Next Issue
Previous Issue

Table of Contents

Pathogens, Volume 7, Issue 1 (March 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-32
Export citation of selected articles as:
Open AccessArticle Variations in the Peritrophic Matrix Composition of Heparan Sulphate from the Tsetse Fly, Glossina morsitans morsitans
Received: 3 February 2018 / Revised: 16 March 2018 / Accepted: 17 March 2018 / Published: 19 March 2018
PDF Full-text (990 KB) | HTML Full-text | XML Full-text
Abstract
Tsetse flies are the principal insect vectors of African trypanosomes—sleeping sickness in humans and Nagana in cattle. One of the tsetse fly species, Glossina morsitans morsitans, is host to the parasite, Trypanosoma brucei, a major cause of African trypanosomiasis. Precise
[...] Read more.
Tsetse flies are the principal insect vectors of African trypanosomes—sleeping sickness in humans and Nagana in cattle. One of the tsetse fly species, Glossina morsitans morsitans, is host to the parasite, Trypanosoma brucei, a major cause of African trypanosomiasis. Precise details of the life cycle have yet to be established, but the parasite life cycle involves crossing the insect peritrophic matrix (PM). The PM consists of the polysaccharide chitin, several hundred proteins, and both glycosamino- and galactosaminoglycan (GAG) polysaccharides. Owing to the technical challenges of detecting small amounts of GAG polysaccharides, their conclusive identification and composition have not been possible until now. Following removal of PMs from the insects and the application of heparinases (bacterial lyase enzymes that are specific for heparan sulphate (HS) GAG polysaccharides), dot blots with a HS-specific antibody showed heparan sulphate proteoglycans (HSPGs) to be present, consistent with Glossina morsitans morsitans genome analysis, as well as the likely expression of the HSPGs syndecan and perlecan. Exhaustive HS digestion with heparinases, fluorescent labeling of the resulting disaccharides with BODIPY fluorophore, and separation by strong anion exchange chromatography then demonstrated the presence of HS for the first time and provided the disaccharide composition. There were no significant differences in the type of disaccharide species present between genders or between ages (24 vs. 48 h post emergence), although the HS from female flies was more heavily sulphated overall. Significant differences, which may relate to differences in infection between genders or ages, were evident, however, in overall levels of 2-O-sulphation between sexes and, for females, between 24 and 48 h post-emergence, implying a change in expression or activity for the 2-O-sulphotransferase enzyme. The presence of significant quantities of disaccharides containing the monosaccharide GlcNAc6S contrasts with previous findings in Drosophila melanogaster and suggests subtle differences in HS fine structure between species of the Diptera. Full article
Figures

Figure 1

Open AccessFeature PaperReview The Cooperative Functions of the EBNA3 Proteins Are Central to EBV Persistence and Latency
Received: 30 January 2018 / Revised: 26 February 2018 / Accepted: 7 March 2018 / Published: 17 March 2018
PDF Full-text (2333 KB) | HTML Full-text | XML Full-text
Abstract
The Epstein–Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein–Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in
[...] Read more.
The Epstein–Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein–Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in vitro B cell transformation and EBV persistence in vivo. Despite structural and sequence similarities, and evidence of substantial cooperative activity between the EBNA3 proteins, they perform quite different, often opposing functions. Both EBNA3A and EBNA3C are involved in the repression of important tumour suppressive pathways and are considered oncogenic. In contrast, EBNA3B exhibits tumour suppressive functions. This review focuses on how the EBNA3 proteins achieve the delicate balance required to support EBV persistence and latency, with emphasis on the contribution of the Allday laboratory to the field of EBNA3 biology. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Figures

Figure 1

Open AccessReview Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection
Received: 29 January 2018 / Revised: 12 March 2018 / Accepted: 13 March 2018 / Published: 16 March 2018
PDF Full-text (3090 KB) | HTML Full-text | XML Full-text
Abstract
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very
[...] Read more.
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very early stages of infection the virus relies on the outcome of interactions between virion components, cell surface receptors and host signalling pathways to promote an environment that supports infection. In the context of latent infection—where the virus establishes an infection in an absence of many gene products specific for lytic infection—these initial interactions are crucial events. In this review, we will discuss key host responses triggered by viral infection and how, in turn, the virus ameliorates the impact on the establishment of non-lytic infections of cells. We will focus on strategies to evade intrinsic antiviral and innate immune responses and consider their impact on viral infection. Finally, we will consider the hypothesis that the very early events upon viral infection are important for dictating the outcome of infection and consider the possibility that events that occur during entry into non-permissive cells are unique and thus contribute to the establishment of latency. Full article
(This article belongs to the Special Issue Cytomegalovirus Infection)
Figures

