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Abstract: The Feline coronavirus (FCoV) can cause a fatal disease, the Feline Infectious Peritonitis.
Persistent shedders represent the most important source of infection. The role of the host in FCoV
fecal shedding is unknown. The objective of this study was to develop gene markers and to test their
associations with FCoV shedding patterns. Fecal samples were taken from 57 cats of 12 breeds on
the day 0 and after 2, 4 and 12 months. Variation from persistent and/or high-intensity shedding
to no shedding was observed. Thirteen immunity-related genes were selected as functional and
positional/functional candidates. Positional candidates were selected in a candidate region detected
by a GWAS analysis. Tens to hundreds of single nucleotide polymorphisms (SNPs) per gene were
identified using next generation sequencing. Associations with different phenotypes were assessed by
chi-square and Fisher’s exact tests. SNPs of one functional and one positional candidate (NCR1 and
SLX4IP, respectively) and haplotypes of four genes (SNX5, NCR2, SLX4IP, NCR1) were associated
with FCoV shedding at pcorected < 0.01. Highly significant associations were observed for extreme
phenotypes (persistent/high-intensity shedders and non-shedders) suggesting that there are two
major phenotypes associated with different genotypes, highly susceptible cats permanently shedding
high amounts of viral particles and resistant non-shedders.

Keywords: feline enteric coronavirus; fecal shedding patterns; polymerase-chain reaction; genetic
susceptibility; immunity-related candidate genes; association study

1. Introduction

The Feline coronavirus (FCoV) is ubiquitous in feline populations worldwide, and despite being
first described in 1963 [1], it remains one of the most poorly understood feline viruses. The virus belongs
to the order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae, and genus Alphacoronavirus
1. Two primary forms (biotypes) of FCoV are recognized: the avirulent enteric form (Feline Enteric
Coronavirus (FECV)) and the virulent form (Feline Infectious Peritonitis Virus (FIPV)) causing a
fatal clinical disease, feline infectious peritonitis (FIP). Infection with FCoV is a major problem in
multiple-cat households and, to a lesser extent, in free-roaming cats. The virus is endemic especially
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in multi-cat environments, where many cats are kept together in a small space, such as catteries and
shelters. Infection with FCoV is common in domestic cats, with up to 90% of cats within multi-cat
households being seropositive [2]. The majority of FCoV infections are asymptomatic or are associated
with mild intestinal disease; however, approximately 1–5% of infected cats develop FIP [3,4], which is
characterized by the development of a variable combination of pyogranulomatous polyserositis,
vasculitis and granulomatous lesions in organs, and an extremely high mortality rate [5,6].

The FECV infection is spread mostly by the orofecal route [7,8], while other modes of transmission
are rather rare [4,9]. Fecal shedding of the virus usually begins within one week of exposure [10].
The primary stage of infection after exposure to FCoV can last from 7 to 18 months. During this
period, the highest levels of viral shedding are observed [8]. In naturally infected cats, the initial
shedding levels decrease over two years [11]. Cats may shed FECV with low, moderate or high
frequency. Shedding usually persists for 4 to 6 months, followed by intermittent shedding and eventual
clearance [12]. In some cats, FECV shedding may persist for more than 18 months [8].

The patterns of fecal shedding of FECV may differ between single-cat and multi-cat households [13].
A large proportion of cats in multiple-cat environments undergo cycles of infection and shedding,
recovery, and reinfection, shedding the virus the entire time [7]. More than 80% of cats living in catteries
shed FECV while being clinically asymptomatic [14]. In multi-cat households, persistent (10–15%),
intermittent (70–80%) or self-limiting FECV shedding patterns were observed; about 5% of cats were
identified as non-shedders [15]. Based mostly on unpublished data, Addie et al. [16] recently discussed
the possibility that intermittent FECV shedding may in fact be false negativity due to technical reasons.
It was suggested that identification of long-term carriers requires multiple positive results for at least
eight consecutive months, while a cat could be considered negative with multiple negative results
over a period of 5 months [15]. Persistent shedders can be infected with the same strain of the virus
the whole time, but reinfection after recovery with the same or a different virus strain has also been
reported [11,17].

Asymptomatic persistent shedders represent the most important source of infection. They were
identified as a source of infection for susceptible kittens [4]. Host factors such as age, environmental
stress, concurrent disease and especially various types of immune responses play an important role
in the development of FIP [18]. Genetics represents one of the factors contributing to the observed
variation in the course of coronavirus infections, including the shedding status in humans [19]. In cats,
GWAS candidate regions and several individual candidate genes were observed to be associated with
FIP [20,21]. Much less is known about the role of the host in FECV fecal shedding. Interbreed differences
in the presence of anti-FCoV antibodies in healthy cats have been reported repeatedly [13,22,23].
However, as some of these differences were observed between purebred and crossbred cats from
different environments, it is not clear to what extent they might be due to non-genetic factors, such as
the intensity of close contacts. Addie et al. [17] genotyped the feline Major Histocompatibility Complex
(MHC) FLA class II DRB genes in 25 cats for which fecal shedding status was determined. They found
no statistical association with the MHC genes analyzed.

Studies of the variation in the shedding status of FECV can contribute to the understanding of
its role in the spread of coronavirus infections among domestic cats. Identification of genes involved
in phenotypic variation of complex traits including infections may contribute to the identification of
mechanisms underlying the phenotypes observed [24]. Finally, strong phenotype/genotype associations
may be considered for identification of cats susceptible to massive virus shedding.

