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Luminiţa Măruţescu 3, Coralia Bleotu 4, George Dan Mogoşanu 5,*, Mariana Carmen Chifiriuc 1,3,
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Abstract: Acute bacterial prostatitis is one of the frequent complications of urinary tract infection
(UTI). From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis.
The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs
in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly
prescribed antibiotics as well as the relationships between microbial virulence and resistance features.
Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients
with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp.,
Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines,
quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic
isolates produced various virulence factors with possible implications in the pathogenesis process.
The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell
monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire
of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract
were detected. The Gram-negative strains produced pore-forming toxins—such as hemolysins,
lecithinases, and lipases—proteases, siderophore-like molecules resulted from the esculin hydrolysis
and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase.
Our study demonstrates that necessity of investigating the etiology and local resistance patterns of
uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment
in elderly patients with UTI, while establishing correlations between resistance and virulence profiles
could provide valuable input about the clinical evolution and recurrence rates of UTI.
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1. Introduction

Urinary tract infections (UTIs) are among the most common indications for antibiotic use in the
community and in health services [1]. UTIs associated with catheter use account for 30–40% of all
nosocomial infections and are the most common source of Gram-negative bacteremia in hospitalized
patients [2]. Treatment of this type of prostatitis consists of long-term antimicrobial therapy and
often the symptoms reoccur shortly after the acute phase due to the inability of antimicrobial
agents to penetrate prostate tissue and achieve optimal concentrations to eradicate the infection.
The antibiotics commonly used to treat prostatitis are fluoroquinolones, which show the highest rate
of infection eradication, macrolides, tetracyclines, and trimethoprim [3]. Enterococci have become an
increasingly common cause of UTI, representing more than 30% of all bacterial isolates. Enterococci
are intrinsically resistant to many antimicrobials and can also develop resistance to a large range of
antibiotics [4]. The presence of enterococci in the urinary tract is often asymptomatic [5]. Unfortunately,
broad-spectrum antibiotics are increasingly used for UTIs, which is a risk factor for the development
of strains resistant to vancomycin (VRE) and VRE colonization [6]. In 2015, Romania was described at
a European level as one of the countries with the largest consumption of narrow spectrum antibiotics
(first generation cephalosporins, erythromycin, penicillin V), but also those with a broad spectrum
(third-generation cephalosporins and IV-penicillins associated with β-lactamase inhibitors). It has
been estimated that 600,000 of Romanian citizens consume antibiotics irresponsibly [7]. According to
the latest official reports issued by the European Center for Disease Prevention and Control (ECDC)
for 2015, Romania was third among countries with invasive infections produced by E. coli strains with
higher resistance to fluoroquinolones (30.7%) followed by third-generation cephalosporins (26.8%)
and aminoglycosides (18.4%) and the first with combined resistance (to three or more antimicrobial
groups, among which piperacillin-tazobactam, ceftazidime, fluoroquinolones, aminoglycosides, and
carbapenems) [8]. Prostate enlargement, also called benign prostatic hyperplasia (BPH), represents
an important risk factor for urinary tract infections (UTIs) and bacterial prostatitis in men [9,10].
This structural abnormality is mainly associated with aging and most often affects men who are 60 years
of age and older [11]. This chronic condition can prevent the bladder from emptying completely, which
increases the likelihood that bacteria will grow and trigger an infection [10]. UTIs are among the
most common indications for antibiotic use in the community and health services [12]. There is
a paucity of evidence-based guidelines for the management of UTI specifically in the older men
population [13]. Studies suggest that UTI is incorrectly diagnosed in as many as 40% of hospitalized
older people [14]. The increasing prevalence of health care associated infection and emerging antibiotic
resistance highlights the importance of obtaining a firm diagnosis and appropriate antibiotic treatment,
as well as avoiding the use of broad-spectrum antibiotics [15]. The knowledge of the resistance
profiles of uorpathogenic microorganisms involved in acute/chornic prostatitis will help to the
improvement of the antimicrobial therapy and thus, to the decrease of the costs of hospitalization
and treatment. This will reduce the duration of treatment and assure a faster recovery of the patient’s
health status, limiting antibiotic resistance dissemination in hospitals and in the community. Here,
we investigated the prevalence of uropathogens associated with UTIs in older patients with benign
prostatic hyperplasia and assessed the susceptibility of these pathogens to commonly prescribed
antibiotics. The relationships between microbial virulence and resistance determinants were also
evaluated [16].

