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Supplementary Fig. S1. Taxonomic composition of the microbiota of /. scapularis ticks under
different disturbance factors. a) Taxa barplot showing relative abundance of bacterial genera
within the tick microbiota. Samples are grouped per experimental groups. Only the topmost

abundant taxon (identified at family and genera level) are shown.
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Supplementary Fig. S2. Differential microbial diversity of tick microbiota due to disturbance
factors. Comparison of alpha diversity are presented between sample groups from the experiments:
a) Anti-tick immunity, b) A. phagocytophilum infection and c) Antimicrobial peptide. Richness and
evenness were measured by ‘Faith PD’ and ‘Pielou evenness’ indexes, respectively, compared by
Kruskal-Wallis test (p <0.05%, p <0.01**, p <0.001***).
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Supplementary Fig. S3. Identification of differential taxa (genera) across all the samples.
Dendrogram heatmap resulting from Gneiss analysis. The taxa were clustered based on abundance
(log ratio). Nine balances (y0, y1...y9) are calculated based on hierarchical clusters on taxa
abundance. Differential taxonomic composition of microbiota of tick larvae (infected with B.
burgdorferi) and nymphs (infected with A. phagocytophilum) are visible according to the main

balance (y0).
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Supplementary Fig. S4. Differential abundant taxa between sample groups (control vs disturbed)

from the experiments: a) Anti-tick immunity, b) A. phagocytophilum infection and c) Antimicrobial

peptide. Differential abundant taxa were identified and ranked by linear discriminant analysis

(LDA) effect size (LEfSe).
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Supplementary Fig. S5. Pathway core across modules of bacterial genera identified by networks of
taxa co-occurrence. Venn diagrams show the sharing of the metabolic pathways among 3 randomly
selected modules of taxa in each sample group from the experiments: a) Anti-tick immunity, b) A.
phagocytophilum infection and c) Antimicrobial peptide. Each segment of the Venn diagrams,
labeled as ‘1’, ‘2’ or ‘3', represent a randomly selected module of co-occurring taxa that were
identified in the co-occurrence networks and then its predicted functional profile was obtained.
The six modules represent ~90% of total of identified taxa. Each Venn diagrams is accompanied
with a NMDS plot showing shifts in the pathway profile (abundance) over control and disturbed
microbiome. Each module profile on the plot is colored with the corresponding color in the Ven
diagram, arbitrary ellipsoids are used to facilitate the identification of the sample groups. Spatial

ordination based on Bray-Curtis dissimilarity metric.
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Supplementary Fig. S6. Topological features of the networks of co-occurring microbial taxa in
undisturbed and disturbed tick microbiota through anti-tick immunity. Networks are presented by
experimental groups: a) Bb-anti-Ova, b). Circles (nodes) are bacterial genera and edges the co-
occurrence (SparCC >0.7 or <-0.7) between taxa. Colours are random, but circles with the same
colour mean for clusters of taxa that co-occur more frequently among them than with other taxa.
The size of the circles and the labels is proportional to the betweenness centrality of each taxon in

the resulting network.



b)

Paenibatilacese & =
Flavobacterium S e
Moteibacter ol

Candidatus Riegeria

¢ Melitangium

Granulicelia

Supplementary Fig. S7. Topological features of the networks of co-occurring microbial taxa in
undisturbed and disturbed tick microbiota through A. phagocytophilum infection. Networks are
presented by experimental groups: a) Ap-uninfected, b) Ap-infected. Circles (nodes) are bacterial
genera and edges the co-occurrence (SparCC >0.7 or <-0.7) between taxa. Colours are random, but
circles with the same colour mean for clusters of taxa that co-occur more frequently among them
than with other taxa. The size of the circles and the labels is proportional to the betweenness

centrality of each taxon in the resulting network.
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Supplementary Fig. S8. Topological features of the networks of co-occurring microbial taxa in
undisturbed and disturbed tick microbiota through antimicrobial peptide. Networks are presented
by experimental groups: a) sP1, b) P1. Circles (nodes) are bacterial genera and edges the co-
occurrence (SparCC >0.7 or <-0.7) between taxa. Colours are random, but circles with the same
colour mean for clusters of taxa that co-occur more frequently among them than with other taxa.
The size of the circles and the labels is proportional to the betweenness centrality of each taxon in

the resulting network.
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Supplementary Fig. S9. Results of the attacks on the taxonomic networks. Each pair of charts are

the results obtained for the calculation of secondary extinctions after individual node removal,

randomly or following ascending order of centrality (left) and the features of disconnections of taxa

in the network (right). The legend at the right column includes the loos of connectivity when taxa

are removed according to the increasing value of centrality (loss_connect_BNC), the loss of

connectivity as a cascading effect (loss_connec_Cascading) and the loss of connectivity if taxa are

randomly removed (loss_connec_Random). a) Bb-anti-Ova, Bb-anti-PIXR; b) A. phagocytophilum

uninfected; A. phagocytophilum infected; c) Antimicrobial peptide sP1, Antimicrobial peptide P1.
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Supplementary Fig. S10. Alpha and beta diversity of the functional profile (pathways) of the

microbiome of [. scapularis ticks under different disturbance factors. Comparisons of alpha and

beta diversity are presented between sample groups from the experiments: a) Anti-tick immunity,

b) A. phagocytophilum infection, and c) Antimicrobial peptide. Richness and evenness (alpha

diversity) were measured by ‘Faith PD’ and ‘Pielou evenness’ indexes, respectively, and compared
by Kruskal-Wallis test (p <0.05%, p <0.01**, p <0.001***). The beta diversity (PCoA plots) was

measured by ‘Weighted UniFrac metric’ and compared between each pair of sample groups by

Permutational multivariate analysis of variance (PERMANOVA).
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Supplementary Fig. S11. Differential functional profile from all tick microbiome under different
disturbance factors. a) Dendrogram heatmap showing the log abundance of pathways in each
sample groups according to Gneiss analysis. The bifurcating tree was generated from hierarchical
clustering of pathways based on abundance (log). Nine balances (not showed) on the relation of
that clusters were generated, differences in relative abundance between sampled groups are
visible according to the clutters, e) The main balance (y0) evidenced the differential pathway
abundance profiles from microbiomes of Ixodes scapularis tick larvae (infected with B. burgdorferi)
and nymphs (infected with A. phagocytophilum), respectively.
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Supplementary Fig. S12. Differential WD of the metabolic pathways among sample groups from

the experiments: a) Host immunity, b) A. phagocytophilum infection, and c) Antimicrobial peptide.

Histograms show the 2fold change of WD observed between control and disturbed tick microbiomes,

as resulted from the network of co-occurring pathways. Only pathways that increase (or decreased)

in at least twice the value of WD (2-fold-change: log2 = 2) are shown.
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Supplementary Fig. S13. Polysaccharide biosynthesis pathways affected in response to anti-tick
immunity. a) polysaccharide biosynthesis pathways for which changes in WD were higher than 2-
fold-change (log2 = 2) in response to anti-tick immunity. Pathway reconstruction was performed
using KEGG reference pathways and KEGG enzymes predicted by PICRUSt. b) The ‘feature count’ of
each pathway in the datasets ‘Bb-anti-Ova’ (n=24) and ‘Bb-anti-PIXR’ (n=16) is presented. Feature
count values were compared by Mann Whitney test (p <0.05%).