In a broader context, the current COVID-19 pandemic raises questions about similarities between
coronaviruses infecting different mammalian species including pets. As non-symptomatic SARS-CoV-2
shedders represent a serious epidemiological threat, mechanisms of coronavirus shedding merit
attention. Cats have been reported to be susceptible to subclinical infection with SARS-CoV-2,
being able to shed the virus through oral and nasal secretions without any clinical signs and to transmit
the virus to other cats by direct contact [25,26]. Considering our so far rather fragmented knowledge
about SARS-CoV-2 infection, it is not clear to what extent human and cat coronaviruses are similar
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or differ. Information retrieved from animal models including cats can be helpful for the current
COVID-19 research [27].

Therefore, the objectives of this study were (i) to determine patterns of one-year fecal shedding of
FECV in a cohort of cats in multi-cat households with different pure breeds, (ii) to define phenotypes
suitable for analyzing the genetic variation underlying the variation in the shedding status, (iii) to
identify and characterize candidate genes and their polymorphic markers potentially associated with
the shedder status and (iv) to test associations between candidate polymorphic markers and FECV
shedding in the cohort analyzed.

2. Results

2.1. Phenotyping: Determination of FECV Shedding Patterns

2.1.1. Shedding Patterns

Based on qPCR detection of FCoV in four samplings, four patterns/phenotypes were identified.

1. Non-shedders (NS): cats with all four samples negative: n = 7. These cats were not detected as
shedders in any qPCR over the period of 12 months.

2. Intermittent shedders (IS): cats with at least one positive and one negative sampling followed
by another positive sampling: n = 15. For these shedders, it was clear that they stopped and
re-started shedding at least once.

3. Shedders with unclear status (US): cats for which the shedding patterns could not be determined
based on four samplings: n = 21. In this category of shedders, the first or the fourth
samples was negative, combined with uninterrupted shedding in one, two or three consecutive
samples. This category thus may include potential intermittent shedders, persistent shedders
and self-limiting cats, which stopped shedding. Based on the four samples analyzed, it was not
possible to predict which pattern would be observed in the future.

4. Persistent shedders (PS): cats with all four samples positive (n = 14). These cats were detected as
shedders of the virus over the whole experiment.

2.1.2. Intensity of Shedding

Based on the total numbers of virus particles detected in each cat over the period of 12 months,
five non-overlapping semi-quantitative categories were identified and considered as phenotypes
for association analyses. Real values observed within each phenotype document the differences
between them.

1. Non-shedders (NS): no virus detected by qPCR (n = 7).
2. Very low-intensity shedders (VLS): 1–1000 virus particles (n = 4). Real values within this

category: 370–620.
3. Low-intensity shedders (LS): 1000–4999 virus particles (n = 11). Real values within this

category: 1180–4600.
4. Medium-intensity shedders (MS): 5000–99,999 virus particles (n = 24). Real values within this

category: 10,000–87,440.
5. High-intensity shedders (HS): more than 100,000 virus particles (n = 11). Real values within this

category: 105,480–2,177,500.

No difference in the intensity of shedding was observed between males and females as assessed
by the Mann–Whitney test (p > 0.05).
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2.2. Candidate Genes and Their Molecular Markers

Numbers and other characteristics of SNPs found by next generation sequencing in all candidate
genes are in Table 1. More detailed information about SNPs is available in the Mendeley repository
https://data.mendeley.com/datasets/cxx68cw77c/draft?a=ac846404-9385-424e-890f-62484981eb64.

Table 1. Numbers of single nucleotide polymorphisms with Minor Allele Frequencies (MAFs) higher
than 0.1 used for association analyses.

Gene
SNPs Indels

Total Exonic Non-Synonymous Total

IFNB1 14 1 0 2
IFNL1 14 5 1 0
IFNLR 39 6 2 0
NCR1 29 4 1 6
NCR2 107 8 7 15
NCR3 7 0 0 2
DRA 3 3 0 0
DRB 47 47 37 4

SNX5 12 1 0 2
SLX4IP 3 0 0 1
PAK5 10 0 0 0

PCSK2 42 3 0 1
LAMP5 11 0 0 0

A list of haplotypes undoubtedly identified based on NGS data is in Supplementary Table S3.
MAFs and heterozygosities calculated for the study cohort and their comparisons with population

characteristics of stray cats are in Supplementary Materials Table S1. The data showed that the variation
of the multi-breed cohort was to some extent different from the stray cat group in terms of MAFs as
well as for heterozygosity estimates. However, for 19 out of the 21 (90.5 %) most significant SNPs
associated with FECV shedding, neither MAFs nor heterozygosities were different between these two
groups (Supplementary Materials Table S1).

2.3. Association Analyses

Out of the 13 candidate genes analyzed for associations by Chi-square and Fisher’s exact tests with
Bonferroni corrections, nine genes (NCR1, NCR2, NCR3, IFNB1, MHC-DRA, MHC-DRB, SNX5, SLX4IP,
PCSK2) showed associations of single SNPs or their haplotypes with the persistency or intensity of
FECV shedding at puncorrected < 0.01 (Table 2, Supplementary Table S4).

Table 2. Numbers of single nucleotide polymorphisms (SNPs) associated with Feline Enteric
Coronavirus (FECV) shedding at puncorrected < 0.01.