2. Results

2.1. Prevalence of Uropathogenic Bacteria Associated with Urinary Tract Infections in Older Patients with
Benign Prostatic Hyperplasia

A group of 85 outpatients diagnosed with benign prostatic hyperplasia with recurrent UTI
was included in this study. Urinalysis resulted in 70% positive cultures with significant bacteriuria
(i.e., >105 colony forming units—CFU/mL). In the positive specimens, Escherichia coli was the
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most predominant isolated microorganism (60%), followed by other Enterobacteriaceae, of which
Klebsiella spp. (8.2%), Proteus spp. (7%), Enterobacter spp. (5%), Serratia marcescens (1.1%), and
Morganella morganii (1.1%). Enterococcus spp. were detected in 15.3% and Streptococcus agalactiae in
2.3% of the urine specimens.

2.2. Antimicrobial Susceptibility

The enterobacterial strains exhibited high antibiotic susceptibility rates to fosfomycin (100%),
gentamicin (77.14%), nitrofurantoin (75.71%), ceftazidime (74.29%), sulfamethoxazole (62.86%),
amoxicillin–clavulanic acid (61.43%), cefuroxime (60%), fluoroquinolones (52.86%), and tetracycline
(48.57%) (Figure 1a). In case of Enterococcus strains, antimicrobial screening tests revealed high
susceptibility rates (100%) to penicillin, ampicillin, vancomycin, and fosfomycin. However, high
resistance rates have been observed for levofloxacin (84.62%), erythromycin (61.54%), and tetracycline
(23.08%) (Figures 1b and 2).
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Figure 1. Graphic representation of the antibiotic susceptibility profiles in the Gram-negative
(a) and Enterococcus sp. (b) analyzed uropathogenic strains. CN: Gentamicin; FOT: Fosfomycin;
F: Nitrofurantoin; SXT: Trimethoprim–Sulfamethoxazole; TE: Tetracycline; NOR: Norfloxacin;
CIP: Ciprofloxacin; CXM: Cefuroxime; CAZ: Ceftazidime; AMC: Amoxicillin–Clavulanic acid;
VA: Vancomycin; LEV: Levofloxacin; E: Erythromycin; P: Penicillin; AMP: Ampicillin; R: Resistant;
I: Intermediary; S: Sensitive.
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Figure 2. Representation of the individual profiles of soluble virulence factors and antibiotic resistance
profiles in the analyzed Gram-negative strains.

2.3. Virulence Factors Expression

2.3.1. Cell Associated Virulence Factors

The adherence ability of isolates was evidenced by slime production and in vitro attachment
of bacteria to human epithelial-like tumor line (Hep-2) cell monolayer. Slime factor is a hydrophilic
exopolysaccharide secreted by some strains, which contributes to bacterial cells’ adherence to inert,
abiotic surfaces. Slime factor is an indicator of the resistance and survival capacity in the external
environment and can be a virulence factor during the infection of a host organism by opposing the
phagocytosis, preventing the access of antimicrobial substances in microbial cells and facilitating
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adherence to host tissues. Slime production was evident in approximately 50% of the tested strains.
E. coli strains were the most positive for this virulence factor (44.4%) followed by Enterococcus spp.
(33%), while Klebsiella spp. isolates were negative. The majority of the uropathogenic isolates (90.77%)
were able to adhere to Hep-2 cell monolayer in vitro, 65% of the strains exhibiting an adherence index
>50%, with localized (53%), aggregative (30%), and diffuse (17%) patterns (Figure 3).
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2.3.2. Soluble Virulence Factors