Figure 1

Open AccessReview Control of Bovine Viral Diarrhea
Received: 7 February 2018 / Revised: 6 March 2018 / Accepted: 6 March 2018 / Published: 8 March 2018
Cited by 2 | PDF Full-text (211 KB) | HTML Full-text | XML Full-text
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious diseases of cattle with respect to animal health and economic impact. Its stealthy nature, prolonged transient infections, and the presence of persistently infected (PI) animals as efficient reservoirs were responsible for its
[...] Read more.
Bovine viral diarrhea (BVD) is one of the most important infectious diseases of cattle with respect to animal health and economic impact. Its stealthy nature, prolonged transient infections, and the presence of persistently infected (PI) animals as efficient reservoirs were responsible for its ubiquitous presence in cattle populations worldwide. Whereas it was initially thought that the infection was impossible to control, effective systematic control strategies have emerged over the last 25 years. The common denominators of all successful control programs were systematic control, removal of PI animals, movement controls for infected herds, strict biosecurity, and surveillance. Scandinavian countries, Austria, and Switzerland successfully implemented these control programs without using vaccination. Vaccination as an optional and additional control tool was used by e.g., Germany, Belgium, Ireland, and Scotland. The economic benefits of BVD control programs had been assessed in different studies. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea virus)
Open AccessFeature PaperReview EBV-Positive Lymphoproliferations of B- T- and NK-Cell Derivation in Non-Immunocompromised Hosts
Received: 4 February 2018 / Revised: 27 February 2018 / Accepted: 5 March 2018 / Published: 7 March 2018
PDF Full-text (13782 KB) | HTML Full-text | XML Full-text
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders
[...] Read more.
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Figures

Figure 1

Open AccessFeature PaperReview Pharmacological Agents Targeting the Cellular Prion Protein
Received: 8 February 2018 / Revised: 1 March 2018 / Accepted: 2 March 2018 / Published: 7 March 2018
PDF Full-text (918 KB) | HTML Full-text | XML Full-text
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates
[...] Read more.
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class. Full article
(This article belongs to the Special Issue PrPSc prions: state of the art)
Figures

Figure 1a

Open AccessFeature PaperArticle Soluble CD14 as a Diagnostic Biomarker for Smear-Negative HIV-Associated Tuberculosis
Received: 25 January 2018 / Revised: 20 February 2018 / Accepted: 21 February 2018 / Published: 27 February 2018
PDF Full-text (1136 KB) | HTML Full-text | XML Full-text
Abstract
Sputum smear-negative HIV-associated active tuberculosis (TB) is challenging to diagnose. CD14 is a pattern recognition receptor that is known to mediate monocyte activation. Prior studies have shown increased levels of soluble CD14 (sCD14) as a potential biomarker for TB, but little is known
[...] Read more.
Sputum smear-negative HIV-associated active tuberculosis (TB) is challenging to diagnose. CD14 is a pattern recognition receptor that is known to mediate monocyte activation. Prior studies have shown increased levels of soluble CD14 (sCD14) as a potential biomarker for TB, but little is known about its value in detecting smear-negative HIV-associated TB. We optimized a sandwich ELISA for the detection of sCD14, and tested sera from 56 smear-negative South African (39 culture-positive and 17 culture-negative) HIV-infected pulmonary TB patients and 24 South African and 43 US (21 positive and 22 negative for tuberculin skin test, respectively) HIV-infected controls. SCD14 concentrations were significantly elevated in smear-negative HIV-associated TB compared with the HIV-infected controls (p < 0.0001), who had similar concentrations, irrespective of the country of origin or the presence or absence of latent M. tuberculosis infection (p = 0.19). The culture-confirmed TB group had a median sCD14 level of 2199 ng/mL (interquartile range 1927–2719 ng/mL), versus 1148 ng/mL (interquartile range 1053–1412 ng/mL) for the South African controls. At a specificity of 96%, sCD14 had a sensitivity of 95% for culture-confirmed smear-negative TB. These data indicate that sCD14 could be a highly accurate biomarker for the detection of HIV-associated TB. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Figures