Gene
SNPs Associated at p < 0.01

Shedding Pattern Shedding Intensity Shared

IFNB1 0 1 0
IFNL1 0 0 0
IFNLR 0 0 0
NCR1 0 7 0
NCR2 9 3 0
NCR3 1 0 0
DRA 1 1 0
DRB 2 1 1

SNX5 11 0 0
SLX4IP 3 3 3
PAK5 0 0 0

PCSK2 1 2 1
LAMP5 0 0 0

https://data.mendeley.com/datasets/cxx68cw77c/draft?a=ac846404-9385-424e-890f-62484981eb64
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Markers of three of these genes (DRB, PCSK2 and SLX4IP) were associated with both kinds of
phenotypes (Table 2). Markers selected for further analyses and the corresponding associations which
remained significant after Bonferroni corrections are in Table 3 and Supplementary Table S5.

Table 3. Selected markers associated with different phenotypes at puncorrected < 0.01. Compared
phenotype combinations are distinguished by numbers *.

Gene Shedding Pattern
(Polymorphisms/Haplotypes)

Shedding Intensity
(Polymorphisms/Haplotypes)

Shared
(Polymorphisms/

Haplotypes)

Phenotypes
Compared 1 2 3 4 5 6 7 8 9 10 11 12

IFNB1 3/0
NCR1 1/0 1/0 5/1 11/4 9/3 5/1
NCR2 4/1 2/1 13/5 2/1 6/3 3/0 3/1 2/1 20/8 2/1 16/6 3/0 5/0
NCR3 1/0
DRA 1/0 1/0 1/1 1/0 1/1
DRB 1/0 2/0 1/0 1/0 1/0 1/0

SNX5 13/5 8/4 8/4
SLX4IP 3/1 3/1 1/0 2/1 3/1 2/0 1/1 3/1
PCSK2 1/0 2/0 1/0 2/1

1—NS vs. PS 7—NS vs. HS
2—NS vs. IS 8—NS + VLS vs. HS
3—PS vs. IS 9—NS + VLS + LS vs. HS

4—NS vs. IS + US 10—NS + VLS + LS vs. MS + HS
5—PS vs. IS + US 11—NS + VLS + LS + MS vs. HS

6—NS vs. other phenotypes 12—NS vs. other phenotypes

* The same SNP may be involved in several comparisons.

For the most significant associations analyzed in detail, markers of all seven genes associated
with shedding intensity were associated with high intensity of shedding (HS) when compared to
other phenotypes; a marker of the MHC-DRB gene was associated with no shedding (NS) (Table 3).
All associations with shedding patterns concerned the non-shedder (NS) or persistent shedder (PS)
phenotypes in comparison with other phenotypes or their combinations (Table 3).

Out of the nine most significant associations, eight concerned three SNPs within the SLX4IP gene.
Among them, six involved the PS phenotype, and two associations involved the HS phenotype, both of
them in comparison with various other phenotypes or combinations thereof. The one highly significant
association observed for the NCR1 gene also involved HS in comparison with a combination of other
phenotypes (Table 4). A summary of SNP markers significantly associated at pcorrected < 0.01 with
particular phenotypes is in Table 4. The most significant associations were observed for genes NCR1
and SLX4IP, at p < 0.005 and 0.001, respectively. Six out of nine loci associated with FECV shedding
were in Hardy–Weinberg equilibrium (Supplementary Table S5).

A summary of haplotypes significantly associated at pcorrected < 0.01 with particular phenotypes
is in Table 5. Out of 14 haplotypes of four genes associated with FECV shedding at pcorrected < 0.01,
nine involved persistent shedders (PS), five of them in comparisons with non-shedders. The remaining
five haplotypes were associated with the high intensity of shedding (HS) phenotype compared to
various combinations of other phenotypes (Table 5).
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Table 4. SNPs with the most significant associations with FECV shedding.

GENE SLX4IP NCR1

Position within the gene 174,768 ** 3093
p (uncorrected/corrected) 0.00065 0.0026 0.000067 0.0023

Comparison PS vs. IS * NS + VLS + LS vs. HS

Position within the gene 175,354
p (uncorrected/corrected) 0.00013 0.00054

Comparison PS vs. IS

Position within the gene 175,575 **
p (uncorrected/corrected) 0.00013 0.00054

Comparison PS vs. IS

Position within the gene 174,768 **
p (uncorrected/corrected) 0.0018 0.0072

Comparison PS vs. IS + US

Position within the gene 175,354
p (uncorrected/corrected) 0.0019 0.0074

Comparison PS vs. IS + US

Position within the gene 175,575 **
p (uncorrected/corrected) 0.00087 0.0035

Comparison PS vs. IS + US

Position within the gene 175,354
p (uncorrected/corrected) 0.0016 0.0065

Comparison NS + VLS + LS vs. HS

Position within the gene 175,354
p (uncorrected/corrected) 0.0014 0.0056

Comparison NS + VLS + LS + MS vs. HS

* Shedding patterns. NS (Non-shedders): all four samples negative; PS (Persistent shedders): all four samples
positive; IS (Intermittent shedders): at least one positive and one negative sampling followed by another positive
sampling; US (Shedders with unclear status): shedding patterns could not be determined based on four samplings.
Intensity of shedding. NS (Non-shedders): no virus detected; VLS (Very low-intensity shedders): 1–1000 virus
particles; LS (Low-intensity shedders): 1000–4999 virus particles; MS (Medium-intensity shedders): 5000–99,999
virus particles; HS (High-intensity shedders): More than 100,000 virus particles. ** Loci out of HWE.

Composed SNP genotypes were associated with both kinds of phenotypes and showed synergies
especially between the NCR1 and NCR2 genes, as well as strong associations of physically linked genes
(Tables 6 and 7).