The in vitro experiments showed that the uropathogenic isolates were able to produce several
soluble metabolic products with potential tissue-damaging effects, exhibiting different profiles
represented in the Gram-negative strains by the pore forming toxins (hemolysins (27%), lecithinases
(6%) and lipases (10%)), proteases (caseinase (37%)), siderophore-like molecules resulted from the
in vitro hydrolysis of esculin (31%) and amylases (31%). The Gram-positive bacteria were positive
only for caseinase (46%) and esculin hydrolase (38%) (Figures 2 and 4).

Pathogens 2017, 6, 22 5 of 12 

 

(33%), while Klebsiella spp. isolates were negative. The majority of the uropathogenic isolates 

(90.77%) were able to adhere to Hep-2 cell monolayer in vitro, 65% of the strains exhibiting an 

adherence index >50%, with localized (53%), aggregative (30%), and diffuse (17%) patterns 

(Figure 3). 

 

Figure 3. Distribution of the adherence to the cellular substratum among the analyzed uropathogenic strains. 

2.3.2. Soluble Virulence Factors 

The in vitro experiments showed that the uropathogenic isolates were able to produce several 

soluble metabolic products with potential tissue-damaging effects, exhibiting different profiles 

represented in the Gram-negative strains by the pore forming toxins (hemolysins (27%), lecithinases 

(6%) and lipases (10%)), proteases (caseinase (37%)), siderophore-like molecules resulted from the in 

vitro hydrolysis of esculin (31%) and amylases (31%). The Gram-positive bacteria were positive only 

for caseinase (46%) and esculin hydrolase (38%) (Figures 2 and 4). 

 

Figure 4. Graphic representation of the profile of soluble virulence factors in the analyzed strains. 

3. Discussion 

Urinary tract infections are common among elderly patients in residential care facilities, as well 

as in the hospital settings [17]. With age, men acquire structural and functional abnormalities of the 

urinary tract that impair normal functioning; the most common is benign prostatic hyperplasia, 

which can cause urinary tract infection resulting in obstruction and turbulent urine flow. Urinary 

tract infection in men without indwelling catheters is uncommon among men younger than 60 years 

old, but the incidence increases substantially after this age. The reported incidence in the community 

Figure 4. Graphic representation of the profile of soluble virulence factors in the analyzed strains.

3. Discussion

Urinary tract infections are common among elderly patients in residential care facilities, as well
as in the hospital settings [17]. With age, men acquire structural and functional abnormalities of
the urinary tract that impair normal functioning; the most common is benign prostatic hyperplasia,
which can cause urinary tract infection resulting in obstruction and turbulent urine flow. Urinary tract
infection in men without indwelling catheters is uncommon among men younger than 60 years old,



Pathogens 2017, 6, 22 6 of 12

but the incidence increases substantially after this age. The reported incidence in the community is
0.9 to two cases per 1000 men among those who are younger than 55 years of age and 7.7 cases per
1000 men among those who are 85 years of age or older [18].

The most commonly isolated organism in the present study was E. coli (60%), followed by
Enterococcus spp. (15%) and Klebsiella spp. (8.2%). The results are in accordance with previous
studies that identified the presence of the same species in 50–60% of these infections [19–22]. Other
enterobacterial species such as Proteus spp., Enterobacter spp., Serratia marcescens, and Morganella morganii
were recorded, as also revealed by other studies [23]. Gram-positive organisms, such Enterococcus spp.,
are less common overall, but are seen with increasing frequency in healthcare settings and in adults
with chronic indwelling catheters [24,25], in which Pseudomonas spp., with its intrinsic resistance is
also problematic [26,27].

