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Abstract: Over the last decade new species of Protozoa have been sequenced and deposited in
GenBank. Analyzing large amounts of genomic data, especially using Next Generation Sequencing
(NGS), is not a trivial task, considering that researchers used to deal or focus their studies on few
genes or gene families or even small genomes. To facilitate the information extraction process from
genomic data, we developed a database system called ProtozoaDB that included five genomes of
Protozoa in its first version. In the present study, we present a new version of ProtozoaDB called
ProtozoaDB 2.0, now with the genomes of 22 pathogenic Protozoa. The system has been fully
remodeled to allow for new tools and a more expanded view of data, and now includes a number of
analyses such as: (i) similarities with other databases (model organisms, the Conserved Domains
Database, and the Protein Data Bank); (ii) visualization of KEGG metabolic pathways; (iii) the protein
structure from PDB; (iv) homology inferences; (v) the search for related publications in PubMed;
(vi) superfamily classification; and (vii) phenotype inferences based on comparisons with model
organisms. ProtozoaDB 2.0 supports RESTful Web Services to make data access easier. Those services
were written in Ruby language using Ruby on Rails (RoR). This new version also allows a more
detailed analysis of the object of study, as well as expanding the number of genomes and proteomes
available to the scientific community. In our case study, a group of prenyltransferase proteinsalready
described in the literature was found to be a good drug target for Trypanosomatids.
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1. Introduction

Over the last decade new species of Protozoa were sequenced and deposited in GenBank [1–4].
The availability of the primary genome sequence is a good starting point for the community to
contribute further analyses (e.g., identification and functional annotation of coding sequences as
well as comparative genomics analysis) in order to infer new information on the biology of these
organisms. Analyzing large amounts of data generated by genomics experiments, especially using
Next Generation Sequencing (NGS), is not a trivial task. The ongoing NGS technology makes the
sequencing of more and more eukaryote genomes a reality, giving rise to new paradigms (either for the
development and improvement of semi-automatic analysis/annotation systems for this huge amount
of data, or for an object-view concept where raw reads are the main, fixed object, and assemblies with
their annotations take a role of dynamically changing and modifying views of the object [5]).

The processes involved in the sequencing and preparation of genomic information can be
represented in a similar way as the life cycle of software (Figure 1). The first step is data acquisition
that can be performed by: (i) downloading from public databases; and (ii) sequencing across multiple

Pathogens 2017, 6, 32; doi:10.3390/pathogens6030032 www.mdpi.com/journal/pathogens

http://www.mdpi.com/journal/pathogens
http://www.mdpi.com
http://dx.doi.org/10.3390/pathogens6030032
http://www.mdpi.com/journal/pathogens


Pathogens 2017, 6, 32 2 of 13

platforms, like Sanger and/or NGS (Illumina, Ion Torrent, Nanopore and/or Pacific BioScience).
The second step, called pre-processing, formats and stores genomic data for subsequent use. The third
step refers to the use of a number of computational tools to transform raw data into knowledge.
The fourth and last step is distributing and making this information available to the community for
further analysis and inferences.
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Figure 1. Example for data lifecycle in bioinformatics. The lifecycle begins with data acquisition,
through data pre-processing, data transformation, and, finally, the analysis of the results (information)
generated by this process.

Therefore, in order to facilitate information extraction [6], we developed the ProtozoaDB [7]
database system, which in its first version included five protozoan genomes (Entamoeba histolytica,
Leishmania major, Plasmodium falciparum, Trypanosoma cruzi, and T. brucei) and a set of tools for searching
and analyzing data, including phylogeny inference. In the present study we present a new version of
ProtozoaDB called ProtozoaDB 2.0 (http://protozoadb.biowebdb.org) that, according to the above
description, fits into the third and final steps of the bioinformatics cycle: transforming raw data into
information followed by distribution and availability. The development of new generation databases
as ProtozoaDB is being encouraged by the community, especially in the context of the BioCreative
initiative [8] and reviewed by Krallinger et al. (2008) [9].

The system has been fully remodeled to allow for new tools and a more expanded view of data,
using advanced computational techniques and providing a wider range of information for users. Now
with the genomes of 22 pathogenic Protozoa, this new version includes analyses such as: (i) similarities
with other databases (Homo sapiens, model organisms, Conserved Domains Database—CDD and
Protein Data Bank—PDB); (ii) visualization of the metabolic pathways of Kyoto Encyclopedia of
Genes and Genomes—KEGG [10]; (iii) protein structures by PDB [11]; (iv) homology studies, using
results from OrthoMCL [12], KEGG Orthology (KO), and OrthoSearch [13]; (v) the search for related
publications at PubMed; (vi) superfamily classification [14]; and (vii) phenotype inferences based on
comparisons with model organisms, particularly with Saccharomyces cerevisae.

