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Abstract: In this paper, a method for the improvement of the calculation accuracy of the distributed
parameter model (DPM) of electromagnetic devices is proposed based on the kriging basis function
predictive identification program (PIP). Kriging is mainly an optimal interpolation method which
uses spatial self-covariance, and takes a polynomial as the basis function. The accuracy of the kriging-
based surrogate model can be improved by adjusting the related functions and hyperparameters.
Based on the DPM of a solenoid valve, there exist certain errors in the estimation. They can be
summarized as follows: Firstly, the estimation error of magnetic flux leakage (MFL) permeance
is caused directly by the deviation of the magnetic flux tube due to the segmented magnetic field
line. Secondly, the estimation error of soft magnetic resistance because of the nonlinearity of the
permeability of soft magnetic material leads to the change of soft magnetic resistance alongside the
magnetic flux. In this paper, an improved kriging error correction method is applied to modify the
leak permeance and soft magnetic resistance calculation. The kriging basis function is adjusted to
adapt to the data curve of the MFL permeance error data. The calculated MFL permeance data are
compared with the error variation data to select the appropriate basis function. To improve the
computational efficiency, the PIP is proposed to select the appropriate basis function. The modified
MFL permeance data and soft magnetic resistance are substituted into the DPM for improving the
computational accuracy and efficiency of the solenoid valve.

Keywords: kriging; distributed parameter model; magnetic flux leakage; permeance; predictive
identification program

1. Introduction

The optimization design of modern solenoid valves faces more and more challenges
with increasing performance requirements to realize higher latching force, higher output
force, and more extensive robustness [1–9]. As a means of simulation, the FEM method
has the absolute advantage of accuracy, and the disadvantage of efficiency. The distributed
parameter model (DPM) method can effectively speed up the calculation, and kriging
models can decrease error. The DPM and kriging models have become important factors
affecting the design efficiency and accuracy of solenoid valves. Therefore, evaluating the
applicability of the kriging model has an important theoretical significance and a practical
engineering value for product design optimization [10–15].

With the increasing levels of computational technology and theoretical analysis for
the DPM, the kriging model, whose inputs affect its outputs, plays an important role in
engineering design and error correction [16–21]. The calculation accuracy of air leakage
permeance and the soft magnetic resistance has an effect on the electromagnetic force
calculation accuracy of solenoid valves. To reduce the relative error and improve the
accuracy of target prediction based on sample data, various data fitting methods based
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on the kriging model have been proposed. In the design and optimization of products,
kriging has a good performance in error correction [22–28]. An adaptive finite difference
weighted essentially non-oscillatory (WENO) method with Gauss-kriging reconstruction is
proposed to reduce dissipation in smooth regions of flow, while preserving high resolution
around discontinuities for hyperbolic systems of conservation laws [29]. The work in [30]
proposed a kriging model-based method for the reliability design and optimization of
planetary gear, using a genetic algorithm. The kriging model was used to establish the
gear reliability model to simplify the reliability calculation in this method [30]. Shin et al.
performed an optimization study of response time to improve the dynamic performance of
a direct-acting solenoid valve based on a kriging model [31]. A kriging metamodel-based
multi-objective optimization strategy has been employed to optimize the valve-plate shape
of the axial piston pump [32]. The kriging method was also used to build a surrogate model,
which presents the relationship between dynamic responses and dynamic simulation of the
valve train [33]. Many of the works where the kriging model has been adopted for error
calculation mainly focus on the calculation errors associated with replacing the original
analytical model with the kriging-based surrogate model.

In this paper, a method for the improvement of the calculation efficiency and accuracy
of the DPM of electromagnetic devices is proposed based on the kriging basis function
predictive identification program (PIP). To obtain an improved DPM performance, an
appropriate basis function is selected by contrasting various basis functions with error item
curves of air leakage permeance. To further improve the calculation efficiency, the PIP is
introduced to prejudge the error item curves against standard functions. The modified
leakage permeance and the soft magnetic resistance data are considered in the DPM of the
electromagnetic device to calculate the electromagnetic force, thereby verifying the method
proposed in this paper.