Out of the four composed intragenic genotypes with the most significant phenotype associations,
two associations involved the HS phenotype, one concerned the PS phenotype, and one concerned no
shedding (NS); in each case the above-mentioned phenotypes were compared to combinations of other
phenotypes. In two of these cases, NS was part of a group of merged no or low shedder phenotypes
(Table 6) compared to combinations of other phenotypes.

Two-gene genotypic combinations of functionally related NCR1, NCR2 and NCR3 markers
and of physically linked GWAS positional markers were strongly associated with different shedder
phenotypes at p values ranging from 0.008 to 0.00004 (Table 7, Supplementary Table S6). Out of
6 composed intergenic genotypes presented in Table 7, three involving positional markers were
associated with persistent shedding, while three involving the NCR 1 and 2 genes were associated
with the HS phenotype.

The results showed that polymorphic markers located within a candidate genomic region of
chromosome A3 associated with FIP in a previous GWAS [21] were associated with fecal shedding of
FECV. As for functional candidates, genes underlying innate immunity mechanisms, in particular the
function of NK cells, were significantly associated with the phenotypes studied.

A complete list of alleles/genotypes associated with susceptibility to persistent/high-intensity
shedding is in Supplementary Table S7.
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Table 5. Haplotypes with the most significant associations (p < 0.01) with FECV shedding.

GENE SNX5 NCR2 SLX4IP NCR1

Haplotype SNX5-D NCR2-M SLX4IP-A NCR1-D
SNP positions 15,736; 15,859 3030; 3227 1354; 1575 3093; 3248

p 0.0054 0.0059 0.0019 0.000067
Comparison NS vs. PS * NS + VLS + LS vs. HS PS vs. IS + US NS + VLS + LS vs. HS

Haplotype SNX5-A NCR2-A SLX4IP-A
SNP positions 16,219; 16,348 3031; 3227 1354; 1575

p 0.0054 0.0058 0.00013
Comparison NS vs. PS PS vs. IS PS vs. IS

Haplotype SNX5-B NCR2-S SLX4IP-A
SNP positions 16,988; 17,053; 17,057 3775; 3827 1354; 1575

p 0.0054 0.0014 0.0039
Comparison NS vs. PS PS vs. IS NS + VLS + LS vs. HS

Haplotype SNX5-C SLX4IP-A
SNP positions 17,397; 17,429 1354; 1575

p 0.0054 0.0014
Comparison NS vs. PS NS + VLS + LS + MS vs. HS

Haplotype SNX5-E
SNP positions 18,324; 18,563

p 0.0054
Comparison NS vs. PS

Haplotype SNX5-D
SNP positions 15,736; 15,859

p 0.0052
Comparison PS vs. IS + US

* Shedding patterns. NS (Non-shedders): all four samples negative; PS (Persistent shedders): all four samples
positive; IS (Intermittent shedders): at least one positive and one negative sampling followed by another positive
sampling; US (Shedders with unclear status): shedding patterns could not be determined based on four samplings.
Intensity of shedding. NS (Non-shedders): no virus detected; VLS (Very low-intensity shedders): 1–1000 virus
particles; LS (Low-intensity shedders): 1000–4999 virus particles; MS (Medium-intensity shedders): 5000–99,999
virus particles; HS (High-intensity shedders): More than 100,000 virus particles.

Table 6. Composed intragenic genotypes (IG) with the most significant associations with
FECV shedding.

Genotype Gene SNPs Phenotypes Compared p (vs. Other Genotypes)

IG1 NCR1 2115; 3093 NS + VLS + LS vs. HS * 0.000067
IG2 SLX4IP 174,768; 175,354; 175,575 PS vs. IS 0.00013
IG3 PCSK2 271,166; 271,935 NS + VLS + LS vs. HS 0.0025
IG4 DRB 127; 155 NS vs. IS + US 0.0049

* Shedding patterns. NS (Non-shedders): all four samples negative; PS (Persistent shedders): all four samples
positive; IS (Intermittent shedders): at least one positive and one negative sampling followed by another positive
sampling; US (Shedders with unclear status): shedding patterns could not be determined based on four samplings.
Intensity of shedding. NS (Non-shedders): no virus detected; VLS (Very low-intensity shedders): 1–1000 virus
particles; LS (Low-intensity shedders): 1000–4999 virus particles; MS (Medium-intensity shedders): 5000–99,999
virus particles; HS (High-intensity shedders): More than 100,000 virus particles.

Table 7. Selected composed intergenic genotypes (CG) with the most significant associations with
FECV shedding.

Genotype Gene 1 SNP 1 Gene 2 SNP 2 Phenotypes Compared p

CG1 PCSK2 271,935 SLX4IP 175,575 PS vs. IS + US * 0.000047
CG2 PCSK2 271,935 SNX5 18,563 PS vs. IS + US 0.00025
CG5 SNX5 15,736 SLX4IP 175,575 PS vs. IS 0.000042
CG6 NCR1 3093 NCR2 1030 NS vs. HS 0.0082
CG7 NCR1 3093 NCR2 871 NS + VLS vs. HS 0.00071
CG8 NCR1 3093 NCR2 3030 NS + VLS + LS vs. HS 0.00046