ProtozoaDB source code was completely rewritten in another programming language and with
more elaborated techniques. It now uses a framework for developing Web applications known as
Rails (http://rubyonrails.org/). It was developed in layers, allowing for the separation of the business
object code of the pages displayed to users, making maintenance easier and consequently access
to its pages lighter and faster. Furthermore, there is a specific layer to deal with data to be fetched
from other sources. The Ruby language, suitable for the use of Rails, was adopted for this version
together with BioRuby library [15], enabling the development of pages with less code and better
reuse of functions. ProtozoaDB 2.0 was also implemented using concepts of Object Orientation and
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Design Patterns. This made the application lighter, safer, and simpler to maintain. The use of the
JQuery library made possible for the web pages to work with Asynchronous Javascript and XML
(AJAX), creating a friendlier user interface. Now it is possible to view all the information provided by
ProtozoaDB 2.0 on one page. The new system uses the concept of Web Services to access all internal
and external databases. Thus, the application focuses only on usability and user-friendly information.
All databases are queried simultaneously allowing a response time considered to be satisfactory for
the application. ProtozoaDB 2.0 allows queries by several methods, including: Genbank Identifier
(GI), Accession Number, Description, Blast, Motif, and Phenotype. With all information in one place,
it is now possible to infer information on the biology and biological systems of the protozoan species
studied. Additionally, ProtozoaDB 2.0 now has information inferred from phenotypes. Orthology
analysis helps to transfer phenotype information based on genotypes. According to [16] it is also
possible to transfer functional information based on similar phenotypes and a specialized database
called PhenomicDB was developed using this concept [17].

2. Results

2.1. Protozoa Genomic Data

ProtozoaDB 2.0 provides descriptive, quantitative, qualitative, and comparative information on
the genomes and proteins of 22 protozoan species (Table 1), thus allowing a more detailed analysis
of each organism including the inference of relationships between them. The new version contains:
(i) 193,559 genes; (ii) 218,100 proteins; (iii) 26,101 homologous groups (21,119 orthologous groups and
4982 paralogous groups) obtained by OrthoMCL analysis (Figure 2); and (iv) 195 phenotypes inferred
by crossing information with the Saccharomyces Database.

Table 1. List of organism species loaded in ProtozoaDB 2.0.

Organism/Strain

Babesia bovis T2Bo
Crypstosporidium parvum Iowa II
Cryptosporidium hominis TU502

Cryptosporidium muris RN66
Entamoeba dispar SAW760

Entamoeba histolytica HM1:IMSS
Giardia lamblia ATCC 50803

Leishmania braziliensis MHOM BR 75 M2904
Leishmania infantum JPCM5

Leishmania major Friedlin
Plasmodium berghei ANKA

Plasmodium chabaudi chabaudi AS
Plasmodium falciparum 3D7

Plasmodium knowlesi strain H
Plasmodium vivax SaI 1

Plasmodium yoelii yoelii 17XNL
Theileria annulata Ankara
Theileria parva Muguga
Toxoplasma gondii ME49
Trichomonas vaginalis G3

Trypanosoma brucei treu927
Trypanosoma cruzi CL Brener
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Figure 2. The front page of ProtozoaDB 2.0 displaying database statistics, the search field, and the
tag’s cloud.

2.2. Proteome

The information about the proteins of 22 different Protozoa is complemented by the results obtained
by real-time queries, performed in several remote databases through the use of Web Services. Two similarity
analyses are performed using BLAST [18] and FASTA [19] against PDB [11]. The FASTA similarity results
facilitate a visual comparison of the protein 3D structures, while the BLAST results also allow users to
select any or all hits, as well as to retrieve and export their sequence in FASTA format (Figure 3). Conserved
domains analyses use CDD [20]. As a plus, a similarity analysis against the human proteome is also
performed. All this information is displayed showing the top 10 results (Figure 4).
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2.3. Homology

The results of the preliminary analyses of homology among the 22 Protozoa are available for
queries. The orthologous groups were inferred by the methodology implemented in OrthoMCL
(Figure 5) and OrthoSearch, using either a Blast-based or Hmmer-based algorithm, respectively.
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Figure 5. Orthologous groups inferred using OrthoMCL methodology. Clicking the “Group” link
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2.4. Metabolic Pathways

The system performs a web service-based query to retrieve metabolic maps available on KEGG,
showing the involvement of a given protein in that pathway (Figure 6).