2. The Error Correction Method of DPM Based on Kriging Model

The kriging model is a global surrogate model derived from geostatistics, and it can
mathematically provide an optimal linear unbiased estimation. This makes it an appropri-
ate method to achieve the primary goal of this paper. To estimate the linear, unbiased and
minimum estimated variance using kriging, the geometric features of information sample
shape, size and space on samples are taken into account. Nonetheless, kriging is still a
smooth interpolation method [34,35]. The electromagnetic calculation software is Matlab
in this paper.

The kriging model can be summarized in two parts, which are represented by

y(x) =
p

∑
j=1

β j f j(x) + Z(x) (1)

where fj(x) is the basis, βj is the regression coefficient, Z(x) is the stochastic distribution
function.

A solenoid valve with a fan-shaped permanent magnet (PM) is selected as the example
in this study, and its electromagnetic system is shown in Figure 1. The armature is a moving
part, the angle of the fan-shaped PM is 20◦, its inner radius is 8.5 mm, its outer radius is
17.5 mm and its height is 8 mm. The solenoid valve rated coil ampere-turns equal 1800 AT.
The PM is divided into seven segments. The magnetic flux leakage (MFL) permeances of
the flux tube from the outer radius side to the inner radius side are G1, G2, G3, G4, G5, G6
and G7 [36–40].

The solenoid valve is excited in 0 AT, and its finite element method (FEM) responses
are compared with the unmodified DPM, as shown in Figure 2. There are 20 sample points
for every curve.
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Figure 1. Solenoid valve with fan-shaped permanent magnet (PM): (a) sectional view of solenoid valve; (b) magnetic flux 
tube diagram (half of Figure 1a). 
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Figure 2. The leakage permeance of FEM and before error modifying the distributed parameter model. 

The FEM and DPM data are subtracted to obtain the MFL permeance error terms (i.e., 
G1, G2, G3, G4, G5, G6 and G7), which are then stored in the error matrix Er. The 
MFL permeance data are shown in Figure 3 which reveal a non-monotonic variation. 
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Figure 1. Solenoid valve with fan-shaped permanent magnet (PM): (a) sectional view of solenoid valve; (b) magnetic flux
tube diagram (half of Figure 1a).
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Figure 2. The leakage permeance of FEM and before error modifying the distributed parame-
ter model.

The FEM and DPM data are subtracted to obtain the MFL permeance error terms (i.e.,
∆G1, ∆G2, ∆G3, ∆G4, ∆G5, ∆G6 and ∆G7), which are then stored in the error matrix Er. The
MFL permeance data are shown in Figure 3 which reveal a non-monotonic variation.

Actuators 2021, 10, x FOR PEER REVIEW 3 of 14 
 

 

Coil

Armature

Shell PM

Working air gap

Non Working air gap
Gasket

 

SN

G1

G2G3

G4

G7

PM

la
1

la
2

Armature
Shell

 
(a) (b) 

Figure 1. Solenoid valve with fan-shaped permanent magnet (PM): (a) sectional view of solenoid valve; (b) magnetic flux 
tube diagram (half of Figure 1a). 

The solenoid valve is excited in 0 AT, and its finite element method (FEM) responses 
are compared with the unmodified DPM, as shown in Figure 2. There are 20 sample points 
for every curve. 

Armature stroke(mm)

M
FL

 P
er

m
ea

nc
e 

(H
)

FEM G1
FEM G2

FEM G3

FEM G4

FEM G5

FEM G6

FEM G7

Unmodified G1

Unmodified G2

Unmodified G3

Unmodified G4

Unmodified G5
Unmodified G6

Unmodified G7

 
Figure 2. The leakage permeance of FEM and before error modifying the distributed parameter model. 

The FEM and DPM data are subtracted to obtain the MFL permeance error terms (i.e., 
G1, G2, G3, G4, G5, G6 and G7), which are then stored in the error matrix Er. The 
MFL permeance data are shown in Figure 3 which reveal a non-monotonic variation. 