Figure 1

Open AccessFeature PaperOpinion Congenital Toxoplasmosis: A Plea for a Neglected Disease
Received: 22 January 2018 / Revised: 15 February 2018 / Accepted: 17 February 2018 / Published: 23 February 2018
PDF Full-text (204 KB) | HTML Full-text | XML Full-text
Abstract
Maternal infection by Toxoplasma gondii during pregnancy may have serious consequences for the fetus, ranging from miscarriage, central nervous system involvement, retinochoroiditis, or subclinical infection at birth with a risk of late onset of ocular diseases. As infection in pregnant women is usually
[...] Read more.
Maternal infection by Toxoplasma gondii during pregnancy may have serious consequences for the fetus, ranging from miscarriage, central nervous system involvement, retinochoroiditis, or subclinical infection at birth with a risk of late onset of ocular diseases. As infection in pregnant women is usually symptomless, the diagnosis relies only on serological tests. Some countries like France and Austria have organized a regular serological testing of pregnant women, some others have no prenatal program of surveillance. Reasons for these discrepant attitudes are many and debatable. Among them are the efficacy of antenatal treatment and cost-effectiveness of such a program. A significant body of data demonstrated that rapid onset of treatment after maternal infection reduces the risk and severity of fetal infection. Recent cost-effectiveness studies support regular screening. This lack of consensus put both pregnant women and care providers in a difficult situation. Another reason why congenital toxoplasmosis is disregarded in some countries is the lack of precise information about its impact on the population. Precise estimations on the burden of the disease can be achieved by systematic screening that will avoid bias or underreporting of cases and provide a clear view of its outcome. Full article
(This article belongs to the Special Issue Toxoplasma gondii Infection)
Open AccessReview Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery
Received: 11 January 2018 / Revised: 29 January 2018 / Accepted: 31 January 2018 / Published: 23 February 2018
Cited by 1 | PDF Full-text (15400 KB) | HTML Full-text | XML Full-text
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable
[...] Read more.
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Figures

Figure 1

Open AccessFeature PaperArticle Species C Rotaviruses in Children with Diarrhea in India, 2010–2013: A Potentially Neglected Cause of Acute Gastroenteritis
Received: 24 November 2017 / Revised: 10 February 2018 / Accepted: 14 February 2018 / Published: 17 February 2018
PDF Full-text (9096 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
All over the world, children and adults are severely affected by acute gastroenteritis, caused by one of the emerging enteric pathogens, rotavirus C (RVC). At present, no extensive surveillance program is running for RVC in India, and its prevalence is largely unknown except
[...] Read more.
All over the world, children and adults are severely affected by acute gastroenteritis, caused by one of the emerging enteric pathogens, rotavirus C (RVC). At present, no extensive surveillance program is running for RVC in India, and its prevalence is largely unknown except cases of local outbreaks. Here, we intended to detect the presence of RVC in diarrheic children visiting or admitted to hospitals in Haldwani (state of Uttarakhand, India), a city located in the foothills of the Himalayas. During 2010–2013, we screened 119 samples for RVC by an RVC VP6 gene-specific RT-PCR. Of these, 38 (31.93%) were found positive, which is higher than the incidence rates reported so far from India. The phylogenetic analysis of the derived nucleotide sequences from one of the human RVC (HuRVC) isolates, designated as HuRVC/H28/2013/India, showed that the study isolate belongs to genotype I2, P2 and E2 for RVC structural genes 6 and 4 (VP6, and VP4) and non-structural gene 4 (NSP4), respectively. Furthermore, the VP6 gene of HuRVC/H28/2013/India shows the highest similarity to a recently-reported human-like porcine RVC (PoRVC/ASM140/2013/India, KT932963) from India suggesting zoonotic transmission. We also report a full-length NSP4 gene sequence of human RVC from India. Under the One-health platforms there is a need to launch combined human and animal RVC surveillance programs for a better understanding of the epidemiology of RVC infections and for implementing control strategies.Reoviridae, possess 11 double-stranded segments of RNA that encode six structural viral proteins (VP1, VP2, VP3, VP4, VP6, VP7) and five/six non-structural proteins (NSP1–NSP5/6) [7]. Based on the antigenic properties of the major inner capsid protein (VP6), RVs are subdivided into eight well-characterized species (A–H) and two putative species viz. I and J [8–10]. Humans and other mammalian species are affected by species A, B, C and H rotaviruses and birds by species D, F and G, and species E has been reported exclusively in pigs [7,8,11–17]. The newly-proposed species I is reported in dogs [18] and cats [19], whereas species J is found in bats [10]. Full article
(This article belongs to the Special Issue Rotavirus Epidemiology: Host, Climate and Vaccine Influences)
Figures