Pathogens 2017, 6, 32 6 of 13
Pathogens 2017, 5, 32  6 of 13 

 

 

Figure 6. Metabolic pathways from KEGG. The figure shows all metabolic pathways that include 

aspartate aminotrasnferase. Clicking on a map opens a new window in a remote web site (KEGG). 

2.5. Phenotypes 

ProtozoaDB 2.0 allows web service-based queries through the phenotypes mapped from the 

Saccharomyces Database [21], retrieving proteins from the 22 Protozoa that could potentially provide 

such features. This information was made possible by mapping the proteome of the 22 species with 

information from the KEGG orthologous groups (Kegg Orthology—KO) as part of the 

“transformation” step described in the introduction (Figure 7). 

 

Figure 7. Phenotypes found by orthology with Saccharomyces cerevisiae for farnesyltransferase alpha 

protein subunit. 

2.6. How to Search 

The new system retrieves the information through various search engines. Based on the previous 

version, the system searches for the description of the protein or part of the description, Accession 

Figure 6. Metabolic pathways from KEGG. The figure shows all metabolic pathways that include
aspartate aminotrasnferase. Clicking on a map opens a new window in a remote web site (KEGG).

2.5. Phenotypes

ProtozoaDB 2.0 allows web service-based queries through the phenotypes mapped from the
Saccharomyces Database [21], retrieving proteins from the 22 Protozoa that could potentially provide
such features. This information was made possible by mapping the proteome of the 22 species with
information from the KEGG orthologous groups (Kegg Orthology—KO) as part of the “transformation”
step described in the introduction (Figure 7).
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Figure 7. Phenotypes found by orthology with Saccharomyces cerevisiae for farnesyltransferase alpha
protein subunit.

2.6. How to Search

The new system retrieves the information through various search engines. Based on the previous
version, the system searches for the description of the protein or part of the description, Accession
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Number, Genbank Identifier (GI), and organism name. In addition to these mechanisms, this new
version also allows query by phenotype and similarity (Blast).

2.7. How to Search Using Our Web Service

In addition we also made a set of web service functions available to retrieve all information
available in our system. The page http://services.biowebdb.org/howtouse contains the information
about how to use available services including source code examples. Functions to search Protozoa
proteins by Accession Number, Genbank Identifier, description (annotation), organism, phenotype,
and Blast, as well as details of protein analyses like orthologous groups, similarity results, KEGG
pathways, and phenotypes, are available for queries with our web services.

2.8. Information Extraction—T. brucei Case Study

To demonstrate the usefulness of ProtozoaDB 2.0 for information extraction, a case study was
conducted using phenotypes in the Kinetoplastea species. Through the search field system the option
Phenotypes was chosen and the keyword ”inviable” used with the Kinetoplastea subset database. This
phenotype may indicate (depending on the experiment) a situation of impossibility for the survival of
the organism [21]. Based on orthology with Saccharomyces cerivisae, the system returns a list containing
a wide range of proteins that show this phenotype. From the obtained list, the first hit meeting the
following requirements was chosen: (i) low similarity with the human proteome; (ii) high similarity
with the bacterial species; and (iii) a pathway available in KEGG. The chosen hit was XP_844041.1
protein farnesyltransferase (PFT) alpha subunit from Trypanosoma brucei, because of the high similarity
to the bacterial prenyltransferase group (Figure 8).
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Farnesyltransferase alpha subunit is a protein of the prenyltransferase group [22]. Pfam
Farnesyltransferase and geranylgeranyltransferase are classified in the same family because of the
CaaX motif present in both of them [23]. Figure 9 shows the PPTA family with 795 species of which
23% (223/795) are Metazoa that share this motif.
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EMBL-EBI and is provided as OpenScience [24].

2.9. Comparison with Another Information Extraction Tool

We performed a comparison of ProtozoaDB with EuPathDB [25] to evaluate the similarities and
differences between these two information extraction tools (Table 2).

Table 2. Comparison with another information extraction tool (n/a = not available functionalities).