* Shedding patterns. NS (Non-shedders): all four samples negative; PS (Persistent shedders): all four samples
positive; IS (Intermittent shedders): at least one positive and one negative sampling followed by another positive
sampling; US (Shedders with unclear status): shedding patterns could not be determined based on four samplings.
Intensity of shedding. NS (Non-shedders): no virus detected; VLS (Very low-intensity shedders): 1–1000 virus
particles; LS (Low-intensity shedders): 1000–4999 virus particles; MS (Medium-intensity shedders): 5000–99,999
virus particles; HS (High-intensity shedders): More than 100,000 virus particles.
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3. Discussion

The results of association analyses primarily depend on the phenotypes defined. Based on the
parameters of specificity and sensitivity, we are confident that our qPCR assay detected cats shedding
FECV with sufficient accuracy. All cats studied were from multi-cat households with at least two cats in
close contact, sharing the same toilet. Within all groups, at least one cat in each household was shedding
FECV. Therefore, we believe that all cats were exposed to infection. The observed dynamics of shedding
patterns are in agreement with this assumption, although the infection pressure was necessarily not the
same between different catteries. We have observed similar shedding patterns to those identified by
Addie et al. [15] in a similar type of study. In terms of persistency of shedding, different types of shedders
along with non-shedders were observed. For cats with three or fewer consecutive samplings positive
for FECV (37%), it was not possible to determine the shedder status unequivocally, and therefore,
this group was analyzed separately, as a special phenotype. Despite possible methodological variables
during sample preparation and processing, the estimated numbers of virus particles in individual
samples provided by the qPCR allowed us to distinguish non-overlapping groups of cats, which we
analyzed as distinct semi-quantitative phenotypes (Supplementary Table S8).

Significant associations of candidate genes with both persistency and intensity of shedding
were observed. An overall comparison across the two categories of phenotypes showed that a
vast majority of the most significant associations observed for individual SNPs and haplotypes as
well as for intragenic and intergenic composed genotypes involved single extreme phenotypes, i.e.,
persistent shedders (PS) and/or high-intensity shedders (HS), on one hand, and non-shedders (NS),
on the other hand, in comparison with various other phenotypes or their combinations (Tables 3–7).
These single phenotypes often shared alleles/genotypes (individual data are available in the Mendeley
repository). Based on these results, it seems that the candidate genes studied here influence especially
host susceptibility to virus infection expressed by the phenotypes PS and HS, and host resistance
manifested as the NS phenotype. Only rarely were significant associations with the candidate genes
observed for the remaining “intermediate” phenotypes defined as single phenotypes (as opposed to
when merged with other phenotypes). We thus may speculate that the observed variation in shedding
patterns could primarily result from a quantitative variation in the intensity of shedding and that there
are two major phenotypes associated with different genotypes, i.e., resistant non-shedders and highly
susceptible cats permanently shedding high amounts of viral particles. Interestingly, for some SNPs
within the SLX4IP gene, heterozygotes shed fewer virus particles than homozygotes (Supplementary
Table S7), indicating a possible advantage of heterozygosity of the corresponding GWAS candidate
genomic region. Cats of average resistance/susceptibility to FECV infection would then represent a
range of variation between these two extreme phenotypes, influenced not only by the underlying
genetic variation but also by a variety of non-genetic factors, as was observed for infection with FIPV
and for clinical FIP [18]. This assumption is in agreement with the idea of non-existence of intermittent
shedders [16].

Biological interpretations of statistical association studies have several limitations. The cohort
analyzed here is a heterogeneous multi-breed group with two prevailing breeds, Maine Coon and
British Shorthair, and composed of cats of different ages, some of them related. Pure breeds are under
strong pressure of artificial selection and are generally more homozygous than for example crossbred
stray cats (Supplementary Materials Table S1). As such, the group studied is structured, which may
have led to false positive results. However, it proved to be impossible to establish a sufficiently large
group matching exactly the purposes of this experiment. The composition of the group analyzed was
primarily established by breeders willing to participate in such a long-term study. We thus had only
limited chances to control breed, age and other factors important for an ideal statistical design. On the
other hand, a comparison with a group of stray cats, which are supposed to represent a wide range
of intraspecies variation, showed that for associated markers, their minor allele frequencies (MAFs)
were mostly similar in both groups, including the genes involved in the most significant associations.
Nevertheless, we cannot exclude that some of the associations presented here are false positives.
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Although most of the associated markers were primarily in Hardy–Weinberg equilibrium (HWE),
some of them were not. However, these differences in HWE concerned different SNPs within the same
genes; most associated SNPs were in HWE except NCR2 (Supplementary Tables S2 and S3). Although
no significant associations were observed for this gene after corrections, in composed genotypes,
it clearly contributed to associations, increasing the significance of the p values of its respective partners
by one order of magnitude (Table 7, Supplementary Table S6).

We were confronted with a rather complex situation for MHC class II genes, which did not allow us
to analyze associations of DRA-DRB haplotypes. There are at least two DRA loci and several DRB loci
in cats. Non-distinction of different DRB loci, undetermined DRB genotypes, and low numbers of cats
of several different breeds were probably reasons why Addie et al. [17] found no associations of FECV
shedding with MHC. Similarly, our primers proved to amplify two different DRA loci, with one, two,
three or four alleles observed per individual, and we did not succeed in designing DRA locus-specific
primers. On the other hand, we are confident that our DRB primers were locus-specific, with one
or two alleles observed per individual. In this situation, composed MHC DRA/DRB genotypes were
not informative.