Antibiotic resistance has become a major aspect to be considered in the treatment of
community-acquired UTIs [28,29]. Frequently, the diagnosis of UTI is made in the absence of a
typical clinical history and signs resulting in overdiagnosis and overtreatment [13]. The importance
of culturing prior to instituting primary empirical therapy is exemplified by the fact that, in an area
with resistance rates in E. coli of 20% to trimethoprim and 10% to fluoroquinolones (representing low
figures for many parts of the world today), the risk of treatment failure due to resistance to empirical
trimethoprim therapy is 10% [22,30]. Also, the ciprofloxacin resistance in trimethoprim-resistant E. coli
is not 10% as was anticipated, but 25–40% depending on the reporting country [31]. Cunha et al.
(2016) assessed the frequency and susceptibility to antimicrobials of uropathogens isolated from
community-acquired urinary tract infections in the city of Natal, Rio Grande do Norte State
capital, northeastern Brazil, from 2007 to 2010. They found that most of the isolated uropathogens
(E. coli, Klebsiella spp., and Staphylococcus spp.) were susceptible to nitrofurantoin (>92%), excepting
Klebsiella spp. strains (45%). In a population study in Spain, including both complicated and
uncomplicated UTIs in male and female patients, the susceptibility percentages for E. coli were
low for amoxicillin (41%), trimethoprim–sulfamethoxazole (66%), and ciprofloxacin (77%). Because
susceptibility varies with the geographic region and population (nosocomial or community), empiric
antibiotic prescription should be dependent on the susceptibility percentages of a specific community
over time [32,33]. Regarding antibiotic resistance in Gram-negative bacteria, we observed a high degree
of sensitivity to nitrofurantoin and fosfomycin, all strains being susceptible to the last one. The frequent
of use of tetracycline, quinolones, and sulfonamides in treatment demonstrated an increasing degree
of resistance to these antibiotics.

CTX-M-producing E. coli strains isolated from hospital and community sites often exhibit
co-resistance to trimethoprim-sulfamethoxazole, tetracycline, gentamicin, tobramycin, and ciprofloxacin [34].
A previous 10-year study from the Calgary Health Region in Calgary, Alberta, Canada, demonstrated
that CTX-M-producing E. coli is emerging as an important cause of community-onset UTIs [35].
That study showed a substantial increase of CTX-M-15-producers from urines that occurred during the
latter part of the study period. It is known that the occurrence of extended-spectrum beta-lactamase
(ESBL)-producing E. coli in high-risk areas of the hospital—such as intensive care units (ICUs)—has
increased significantly [36,37]. Before 2003, most ESBLs strains were Klebsiella spp. and were mutants
of TEM (from Temoniera, name of the Greek patient) and SHV (sulfhydryl variable) penicillinases.
They were often hospital acquired. Recently, the number of CTX-M ESBLs is increasing reported in
E. coli as well as in Klebsiella spp. and many could emerge in community [19]. The former antibiotic
therapy with agents, such as cephalosporins, or previous international travel history are recognized
as risk factors for the acquisition of these organisms. In our study, 16.47% of the total number of
Gram-negative bacteria produced ESBLs, a fact that suggests an important spread of these enzymes in
the community, even if these outpatients’ infections are not entirely community acquired and could be
correlated with hospital or health care facility visits [38–47].

Besides their resistance to the current armamentarium of antimicrobial agents, uropathogenic
bacterial strains exhibit virulence factors that help the microorganism to overcome host defense
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mechanisms and colonize or invade the urinary tract [48]. Colonization can lead to the establishment
of a quiescent intracellular reservoir in the bladder. Activation of this quiescent intracellular reservoir
results in recurrent UTIs [49]. Virulence factors of recognized importance in the pathogenesis of
UTIs that have been identified in E. coli pathogenic strains, including adhesins (P fimbriae, certain
other mannose-resistant adhesins, and type 1 fimbriae), the aerobactin system, hemolysin, K capsule,
and resistance to serum killing [50,51]. Fimbriae allow irreversible attachment to the uroepithelial cell
membrane via adhesins [52,53]. Adhesion to intestinal cell models has been investigated previously
and, in E. coli and many other pathogenic species, differences in adherence level and patterns
exist [54–58]. Our investigation revealed a high capacity of the uropathogenic isolates to adhere
to Hep-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern.