Functionalities ProtozoaDB 2.0 EuPathDB

Blast similarities against Homo sapiens Available n/a
Blast similarities against model organisms Available n/a
Blast similarities against protozoa species Available Available

Blast similarities against CDD Available n/a
Blast similarities against PDB Available n/a

Similarities against Intepro Domains n/a Available
KEGG metabolic pathways Available n/a
Protein structures by PDB Available n/a

Homology study: OrthoMCL Available Available
Homology study: KEGG orthologous Available n/a

Homology study: OrthoSearch Available n/a
Publications at PubMed Available n/a

Phenotype Search Available n/a
SNP Characteristics Search n/a Available
Genomic Position Search n/a Available
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3. Discussion

The previous version of ProtozoaDB contained only five pathogenic protozoa and some basic
analyses. ProtozoaDB 2.0 increased over 17 protozoan species, totalizing 22 genomes and proteomes.
New analyses were added in this new version, such as: homology analysis among the 22 organisms,
using two different approaches; and phenotype inferences through orthology with the model organism.
Furthermore, to allow for more comprehensive information about these organisms, several queries
were performed in real time in third party (remote) sites, retrieving information about the proteome
of organisms.

There are some other databases containing Protozoa species [25,26]; however, ProtozoaDB is the
first database and web server that provides “all-in-one” information about comparative genomics of
22 species.

The use of web services allows for a flexible system that: (i) integrates a range of related information;
(ii) has direct access to information in their original (remote) sources; and (iii) does not use local storage
data from third parties (remote databases) that could imply their periodic update. These advantages allow
our system to be always updated, since most of the information is queried directly in source databases
through web services. The use of web services is already a practice in bioinformatics, since a number of
research groups are using this technology, e.g., BioSWR [27] and BOWS [28].

Using an AJAX-based framework enables ProtozoaDB 2.0 to perform all queries through web
services while simultaneously making the response time queries quite suitable for online analysis.
AJAX framework is used for modern web sites, including those related to health [29,30].

The new search engines, particularly through BLAST, allow researchers to query the ProtozoaDB
2.0 data directly by the protein or gene of interest, viewing several pieces of information. Thus,
it is possible to find a potential drug target by just browsing through the system and using all the
information provided.

3.1. T. Brucei Case Study

Farnesyltransferase is one enzyme of the prenyltransferase group, which attaches a 15-carbon
isoprenoid farnesyl group to proteins with CAAX motif: a four-amino acid sequence at the carboxyl
terminus of a protein [31]. Farnesylation is a type of prenylation, a post-translational modification of
proteins [32], which binds a isoprenyl group (15-carbon isoprenoid) to a cysteine residue. In other words,
protein farnesylation involves protein farnesyltransferase (PFT) that catalyzes the attachment of the farnesyl
group from farnesyl pyrophosphate (FPP) to cysteine SH of the C-terminal sequence motif CAAX, where
C is cysteine and usually, but not always, an aliphatic residue. The terminal amino acid is determinant
of farnesylation because FTase is preferentially active on protein substrates with CAAX [19]. This is an
important process to mediate protein-protein interactions and protein-membrane interactions [31,33].

Prenylation (farnesylation) and subsequent modifications are essential for correct membrane
targeting and cellular functioning of a number of proteins in eukaryotic cells such as Ras superfamily
GTPases [34]. The farnesyltransferase enzyme is heterodimeric and has two subunits: alpha (α) and
beta (β). The α subunit consists of a double layer paired alpha helices piled up in parallel, whichpartly
enfold the beta subunit like a mantle.

As shown in Figure 9, prenyltransferase alpha subunit is present in various eukaryote species and
several studies show that this protein is potentially a good drug target for trypanosomatids [33], especially
because inhibitors have potent activity against cultured forms and are less toxic to mammalian cells than
parasite cells. Besides that, PFT inhibitors have been developed as antimalarial agents [35].

3.2. Comparison between ProtozoaDB 2.0 and EupathDB

Both information extraction tools evaluated have several features that allow a wider analysis
on the organism studied. EuPathDB allows a more comprehensive view of the characteristics of
the protein investigated, whereas ProtozoaDB 2.0 focuses its analysis to infer and/or confirm the
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functional annotation of a given protein, based on its primary annotation deposited in Genbank.
Furthermore, ProtozoaDB 2.0 also allows a view of the biological role played by the protein in
biological systems, including information on related literature. Through ProtozoaDB 2.0 it is possible
to re-annotate some of the proteins identified as “hypothetical” through similarity-based programs as
well as SuperFamily-based classification. Finally, using the tools provided by ProtozoaDB 2.0, it is also
possible to infer potential drug targets, as described in our case study.