Despite all of these limitations, we are confident that it is reasonable to suggest that at least
some of these SNP associations indicate biologically plausible effects of specific genes on the
shedder phenotypes. All of them remained highly significant even after overconservative Bonferroni
corrections, some of them at p values exceeding 0.01 by orders of magnitude. Some of them could be
confirmed on even smaller numbers of cases by a within-breed analysis, reducing some of the biases.
The most significant association (p < 0.0061) was found in the British Shorthair subgroup of cats for
NCR1, where a SNP (#3093) was associated with differences between non-shedders/low shedders and
medium/high shedders (Supplementary Materials Table S2).

Associations observed for composed SNP genotypes showing functional synergies, especially
between the NCR1 and NCR2 genes, as well as strong associations of physically linked genes also
support the hypothesis of their biological plausibility.

This hypothesis is compatible with known biological roles of functional candidates. MHC class I
and II loci were associated with different coronavirus infections and their outcomes in poultry [28].
Associations with MHC loci and mortality in COVID-19 was recently reported [29].

The natural cytotoxicity receptors on NK cells have different functions in important biological
processes, such as virus immunity, cancer immunity and human pregnancy [30]. The product of the
human NCR1 gene (NKp46) was shown to recognize viral hemaglutinins of various virus families,
including influenza, Sendai virus, poxvirus and Newcastle disease virus [31]. NK cells seem to play
important roles in human coronavirus infections of zoonotic origin [32], and they also seem to be
important for FIPV infection of cats [33,34]. Our data suggest that NK cells might be important for
controlling the process of FECV shedding as well.

On the other hand, the positional/functional candidates represented a kind of positive control
of this experiment; the results obtained indicate that they are not false positives. Although they
were selected based on previously reported associations of the chromosome regions, where they are
located, with clinical FIP [21], the positional candidates PCSK2, SNX5 and SLX4IP showed significant
associations with FECV shedder phenotypes as well (Tables 1–5, Supplementary Tables S4 and S5).
Most of these loci were in HWE (Supplementary Tables S4 and S5, information about all SNPs are
in Mendeley repository). Based on their physical positions in the cat genome assembly FelisCatus v.
9.0 [35] and on the p values of their associations with the phenotypes studied, we could tentatively
outline the candidate region on chromosome A3 (Figure 1).
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Figure 1. Candidate genomic region on chromosome A3. Significantly associated genes are in red.
Studied genes showing no association are in bold.

The physiological functions of these primarily positional candidates do not contradict the
hypothesis of their involvement in mechanisms of response to a viral infection. It was shown that the
activation of the SLX4 complex during HIV infection may modify innate immune sensing and interferon
production [36]. SNX5 is involved in macropinocytosis and antigen processing in macrophages [37].
The role of PCSK2 is unclear; it is a serine protease expressed in enterocytes, and coronavirus spike
proteins require cleavage when entering the cell [38].

In summary, we have observed similar patterns of fecal FECV shedding in multi-cat catteries
to those previously reported by other authors. So far, only genes associated with clinical disease
induced by FIPV have been identified, and no information about genes underlying the variation in
FECV shedding has been available. For this purpose, we have developed polymorphic functional
and positional candidate gene markers, and for some of them, we have observed their non-random
distribution amongst different categories of FECV shedders and non-shedders. The majority of highly
significant associations were observed for extreme phenotypes. However, the phenotypes analyzed in
this study are complex, as they are influenced by multiple factors, including re-infections; nonetheless,
differences between high-intensity shedders, persistent shedders and non-shedders compared to
various combinations of other phenotypes were distinct for several markers.

The data presented here contributed to a better characterization of shedders, the most important
source of infection in multi-cat households. Known biological functions of genes associated with
FECV shedding in this study support the hypothesis of the biological plausibility of the selected
functional candidates. The results suggest that innate immunity and especially the role of NK cells
in cat coronavirus infections, not yet studied in this context, merit further attention. Associations of
positional candidate markers, i.e. SNPs located within a genomic region identified by a GWAS as a
candidate for FIPV susceptibility, suggest that at least some of the immune mechanisms involved in
the control of infection with FIPV also operate in the control of FECV shedding, which is a hypothesis
that we are currently testing.

4. Materials and Methods

4.1. Phenotyping: Determination of FECV Shedding Patterns

4.1.1. Study Design

Animals

A total of 57 mostly unrelated purebred cats of 12 breeds living in multi-cat households
(Supplementary Table S9) were included in the study. All owners involved in the study signed
an informed consent document and agreed to all related procedures. Only catteries with at least one
PCR positive cat were included in the study.
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The group was composed of 20 males and 37 females. The median age for this group was
23 months; the mode was 20 months, and the range was from 3 months to 14 years.

Sampling

Four fecal samples were taken by individual owners from each cat between April 2019–May 2020
at day 0 and then after 2, 4 and 12 months. For some individual samplings, the intervals were somewhat
longer/shorter, mostly due to complications related to the COVID-19 restrictions. Feces (200–220 mg)
were collected into 1 mL of the RNA stabilizer in a sterile tube; RNA later® (Sigma Aldrich, St. Louis,
MO, USA) was used for longer preservation of the cat feces samples. Samples were stored in a
refrigerator (4 ◦C) until transported to the clinical laboratory.

A group of 38 stray cats consisting of cats originating from local shelters and castrated and/or
cured at the UPVS Clinic for Small Animals was used for characterizing the population diversity of
candidate gene markers and for comparison with the group of purebred cats. Peripheral blood samples
used for DNA extraction were not collected solely for the purposes of this study but on the occasion of
other veterinary interventions. Blood samples were collected at the clinic by licensed veterinarians in
compliance with all legal, professional and ethical standards.

