Supplementary material

Table S1. Bacterial adhesion to A549 lung alveolar monolayers and coefficients of determination r^2 of the calibration curves obtained for all rhodococci tested. The adhesion percentage was calculated as ratio between fluorescence of adherent bacteria and fluorescence of bacteria inoculated (1x10⁷ bacterial cells).

Bacteria	Adherence (mean % ± S.D.)	r ²	Bacteria	Adherence (mean % ± S.D.)	r ²	
Re1	2.5 ± 1.2	0.9955 – 0.9998	Re21	2.5 ± 0.7	0.9992 - 0.9993	
Re2	2.2 ± 0.9	0.9825 – 0.9994	Re22	2.1 ± 0.4	0.9992 – 0.9994	
Re3	2.0 ± 0.9	0.997 – 0.9999	Re23	1.5 ± 0.3	0.9962 - 0.9992	
Re4	2.3 ± 1.4	0.9979 – 0.9998	Re24	1.9 ± 0.6	0.9963 – 0.9998	
Re5	1.8 ± 0.5	0.9985 – 0.9997	Re25	2.3 ± 0.7	0.9953 - 0.9981	
Re6	2.3 ± 0.9	0.9947 – 0.9997	Re26	2.0 ± 1.0	0.997 – 0.9989	
Re7	2.7 ± 1.6	0.9979 – 0.9999	Re27	2.1 ± 0.5	0.9911 – 0.9998	
Re8	1.8 ± 0.8	0.9988 – 0.9997	Re28	2.7 ± 2.5	0.9948 – 0.999	
Re9	2.7 ± 1.4	0.9995	Re29	2.6 ± 2.0	0.9798 – 0.9993	
Re10	3.3 ± 1.7	0.9961 - 0.9994	Re30	5.0 ± 1.5	0.998 – 0.9998	
Re11	1.8 ± 0.5	0.9978 – 0.9993	Re31	4.9 ± 1.5	0.9988 – 0.9997	
Re12	1.8 ± 0.2	0.9992 – 0.9997	Re32	5.0 ± 1.3	0.9997 – 0.9999	
Re13	1.5 ± 0.5	0.9917 – 0.9996	Re33	4.7 ± 1.0	0.9993 – 0.9994	
Re14	2.7 ± 1.4	0.98 – 0.9997	Re34	4.7 ± 1.5	0.9996 - 0.9998	
Re15	2.0 ± 0.3	0.9941 – 0.9995	Re35	4.7 ± 1.4	0.9986 - 0.9998	
Re16	2.3 ± 0.5	0.9977 – 0.9999	Re36	4.5 ± 1.8	0.9984 - 0.9996	
Re17	2.4 ± 0.9	0.9984 – 0.9993	Re37	4.3 ± 2.2	0.9995 – 0.9996	
Re18	2.2 ± 1.0	0.9987 – 0.9997	Re38	4.4 ± 1.3	0.9996 - 0.9998	
Re19	1.7 ± 0.3	0.9937 – 0.9989	Re39	4.8 ± 0.9	0.9986 - 0.9994	
Re20	1.7 ± 0.8	0.9992 – 0.9996	33701	2.6 ± 1.0	0.9993 – 0.9997	

Table S2. Percentage biofilm residual mass after 24, 48 and 72 h dissolving treatment with the minimum inhibitory concentration (MIC) and 10xMIC of azithromycin (AZM), rifampicin (RIF) and AZM/RIF combination at a ratio of 2:1. AZM and RIF were tested alone also at the MIC value acquired in combination (MIC_{in combination}). Post-hoc ANOVA was applied for comparing the treatment groups at 95% significance level. P < 0.05 * vs Untreated, ^a vs AZM MIC, ^b vs AZM 10xMIC, ^c vs AZM MIC, ^b vs AZM 10xMIC_{in combination}, ^d vs AZM 10xMIC_{in combination}, ^e vs RIF MIC, ^f vs RIF 10xMIC, ^g vs RIF MIC, ^f vs RIF 10xMIC, ^g vs RIF

	Time (h)	Re1	Re9	Re4	Re19	Re24	33701
	24	86.7	95.5	87.2	94.6	83.1	99.1
AZM MIC	48	51.8*	72.2	84.7	78.6	86.7	80.9
	72	54.2*	66.9*	67.7 ^{*g}	75.8	72.7	67.1
	24	72.7	93.7	86.4	86.4	82.4	91.9
AZM 10xMIC	48	49.5 ^{*,g}	69.5	75.6	75.3	75.3	68.2
	72	54.8*	64*	67.6 ^{*,g}	66.8	65.8	52.9*
A 7N/	24	85.4	100	-	95.8	86.7	98.8
	48	72.9	88.5	-	97.5	85.9	87.9
IVIIC in combination	72	75.6	81.6	-	80.7	95.7	78
A 7N/	24	85.8	95.1	-	93.1	83	92.3
	48	55.9*	66.7	-	77.5	83.4	72.7
	72	72.4*	63.5*	-	69.2	68.7	52.6*
	24	93.5	95.8	92.5	98.8	93.4	99.4
RIF MIC	48	71.4	90.9	82.7	84.2	92.2	91.4
	72	81.6	90.9	84.3	84.9	94.4	70.2
	24	78.5	93.4	88.1	85	94	97.8
RIF 10xMIC	48	62.8*	82.2	66.1	75.9	84.4	75.3
	72	59.7*	70.4*	64.5 ^{*,g}	77.9	87	66
DIE	24	95.5	98.1	95.5	95.2	93.6	101.5
	48	83.1	91.7	98.2	84.4	95.6	93.1
WIIC in combination	72	80.7	89.6	95.7 ^{a,b,f, m,n}	84.8	92.8	72.5
DIE	24	83.2	94.9	97.7	87.9	93.7	96.8
	48	70.5	85.2	97.9	82.5	84.7	74.7
	72	76.8	76.4	95.1	85	84.9	66
	24	87.4	100	90.6	88.3	89	101
AZM/RIF 2:1 MIC	48	70.8	73,5	75.3	76.2	86.7	75.7
	72	65.1*	77.9	60.1 ^{*,g}	80.2	86.3	50.2*
	24	78	86.5	87.5	89	80	89.8
AZM/RIF 2:1 10xMIC	48	54.5*	66.7	76.7	70	71.1	75
	72	63.6*	62.7*	60.1 ^{*,g}	58.1*	69.6	50.3*