4. Materials and Methods

4.1. Web Services

ProtozoaDB 2.0 supports RESTful (REpresentational State Transfer) [36] Web Services to make
data access easier. Available in http://services.biowebdb.org/howtouse, these services were written
in Ruby language using Ruby on Rails (RoR), allowing access to the information about proteome of
Protozoa available in ProtozoaDB 2.0 web application.

4.2. New Source Code

The source code was rewritten in Ruby using Ruby on Rails, which allowed the development
of three layers: view, with web pages based on Asynchronous JavaScript and XML (AJAX); model,
with search algorithms in remote web services; and the controller, which is an interface between view
and model.

4.3. Data Acquisition

The primary dataset of the genome and proteome of 22 Protozoa species (Table 1),
including families Babesiidae, Cryptosporidiidae, Entamoebidae, Hexamitidae, Plasmodium, Theileriidae,
Trichomonadidae, and Trypanosomatidae, was downloaded from Genbank [1] in Flat File format (GBFF).

4.4. Preprocessing

Primary data were stored locally in a server with a Database Manage Systems (DBMS) through the
Genomics Unified Schema (GUS) version 3.5 [37] framework. The chosen DBMS was the PostgreSQL,
version 8.4. PostgreSQL is a open source object-relational database system [38].

4.5. Transformation

Some analyses were performed to incorporate new information to the primary dataset. Inferences
about homologies were performed on Protozoa data and the results locally stored, namely: (i) orthology
inference using OrthoMCL [12]; (ii) OrthoSearch [13], which uses the Hidden Markov Model (HMM)
through HMMER (version 3.0) and best reciprocal hits; and (iii) the BLAST-based similarity results.

Phenotypes were retrieved from the Saccharomyces Database [21] and stored locally. Mappings
between (i) KEGG Orthology (KO), (ii) Saccharomyces cerevisae proteins, and (iii) Protozoa proteins
were performed and stored locally, aiming to infer phenotypes in Protozoa.

4.6. Analysis

Web services technologies are used to access several databases worldwide to complement existing
information (Table 3), among them:

(1) Similarity against the human proteome: the system performs a query, through the web service;
the human proteome is locally stored in the database, updated every six months, and returns the
top ten hits, independent of the score or e-value.

(2) Search for conserved domains: by running RPSBlast against the Conserved Domain Database
(CDD) [39], the system returns the top ten results independent of the score or e-value.

http://services.biowebdb.org/howtouse
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(3) Superfamily classification: the Superfamily database [14,40] has structural, functional, and
evolutionary information of proteins from different genomes, including Protozoa. The new
system performs a query through the web service, retrieving graphical information on the
classification of superfamily.

(4) Similar protein structure: the system retrieves information from 2D and 3D similarity by
performing BLAST [18] and FASTA [19] directly in the Protein Data Bank (PDB) [41,42].

(5) Metabolic pathways: the system performs a query for the KEGG Pathway database [10] to
retrieve the metabolic pathways where a given protein participates, showing the maps and their
interactions with other proteins participating in that pathway.

(6) Literature: finally, the system performs two queries in Pubmed (http://www.ncbi.nlm.nih.
gov/pubmed) to retrieve the original publication of the protein and other publications having
relevance to the organism and the product.

Table 3. Web services accessed.

Information URL

ProtozoaDB http://services.biowebdb.org/howtouse
PDB http://www.rcsb.org/pdb/software/rest.do
Kegg http://www.kegg.jp/kegg/docs/keggapi.html

Pubmed (NCBI) http://www.ncbi.nlm.nih.gov/books/NBK55693/
Superfamily http://supfam.cs.bris.ac.uk/SUPERFAMILY/web_services.html

5. Conclusions

ProtozoaDB 2.0 allows a more detailed analysis of the object of study, and expands the number of
genomes and proteomes available to the scientific community. In our case study, a group of protein
prenyltransferases was found by just browsing through the results provided by the web service-based
tools, developed for this new version. This protein is already described in the literature as a good
drug target for trypanosomatids for the following reasons: (i) its inhibitors have potent activity
against cultured forms of these parasites and these inhibitors are more toxic against parasite cells than
mammalian cells; (ii) for T. brucei PFT (TbPFT), the substrate specificities and inhibitor selectivity
are distinct from mammalian PFT; and (iii) efforts of the pharmaceutical industry to develop small
molecule inhibitors of mammalian PFTs for anti-cancer purposes creates an abundance of compounds
that can be screened for selective activity against parasites. We were able to identify this potential
drug target using only an “In Silico”-based strategy and the information available in public databases
integrated was into ProtozoaDB 2.0.
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