All procedures were approved by the Ethical committee of the UPVS Brno as part of the project
(Ref. PP-IGA-2019-Horin).

4.1.2. RNA Isolation

Total RNA was extracted from 150 mg of each fecal sample using the NucleoSpin® RNA Stool
(Macherey Nagel, Düren, Germany) commercial extraction kit in accordance with the manufacturer’s
instructions. Total RNA was eluted in 100 µL RNase-free water and stored at −80 ◦C.

4.1.3. Reverse Transcription

RNA (5 µL) was transcribed into cDNA form immediately after RNA isolation by
using the Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland) with
Random oligonucleotides.

4.1.4. Identification of FCoV: Quantitative PCR

Preparation of the Quantitation Standard

One part of the 3′-UTR of FCoV transcribed into cDNA was amplified with the P205/P211 primer
pair GGCAACCCGATGTTTAAAACTGG/CACTAGATCCAGACGTTAGCTC [39] and cloned into
the pCRTM8/GW/TOPO vector. The recombinant vector was transformed into One Shot competent
E. coli Top10 cells (Invitrogen, Waltham, MA, USA). After its replication and purification by Purelink
quick plasmid miniprep kit (Sigma Aldrich, St. Louis, MO, USA), its concentration was determined by
spectrophotometry. Standard concentrations ranging from 107 copies/µL DNA copies to 101/µL copies
of DNA were used for constructing a qPCR calibration curve. The dilution with 105; DNA copies was
included in each qRT-PCR reaction as a standard.

Quantitative PCR

Primers P204 (5′-GCTCTTCCATTGTTGGCTCGTC-3′, antisense) and P276 (5′-CCGAGGAA
TTACTGGTCATCGCG-3′, sense) [39] were used. Both detection and quantification of FCoV RNA were
performed using Xceed qPCR SG 1step 2 ×Mix Lo -ROX (Institute of Applied Biotechnologies, Prague,
Czech Republic) in a total volume of 20 µL in accordance with the manufacturer’s instructions on a Light
Cycler® 480 II (Roche, Basel, Switzerland). Amplification conditions were initial denaturation at 95 ◦C/7
min, followed by 45 cycles consisting of denaturation at 95 ◦C/10 s and primer annealing/extension
at 60 ◦C/30 s. Immediately after the PCR, a melting curve was created by raising the incubation
temperature from 55 to 95 ◦C to confirm the specificity of the products obtained. Samples whose
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melting temperature matched the control Tm (80 ◦C) were considered as positive. For the positive
control, 105 copies of the FCoV plasmid DNA were added. PCR water was used as a negative
control. The specificity and sensitivity of the reactions calculated according to standard protocols
were 1.0 and 0.958, respectively, with the limit of detection set as 102 copies in 1 µL; the predictive
values were 1.0 for a positive result and 0.909 for negative reactions. Based on the calibration curve,
estimates of the numbers of virus particles generated by the Light Cycler were recorded and used for
semi-quantitative phenotyping.

Note: Taking into consideration the specificity of the primers, we used the abbreviation FCoV
in situations where a distinction between the enteric and the virulent form was not a priori obvious,
while FECV was used for the virus detected in feces of healthy cats and FIPV for citations of data
related to clinical FIP.

4.1.5. Determination of Phenotypes for Association Analyses

Two kinds of shedding pattern phenotypes were determined: persistency and intensity of
shedding. Persistency was assessed based individual patterns of shedding observed throughout the
entire experiment. In agreement with previous observations that a cat could be considered negative
with multiple negative results over a period of 5 months and the identification of long-term carriers
requires multiple positive results for at least eight consecutive months [15], we considered cats with all
four samples negative in the qPCR assay over a period of 12 months as non-shedders (NS) and cats with
positive qPCR for all four samples as persistent shedders (PS). Cats with at least one positive and one
negative sampling followed by another positive sampling were considered as intermittent shedders
(IS). For all other cats, in which it was impossible to distinguish between the intermittency of shedding
and other possible patterns based on the four samplings, the shedding status was described as unclear,
and they were considered as a separate phenotype (US). The intensity of shedding was evaluated based
on the total numbers of virus particles estimated in all four fecal samples analyzed. Semi-quantitative
patterns/phenotypes were determined as categories characterized by non-overlapping ranges of the
numbers of virus particles observed within the cohort.

4.2. Candidate Genes and Their Molecular Markers

4.2.1. Selection of Candidate Genes

Thirteen immunity-related genes were selected as functional (IFNB1, IFNL1, IFNLR1, NCR1,
NCR2, NCR3, MHC-DRA, MHC-DRB) and positional/functional (SNX5, SLX4IP, PCSK2, PAK5, LAMP5)
candidates (Supplementary Table S10). The functional candidates were selected based on hypotheses
about their possible biological role in FCoV infection. Since no such analysis has so far been performed
for FECV shedding, the positional candidates were selected from genes located in a candidate region
detected by a previously published GWAS analysis for clinical FIP [21]. The hypothesis tested was that
at least some genes associated with the control of FIPV infection also control FECV shedding.

4.2.2. Bioinformatic Analysis of Candidate Genes

The most recent domestic cat genome assembly (Felis catus, v. 9.0, GenBank accession
GCA_000181335.4) was used for identifying sequences corresponding to selected genes. Based on the
length of the genes and their intron content, the sequences then served for designing primers amplifying
either full length genes or their functionally important parts (Supplementary Tables S11 and S12).