An essential required step for urinary tract colonization and infection development is microbial
production of extracellular polysaccharide polymers or “slime factor” [59]. It acts as the foundation
and cement for the formation of microbial biofilms, structures with defined architecture, providing
the microorganisms with an excellent protective environment (less susceptible to antibiotics) and
favoring the exchange of genetic material (virulence and antibiotic resistance determinants) between
cells as well as intercellular communication. Our experimental results showed that the slime factor
production, a necessary element in the colonization of urinary tract, was present in 50% of the analyzed
strains; Enterococcus spp. strains proved to be the most significantly slime forming bacteria (33%).
Klebsiella spp. isolates were negative for the production of slime factor, while E. coli and Enterobacter spp.
isolates were slime positive. These results demonstrate the potential of the isolated uropathogens to
interfere with the treatment of infections, impairing the action of host immune cells and compromising
antibiotic efficacy.

Uropathogenic strains are characterized by the expression of a diverse arsenal of microbial
products that serves as virulence factors in the pathogenesis of disease by facilitating the spread
of bacteria or toxins through tissues [60]. The uropathogenic isolates produced various metabolic
soluble virulence factors with possible implications in the pathogenesis process. Differences in the
repertoire and expression levels of virulence factors that can affect bacterial growth and persistence
within the urinary tract were detected. Thus, more than half of the analyzed uropathogenic strains
expressed soluble proteases, which may be used by the bacteria to digest extracellular matrix proteins
and polysaccharides. Subsequently, pathogens may invade the host tissue cells and gain access to the
intracellular environment [61].

Limiting iron availability is important for host defense against invading bacterial pathogens.
Uropathogens have evolved multiple strategies for swiping iron from the host that include the
expression of iron acquisition systems that utilize siderophores to scavenge iron from the environment
and subsequently concentrate it in the bacterial cytosol. They express a wealth of seemingly
redundant iron acquisition systems, including the siderophores salmochelin, yersiniabactin, and
aerobactin [62–64]. In our study, about 51% of the total number of strains isolated from urinary
infection expressed a metabolic feature providing them with the ability to chelate iron, through
esculetol, resulting from the esculin hydrolysis.

The resistance–virulence link is complex, considering the diversity of antimicrobial resistance
genes, virulence factors, bacterial species and hosts. More in depth molecular studies on the
genetic support of antimicrobial resistance and virulence determinants are sorely needed to fully
understand the interplay of resistance and virulence genes; whether virulence expression is affected
by chromosomal mutations leading to specific resistance (e.g., fluoroquinolone resistance); if both
determinants are inserted in the same mobile genetic element, like a conjugative plasmid; and the role
of the phylogenetic background of the strain [65,66].

The correlations between resistance spectrums, virulence factors, and recurrence rates are of great
clinical value for clinical diagnosis, treatment, and predictive prognosis of recurrent UTIs [65].
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4. Materials and Methods

4.1. Bacterial Cultures and Antimicrobial Susceptibility Testing

Quantitative analyses of urine cultures were performed using the standard calibrated loop method.
Urine sample were streaked on Columbia agar with 5% sheep blood and CLED (cysteine-, lactose-, and
electrolyte-deficient) agar. After incubation at 37 ◦C for 24 h, the microorganisms were identified using
standard commercial test kits (bioMérieux API). All specimens with bacteriuria of >105 CFU/mL were
analyzed to determine the causative pathogens and their antimicrobial susceptibility profile.