Armature stroke(mm)

M
FL

 P
er

m
ea

nc
e 

er
ro

r(
H

)

 
Figure 3. The leakage permeance error values in 0 AT. Figure 3. The leakage permeance error values in 0 AT.

To further improve the error correction efficiency, multi-basis functions are applied to
the adaptive error curve. The kriging basis functions are represented as follows:
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Fourier Function

f (x) =
n

∑
i
[ai sin(diwi) + bi sin(diwi)]. (2)

Polynomial Function

f (x) = 1 +
n

∑
i=1

di +
n

∑
i=1

d2
i + ∑ ∑

i<j
didj. (3)

Exponential Function

f (x) = e

n
∑

i=1
(−θi ,|dj |)

. (4)

Gaussian Function

f (x) = e

n
∑

i=1
(−θi ,|dj |2)

, (5)

where |di| is the distance between the known and predicted quantities.
The basis function output characteristics can be determined using the key nodes and

the output of the model. Given a function k(x1, x2 . . . xn) and an input parameter x1, x2 . . .
xn, the domain of the function can be expressed as follows:

X1 ∈ [x0
1 − ∆x1, x0

1 + ∆x1]
X2 ∈ [x0

2 − ∆x2, x0
2 + ∆x2]

...
Xn ∈ [x0

n − ∆xn, x0
n + ∆xn]

, (6)

where x1, x2 . . . xn are the coordinate positions of magnetic lines of flux with armature
displacement, x10, x20 . . . xn0 are the center of fluctuations, ∆x1, ∆x2 . . . ∆xn are the ranges
of fluctuations. The basis function can be simplified to:

∆F ≈
n

∑
i=1

∆Fi + ∆2(∆x), (7)

where ∆F is the function output, ∆2(∆x) is the higher derivative of the input parameter
fluctuations. Given that a function relation exists between k(x1, x2 . . . xn) and ∆x1, ∆x2 . . .
∆xn, k(x1, x2 . . . xn), this function relation can be described as follows:

k
(

x0
1, x0

2 . . . x0
n

)
=

x0
1+∆x1,x0

2+∆x2 ...x0
n+∆xn

∑
x0

1−∆x1,x0
2−∆x2 ...x0

n−∆xn

k(x1, x2 . . . xn)w|x1,x2 ...xn , (8)

where w is the weight coefficient. For every node in the count, w = 1. However, if the
sample points are not key nodes, then 0 < w < 1. Given that, the boundary condition of the
input parameter is as follows: 

x1l ≤ x1 ≤ x1h
x2l ≤ x2 ≤ x2h
...
xnl ≤ xn ≤ xnh

, (9)

where xil, xih are the top and bottom limitations of the ith input value. Combining
Equations (7)–(9), ∆Fi can be defined as:

∆Fi =
(x1h ,x2h ...xnh)

∑
(xlh ,xlh ...xlh)

w∆F(∆xi)|x1,x2 ...xn G(x1, x2 . . . xn)
∣∣∣x0

1 ,x0
2 ...x0

n
, (10)
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where G(x1, x2 . . . xn) is the interpolating function of x1, x2 . . . xn. Substituting G(x1, x2 . . .
xn) into Equations (7) and (8), the following equations are obtained:

G(x1, x2 . . . xn)|(x0
1 ,x0

2 ...x0
n)

= e

n
∑

i=1
(−θi ,|di |)

, (11)

G(x1, x2 . . . xn)|(x0
1 ,x0

2 ...x0
n)

= e

n
∑

i=1
(−θi ,|di |2)

, (12)

where di = |x− xi|, x is the dependent variable, θi is the PM segment positions with respect
to the armature displacement. The armature stroke is 2 mm, and θi can be obtained by
particle swarm optimization (PSO) based on 20 nodes.