4.2.3. DNA Extraction

Peripheral blood was collected from all cats included in the study. Based on the informed consent
signed by all owners, blood samples were always collected by a licensed veterinarian in agreement with
all legal, professional and ethical standards, mostly at the occasion of vaccination and/or other veterinary
interventions during the one-year study. This approach was approved by the Ethical committee
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of the Veterinary University Brno. DNA was extracted from 200 µL of the EDTA-anticoagulated
blood samples using the NucleoSpin Blood kit (Macherey-Nagel, Düren, Germany) according to the
manufacturer’s instructions.

4.2.4. PCR Amplifications

PCR protocols differed according to individual genes (Supplementary Tables S11 and S13) and
were created in accordance with manufacturers’ manuals. In general, the total reaction volume was
12.5 µL for all master mixes. DRA and DRB genes were amplified twice in independent PCRs.

4.2.5. Next Generation Sequencing

Sequencing was done on the Illumina MiSeq sequencer using a standard flow cell and v. 2500
cycle PE sequencing chemistry (Illumina, San Diego, CA, USA). The Illumina Nextera XT kit was used
for the library preparation following the standard protocol.

4.2.6. Data Analysis and SNP Calling

The quality of raw sequencing data was checked using FastQC (v. 0.11.5) [40]. The raw reads
were preprocessed using Trimmomatic (v. 0.36) [41] with the following settings: (a) very low qualities
(Phred < 3) were removed from both the 5′ and 3′ ends; (b) low quality bases from the 3’ end
were removed using a sliding window approach where we required average the Phred score of four
consecutive bases to be at least 5; (c) reads shorter than 35 bp after the preprocessing were discarded;
(d) unpaired reads were discarded as well. The preprocessed reads longer than 150 bp were mapped
to a reference sequence using BWA MEM (v. 0.7.5a) [42]. Alignments were post-processed using
SAMtools (v1.4). Alignments were discarded if (a) at least one read from a pair was unmapped,
(b) reads were not mapped in a proper pair, (c) secondary alignments were detected, (d) non-primary
alignments were detected or (e) multi-mapped reads were detected. Additional filtering was performed
using NGSUtils/bamutils removeclipping and filter (v. 0.5.9) [43]. Alignments with more than 5%
soft-clipped bases and alignments with more than 10% mismatches (calculated from the mapped read
length) were discarded. An additional post-filtering requirement was a minimal read aligned length of
70 bp. Remaining alignments were indel realigned using the GATK (v. 3.5) [44], and duplicates were
removed using Picard tools (v. 2.1.0) [45]. The resulting alignment quality and statistics were checked
using the Qualimap (v. 2.1.3) [46] and custom R (v3.4.1) scripts.

Single nucleotide variants (both SNPs and Indels) were called using the GATK HaplotypeCaller
(v. 3.5) [47], SAMtools (v. 1.4), and VarScan2 (v. 2.3.9) [48] according to published best practices
recommend by developers of the tools. GATK (v. 3.5) base recalibration was applied during the variant
calls. Raw variants were hard filtered using the recommended filters for each tool. After the variant
calls, an overlap between the tools was created, and high confidence variants were extracted when
there was an overlap of at least 2 tools. The number of bases at each variant site was obtained using
bam-readcount (v. 0.8.0) [49], where only alignments with MAPQ at least 10 and Phred base quality of
at least 15 were counted. The genotype information was extracted directly from the variant calls from
individual tools using VCFtools (v. 0.1.13) [50]. Merged VCF files (VCFtools) were used for the visual
inspection of variants. While the majority of sequences were analyzed using the above-mentioned
pipeline, complex MHC DRB sequences were more difficult to resolve; therefore, SNP sites were
checked and extracted manually for all individuals. Besides individual SNPs identified in the candidate
genes, for groups of closely linked SNPs found in the same NGS reads, haplotypes could be determined.

4.2.7. Population Characteristics of Polymorphic Markers: Stray Cats and the Study Group

For all SNPs identified in the genes studied, minor allele frequencies (MAFs) and heterozygosities
were calculated for the cohort studied. These parameters were compared with those obtained for the
group of stray cats (n = 38) representing a wide range of variation within the species.
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4.3. Association Analyses

Chi-square and Fisher’s exact tests with Bonferroni corrections were used for assessing associations
in all possible combinations of the phenotypes defined. Only SNPs and haplotypes with MAFs higher
than 0.1 were used. The most significant associations (pcorrected < 0.01) out of those identified at
puncorrected < 0.01 were further characterized and analyzed for gene–gene interactions using composed
genotypes as previously described for other infections [51]. Only associations for which p values were
at least 10 times lower than the lower of the two p values calculated for individual markers composing
the genotype were considered. For SNPs associated with the phenotypes studied, Hardy–Weinberg
equilibrium was determined using a web calculator [52].

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/11/958/s1.
Table S1: Population characteristics. Table S2: Associations in British Shorthair and Maine Coon. Table S3:
Haplotypes. Table S4: SNPs associated before Bonferroni correction (+HWE in these loci). Table S5: SNPs associated
after Bonferroni correction (+HWE in these loci). Table S6: Composed genotypes. Table S7: Alleles/genotypes
associated with susceptibility/resistance to FECV shedding. Table S8: Shedding intensity. Table S9: List of breeds.
Table S10: Candidate genes. Table S11: Designed primers. Table S12: Amplified genes and regions. Table S13:
Polymerases used for PCR amplifications. Raw data (Excel files): available online in Mendeley repository
https://data.mendeley.com/datasets/cxx68cw77c/draft?a=ac846404-9385-424e-890f-62484981eb64.
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