Antimicrobial susceptibility testing was performed by disk diffusion method following the
guidelines of the Clinical and Laboratory Standards Institute (CLSI) [67]. For Gram-negative bacteria
(GNB) were tested following antibiotics (Oxoid Ltd., Basingstoke, UK): amoxicillin–clavulanic
acid (AMC 30 µg), cefuroxime (CXM 30 µg), ceftazidime (CAZ 30 µg), norfloxacin (NOR 10 µg),
ciprofloxacin (CIP 5 µg), tetracycline (TE 30 µg), trimethoprim–sulfamethoxazole (SXT 25 µg),
nitrofurantoin (F 300 µg), fosfomycin (FOT 200 µg), gentamicin (CN 10 µg). For Gram-positive
bacteria (GPB) penicillin (P 10 IU), ampicillin (AMP 10 µg), erythromycin (E 15 µg), levofloxacin
(LEV 5 µg), tetracycline (TE 30 µg), and nitrofurantoin (F 300 µg) were tested.

4.2. Investigation of Cell-Associated and Soluble Virulence Microbial Factors

4.2.1. Adherence Assay

The adherence capacity to the inert substratum of the microbial strains was determined by
quantifying the production of slime factor using the microtiter plate method [68]. Microbial suspensions
corresponding to 0.5 McFarland density were seeded in nutrient broth, distributed in 96-well plates,
then incubated in aerobic conditions at 37 ◦C for 24 h and 48 h, respectively. After incubation, the plates
were washed three times with physiological sterile water for removal of planktonic, not adherent
bacteria, fixed with ethanol for 5 min, stained with 1% crystal violet for 20 min, and washed again
with tap water. The adherent microbial cells were then resuspended in 33% acetic acid. Intensity of
colored suspension, which is directly proportional with the ability of strains to adhere to inert substrate,
was measured spectrophotometrically at an optical density of 490 nm (OD490).

The adherence to the cellular substratum was assessed by the Cravioto’s adapted method using
Hep-2 line cells cultivated for 24 h at 37 ◦C in Eagle’s Minimal Essential Medium (MEM) supplemented
with antibiotics and 10% fetal bovine serum (Gibco-BRL). The eukaryotic cells were washed three
times with sterile phosphate-buffered saline (PBS) and then covered with microbial cell suspensions
with a density corresponding to the 0.5 McFarland nephelometric standard prepared in PBS using
18–24 h bacterial cultures. After incubation at 37 ◦C, for two hours, the eukaryotic cell monolayers were
washed three times with PBS, fixed with methanol (5 min) and stained with 10% Giemsa solution for
20 min, washed with tap water, dried at room temperature, and submitted to microscopic examination
with the 100× immersion objective, in order to establish the adherence patterns (localized, diffuse,
or aggregative) of the microbial isolates and to determine the adherence index (expressed as the ratio
between the number of eukaryotic cells exhibiting adhered microbial cells per 100 cells counted on the
microscopic field).

4.2.2. Soluble Virulence Factor Production

Agar media incorporating specific enzymatic substrates were used to determine the expression
of different metabolic enzymes with potential roles in virulence: hemolysins, amylases, caseinases,
gelatinases, esculin hydrolysis, and DNase, as previously reported [69]. Briefly, 18-h microbial culture
was spotted onto agar plates with specific enzymatic substrata, i.e., 5% sheep blood (hemolytic activity),
1% starch (amylase activity), 1% casein and 0.4% gelatin (proteolytic activity), 1% esculin (esculinase
activity), and 0.2% DNA (DNase production). Enzyme production was detected after 48–72 h of
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incubation, at 37 ◦C, by macroscopic observations of specific modifications of the media around the
culture spot (hemolysis, precipitation, clearing, or blackening).

5. Conclusions

Knowledge of likely organisms and local resistance patterns is crucial in determining appropriate
empirical antibiotic treatment in these patients. The increasing prevalence of health care associated
infection and emerging antibiotic resistance highlights the importance of obtaining a firm diagnosis,
treating with appropriate antibiotics, and avoiding the use of broad-spectrum antibiotics. Antibiotic
resistance is increasing and beginning to affect the outcome of empirical antimicrobial therapy of
urinary tract infections. An accurate diagnosis of urinary infections is crucial for the choice of the
appropriate narrow-spectrum antibiotics.
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