on a Lab-Tech 8-chambered #1 borosilicate cover glass system (Lab-Tek, Nalge Nunc 

International, Rochester, NY, USA). The microscopy was performed according to the method reported 

by Amalaradjou et al. [29]. The biofilms formed on cover slips were treated with OH (10 mM), and the 

live and dead cells were imaged after staining with 2.5 µM SYTO (Molecular probes, OR) and 5 µM 

propidium iodide (PI, Molecular probes, OR). Biofilms not exposed to OH (negative control) were also 

imaged to view the normal architecture of S. aureus, MRSA and VRSA biofilm. Samples were 

examined under a Leica true confocal scanner SP2 microscope using the water immersion lens. A 

krypton-argon mixed gas laser with a PMT2 (Photomultiplier tube 2) filter served as the excitation source. 

3.10. Statistical Analysis 

Duplicate samples were used for each treatment, and each experiment was replicated three times. 

For each treatment and the control, the data from independent replicate trials were pooled and analyzed 

using the proc mixed sub-routine of the statistical analysis software. The model included the treatment 

concentrations and time as the major effects. A least significant difference test was used to determine 

significant differences (p < 0.05) due to treatment concentrations and time on bacterial counts.  

4. Conclusions 

In conclusion, our study demonstrates that OH was effective in preventing biofilm formation by  

S. aureus, MRSA and VRSA and rapidly inactivating pre-formed biofilms on polystyrene, stainless 

steel and urinary catheters. In addition, OH was equally effective against biofilms in the presence and 

absence of serum proteins. These results suggest that OH can be potentially used as a sanitizer for 

hospital surfaces. Since S. aureus, MRSA and VRSA have the ability to persist in the hospital 

environment and form biofilms on a wide variety of fomite surfaces, OH can be used as a potential 

antimicrobial lock solution in both treatment and prophylactic modalities. However, further 

experiments are needed to further evaluate the efficacy of OH in comparison with other anti-MRSA 

therapies in vitro and in vivo. Along with improvements in catheter design and coating, the universal 

adoption of strict aseptic techniques and the appropriate use of novel catheter lock solutions, such as 

OH, that minimize catheter-related infections may help to decrease the morbidity and mortality 

associated with foreign-body-associated infections. 

Author Contributions 

Kumar Venkitanarayanan and Mary Anne Roshni Amalaradjou conceived of the idea of, designed 

the experiments for and wrote the manuscript. Mary Anne Roshni Amalaradjou performed the 

experiments and analyzed the data. 

  



Pathogens 2014, 3 415 

 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 207–228. 

2. Ippolito, G.; Leone, S.; Lauria, F.N.; Nicastri, E.; Wenzel, R.P. Methicillin-resistant 

Staphylococcus aureus: The superbug. Int. J. Infect. Dis. 2010, 14, S7–S11.  

3. Gould, I.M.; David, M.Z.; Esposito, S. New insights into meticillin-resistant Staphylococcus 

aureus (MRSA) pathogenesis, treatment and resistance. Int. J. Antimicrob. Agents 2012, 39, 96. 

4. Gould, I.M. Treatment of bacteremia: Methicillin-resistant Staphylococcus aureus (MRSA) to 

vancomycin-resistant S. aureus (VRSA). Int. J. Antimicrob. Agents 2013, 42, S17–S21. 

5. Archer, N.K.; Mazaitis, M.J.; Costerton, J.W. Staphylococcus aureus biofilms: Properties, 

regulation, and roles in human disease.Virulence  2011, 2, 445–459. 

6. Baldoni, D.; Haschke, M.; Rajacic, Z. Linezolid alone or combined with rifampin against 

methicillin-resistant Staphylococcus aureus in experimental foreign-body infection. Antimicrob. 

Agents Chemother. 2009, 53, 1142–1148. 

7. Herrmann, M.; Vaudaux, P.E.; Pittet, D.; Auckenthaler, R.; Lew, P.D.; Schumacher-Perdreau, F.; 

Peters, G.; Waldvogel, F.A. Fibronectin, fibrinogen, and laminin act as mediators of adherence of 

clinical staphylococcal isolates to foreign material. J. Infect. Dis. 1988, 158, 693–701. 

8. Marraffini, L.A.; DeDent, A.C.; Schneewind, O. Sortases and the art of anchoring proteins to the 

envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 192–221. 

9. Jones, S.M.; Morgan, M.; Humphrey, T.J. Effect of vancomycin and rifampicin on  

meticillin-resistant Staphylococcus aureus biofilms. Lancet 2001, 357, 40–41. 

10. Kiedrowski, M.R.; Horswill, A.R. New approaches for treating staphylococcal biofilm infections. 

Ann. N. Y. Acad. Sci. 2011, 1241, 104–121. 

11. Percival, S.L.; Kite, P.; Eastwood, K. Tetrasodium EDTA as a novel central venous catheter lock 

solution against biofilm. Infect. Control Hosp. Epidemiol. 2005, doi: 10.1086/502577. 

12. Bailey, D.M.; DeGrazia, C.G.; Hoff, S.J. Bispyridinamines: A new class of topical antimicrobial 

agents as inhibitors of dental plaque. J. Med. Chem. 1984, 27, 1457–1464. 