Figure 1

Open AccessArticle IFN-Gamma-Dependent and Independent Mechanisms of CD4+ Memory T Cell-Mediated Protection from Listeria Infection
Received: 3 January 2018 / Revised: 29 January 2018 / Accepted: 11 February 2018 / Published: 13 February 2018
PDF Full-text (2657 KB) | HTML Full-text | XML Full-text
Abstract
While CD8+ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4+ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely
[...] Read more.
While CD8+ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4+ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP61–80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4+ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4+ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4+ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4+ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4+ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role. Full article
(This article belongs to the Special Issue Listeria monocytogenes and Its Interactions with the Host)
Figures

Figure 1

Open AccessArticle Microbiological Values of Rainwater Harvested in Adelaide
Received: 12 December 2017 / Revised: 23 January 2018 / Accepted: 4 February 2018 / Published: 8 February 2018
PDF Full-text (751 KB) | HTML Full-text | XML Full-text
Abstract
In Australia, rainwater is an important source of water for many households. Unlike municipal water, rainwater is often consumed untreated. This study investigated the potential contamination of rainwater by microorganisms. Samples from 53 rainwater tanks across the Adelaide region were collected and tested
[...] Read more.
In Australia, rainwater is an important source of water for many households. Unlike municipal water, rainwater is often consumed untreated. This study investigated the potential contamination of rainwater by microorganisms. Samples from 53 rainwater tanks across the Adelaide region were collected and tested using Colilert™ IDEXX Quanti-Tray*/2000. Twenty-eight out of the 53 tanks (53%) contained Escherichia coli. Samples collected from ten tanks contained E. coli at concentrations exceeding the limit of 150 MPN/100 mL for recreational water quality. A decline in E. coli was observed in samples collected after prolonged dry periods. Rainwater microbiological values depended on the harvesting environment conditions. A relationship was found between mounted TV antenna on rooftops and hanging canopies; and E. coli abundance. Conversely, there was no relationship between seasonality and E. coli or roof and tank structure materials and E. coli. In several tanks used for drinking water, samples collected prior to and after filtration showed that the filtration systems were not always successful at completely removing E. coli. These results differed from a study undertaken in the laboratory that found that a commercially available in-bench 0.45 µm filter cartridge successfully reduced E. coli in rainwater to 0 MPN/100 mL. After running a total of 265 L of rainwater which contained high levels of E. coli through the filter (half of the advertised filter lifespan), the filter cartridge became blocked, although E. coli remained undetected in filtered water. The difference between the laboratory study and field samples could be due to improper maintenance or installation of filters or recontamination of the faucet after filtration. The presence of E. coli in water that is currently used for drinking poses a potential health concern and indicates the potential for contamination with other waterborne pathogens. Full article
Figures

Figure 1

Open AccessFeature PaperReview The Structure of PrPSc Prions
Received: 22 January 2018 / Revised: 31 January 2018 / Accepted: 3 February 2018 / Published: 7 February 2018
Cited by 4 | PDF Full-text (3347 KB) | HTML Full-text | XML Full-text
Abstract
PrPSc (scrapie isoform of the prion protein) prions are the infectious agent behind diseases such as Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (deer, elk, moose, and reindeer), as well as goat and sheep scrapie.
[...] Read more.
PrPSc (scrapie isoform of the prion protein) prions are the infectious agent behind diseases such as Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (deer, elk, moose, and reindeer), as well as goat and sheep scrapie. PrPSc is an alternatively folded variant of the cellular prion protein, PrPC, which is a regular, GPI-anchored protein that is present on the cell surface of neurons and other cell types. While the structure of PrPC is well studied, the structure of PrPSc resisted high-resolution determination due to its general insolubility and propensity to aggregate. Cryo-electron microscopy, X-ray fiber diffraction, and a variety of other approaches defined the structure of PrPSc as a four-rung β-solenoid. A high-resolution structure of PrPSc still remains to be solved, but the four-rung β-solenoid architecture provides a molecular framework for the autocatalytic propagation mechanism that gives rise to the alternative conformation of PrPSc. Here, we summarize the current knowledge regarding the structure of PrPSc and speculate about the molecular conversion mechanisms that leads from PrPC to PrPSc. Full article
(This article belongs to the Special Issue PrPSc prions: state of the art)
Figures