13. Baskaran, S.A.; Upadhyay, A.; Upadhyaya, I.; Bhattaram, V.; Venkitanarayanan, K. Efficacy of 

octenidine hydrochloride for reducing Escherichia coli O157:H7, Salmonella spp., and Listeria 

monocytogenes on cattle hides. Appl. Environ. Microbiol. 2012, 78, 4538–4541. 

14. Selçuk, C.T.; Durgun, M.; Ozalp, B. Comparison of the antibacterial effect of silver sulfadiazine 

1%, mupirocin 2%, Acticoat and octenidine dihydrochloride in a full-thickness rat burn model 

contaminated with multi drug resistant Acinetobacter Baumannii. Burns 2012, 38, 1204–1209. 

15. Rohrer, N.; Widmer, A.F.; Waltimo, T. Antimicrobial efficacy of 3 oral antiseptics containing 

octenidine, polyhexamethylene biguanide, or Citroxx: Can chlorhexidine be replaced? Infect. Control 

Hosp. Epidemiol. 2010, doi:10.1086/653822. 

16. Junka, A.; Bartoszewicz, M.; Smutnicka, D.; Secewicz, A.; Szymczyk, P. Efficacy of antiseptics 

containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm 

formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel  

biofilm-oriented antisepotics test. Int. Wound J. 2013, doi:10.1111/iwj.12057. 



Pathogens 2014, 3 416 

 

 

17. Zumbotel, M.; Assadian, O.; Leonhar, M.; Stadler, M.; Schneider, B. The antimicrobial efficacy 

of Octenidine-dihydrochloride coated polymer tracheotomy tubes on Staphylococcus aureus and 

Pseudomonas aeruginosa colonization. BMC Microbiol. 2009, 9, 150. 

18. Hirsch, T.; Jacobsen, F.; Rittig, A. A comparative in vitro study of cell toxicity of clinically used 

antiseptics. Hautarzt 2009, 60, 984–991. 

19. Costerton, J.W.; Montanaro, L.; Arciola, C.R. Biofilm in implant infections: Its production and 

regulation. Int. J. Artif. Organs 2005, 28, 1062–1068. 

20. Sennhenn-Kirchner, S.; Nadine, W.; Klaue, S.; Mergeryan, H.; Zepelin, M. Decontamination 

efficacy of antiseptic agents on in vivo grown biofilms on rough titanium surfaces. Quintessence 

Int. 2009, 10, e80–e88. 

21. Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 

135–138. 

22. Liu, C.; Bayer, A.; Cosgrove, S.E. Clinical practice guidelines by the infectious diseases society 

of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults 

and children: Executive summary. Clin. Infect. Dis. 2011, 52, e18–e55. 

23. Garrigós, C.; Murillo, O.; Lora-Tamayo, J. RNAIII inhibiting peptide against foreign-body 

infection by methicillin-resistant Staphylococcus aureus. J. Infect. 2012, 65, 586. 

24. Kayton, M.L.; Garmey, E.G.; Ishill, N.M.; Cheung, N.K.; Kushner, B.H.; Kramer, K.; Modak, S.; 

Rossetto, C.; Henelly, C.; Doyle, M.P.; et al. Preliminary results of a phase I trial of prophylactic 

ethanol-lock administration to prevent mediport catheter-related bloodstream infections.  

J. Pediatr. Surg. 2010, 45, 1961–1966. 

25. Rosenblatt, J.; Reitzel, R.; Dvorak, T.; Jiang, Y.; Hachem, R.Y.; Raad II. Glyceryl trinitrate 

complements citrate and ethanol in a novel antimicrobial catheter lock solution to eradicate 

biofilm organisms. Antimicrob. Agents Chemother. 2013, 57, doi: 10.1128/AAC.00229-13. 

26. Chaudhury, A.; Rangineni, J.B.V. Catheter lock technique: In vitro efficacy of ethanol for 

eradication of methicillin-resistant staphylococcal biofilm compared with other agents.  

FEMS Immunol. Med. Microbiol. 2012, 65, 305–308. 

27. Brill, F.; Goroncy-Bermes, P.; Sand, W. Influence of growth media on the sensitivity of 

Staphylococcus aureus and Pseudomonas aeruginosa to cationic biocides. Int. J. Hyg.  

Environ. Health. 2006, 209, 89–95. 

28. Al-Doori, Z.; Goroncy-Bermes, P.; Gemmell, C.G. Low-level exposure of MRSA to octenidine 

dihydrochloride does not select for resistance. J. Antimicrob. Chemother. 2007, 59, 1280–1282. 

29. Amalaradjou, M.A.; Narayanan, A.; Baskaran, S.; Venkitanarayanan, K. Antibiofilm effect of 

trans-cinnamaldehyde on uropathogenic Escherichia coli. J. Urol. 2010, 184, 358–363. 

30. Ayebah, B.; Hung, Y.C.; Frank, J.F. Enhancing the bactericidal effect of electrolyzed water on 

Listeria. monocytogenes biofilms formed on stainless steel. J. Food Prot. 2005, 68, 1375–1380. 

31. Edmiston, C.E., Jr.; Goheen, M.P.; Seabrook, G.R. Impact of selective antimicrobial agents on 

staphylococcal adherence to biomedical devices. Am. J. Surg. 2006, 192, 344–354. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