Figure 1

Open AccessReview Pathogenesis and Animal Models of Post-Primary (Bronchogenic) Tuberculosis, A Review
Received: 13 December 2017 / Revised: 31 January 2018 / Accepted: 1 February 2018 / Published: 6 February 2018
PDF Full-text (5359 KB) | HTML Full-text | XML Full-text
Abstract
Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent
[...] Read more.
Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent systemic infection. Post-primary, also known as bronchogenic, TB begins in humans as asymptomatic bronchial spread of obstructive lobular pneumonia, not as expanding granulomas. Most lesions regress spontaneously. However, some undergo caseation necrosis that is coughed out through the necrotic bronchi to form cavities. Caseous pneumonia that is not expelled through the bronchi is retained to become the focus of fibrocaseous disease. No animal reproduces this entire process. However, it appears that many mammals utilize similar mechanisms, but fail to coordinate them as do humans. Understanding this makes it possible to use human tuberculous lung sections to guide manipulation of animals to produce models of particular human lesions. For example, slowly progressive and reactivation TB in mice resemble developing human bronchogenic TB. Similarly, bronchogenic TB and cavities resembling those in humans can be induced by bronchial infection of sensitized rabbits. Granulomas in guinea pigs have characteristics of both primary and post primary TB. Mice can be induced to produce a spectrum of human like caseating granulomas. There is evidence that primates can develop bronchogenic TB. We are optimistic that such models developed by coordinated study of human and animal tissues can be used with modern technologies to finally address long-standing questions about host/parasite relationships in TB, and support development of targeted therapeutics and vaccines. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Figures

Figure 1

Open AccessFeature PaperArticle The Listeria monocytogenes Key Virulence Determinants hly and prfA are involved in Biofilm Formation and Aggregation but not Colonization of Fresh Produce
Received: 21 December 2017 / Revised: 22 January 2018 / Accepted: 27 January 2018 / Published: 1 February 2018
PDF Full-text (1755 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Listeria monocytogenes has been extensively studied as a model facultative intracellular pathogen. While the roles of major virulence factors in host-pathogen interactions have been extensively characterized, recent work suggests that some of these factors can also contribute to environmental proliferation of this pathogen.
[...] Read more.
Listeria monocytogenes has been extensively studied as a model facultative intracellular pathogen. While the roles of major virulence factors in host-pathogen interactions have been extensively characterized, recent work suggests that some of these factors can also contribute to environmental proliferation of this pathogen. In this study, we characterized two non-hemolytic transposon mutants of strain 2011L-2858 (serotype 1/2b), implicated in the 2011 listeriosis outbreak via whole cantaloupe, for their capacity to form biofilms on polystyrene, aggregate, and colonize cantaloupe rind. One mutant harbored a single mariner-based transposon insertion in hly, encoding the hemolysin Listeriolysin O, while the other harbored a single insertion in prfA, encoding PrfA, a master regulator for hly and numerous other virulence genes. Biofilm formation was significantly reduced in the prfA mutant, and to a lesser extent, in the hly mutant. Inactivation of either hly or prfA significantly reduced L. monocytogenes aggregation. However, both mutants adhered similarly to the wildtype parental strain on cantaloupe rind at either 25 or 37°C. Furthermore, growth and competitive fitness of the mutants on cantaloupe rind was not significantly impacted at either temperature. The findings suggest that, in spite of their involvement in biofilm formation and aggregation, these key virulence determinants may not be required for the ability of L. monocytogenes to colonize fresh produce. Full article
(This article belongs to the Special Issue Listeria monocytogenes and Its Interactions with the Host)
Figures

Figure 1

Back to Top