Based on the MFL permeance error data, and adopting a periodic function (i.e., Fourier
series) for ∆G3 fitting, it can be written as follows:

f (x) = a0 +
4

∑
i=1

[ai cos(ixw) + bi sin(ixw)], (13)

where x is the armature stroke, f (x) is the dependent variable of the MFL permeance.
a0 = −857, a1 = 1384, b1 = −45.96, a2 = −71.14, b2 = 43.84, a3 = 212.3, b3 = −17.28, a4 = −28.1,
b4 = 2.529, w = 0.1202. Taking the derivative of Equation (13), df (x)/dx has four solutions
defined in the range 0 to 2.

By adopting a polynomial function for ∆G3 fitting, it can be written as follows:

f (x) = p1x7 + p2x6 + p3x5 + p4x4 + p5x3 + p6x2 + p7x + p8, (14)

where p1 = −5.34 × 10−6, p2 = 3.26 × 10−5, p3 = −7.49 × 10−5, p4 = 8.1 × 10−5, p5 = −4.26
× 10−5, p6 = 1.08 × 10−6, p7 = −1.33 × 10−6, p8 = −3.92 × 10−8. Taking the derivative of
Equation (14), i.e., df (x)/dx, yields four solutions.

By adopting an exponential function for ∆G3 fitting, it can be written as follows:

f (x) = aebx + cedx, (15)

where a = −7.591 × 10−7, b = 4.862, c = 7.583 × 10−7, d = 4.863. Taking the derivative of
Equation (15), i.e., df (x)/dx, has only one solution. It is obvious that the exponent is unfit
for ∆G3 fitting.

By adopting a Gaussian function for ∆G3 fitting, it can be written as follows:

f (x) = a1e
− (x−b1)

2

2c2
1 + a2e

− (x−b2)
2

2c2
2 + a3e

− (x−b3)
2

2c2
3 + a4e

− (x−b4)
2

2c2
4 + a5e

− (x−b5)
2

2c2
5 , (16)

where a1 = 1.28 × 10−6, b1 = 1.906, c1 = 0.2655, a2 = 0, b2 = 10.97, c2 = 0.03011, a3 = 2.89 ×
10−5, b3 = 1.29, c3 = 0.6738, a4 = −2.87 × 10−5, b4 = 1.302, c4 = 0.6887, a5 = −0.6322 × 10−7,
b5 = 0.5452, c5 = 0.1176. Taking the derivative of Equation (16), i.e., df (x)/dx, yields four
solutions.

Figure 4 shows the contrasting condition between basis functions and MFL permeance
error ∆G3. It is obvious that there is a large error between the exponential function-based
fitted curve and ∆G3. The mean error for this particular case is over 100%. The polynomial
function-based fitted curve, Fourier function-based fitted curve and Gaussian function-
based fitted curve have mean errors reaching 38.4%, 30.1% and 14.2%, respectively.
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To further improve computational efficiency, the reliability index of samples is calcu-
lated by four algorithms to achieve optimal basis function. The algorithms are:

1. Particle Swarm Optimization(PSO)
2. Response Surface (RS)
3. Linear Second order moment (LS)
4. Monte Carlo (MC)

The relative error of the basis functions can be obtained by taking MC as the base.
Firstly, the failure probability of the samples is calculated, then the reliability index can be
obtained using the calculation results. The reliability index is calculated by the MC method
and it is used as the standard with a termination condition of 10−7.

Table 1 shows the reliability index of ∆G3.

Table 1. The basis function model reliability index of ∆G3.

Function Algorithm Iteration Count Time (s)

Gaussian

PSO 132 660 987
RS 189 945 1229
LS 147 588 1143

MC - 105 2961

Fourier

PSO 162 810 1328
RS 198 990 1843
LS 204 816 1687

MC - 105 3063

Polynomial

PSO 153 765 1125
RS 207 1035 2063
LS 192 768 1763

MC - 105 3012

Table 1 shows that Gaussian function with PSO has the smallest count for ∆G3, while
the Fourier function with PSO has the smallest count for ∆G1.

∆G3 is presented as an example. The polynomial function is adopted for the armature
stroke, Gaussian error data and ∆G3. This function can be written as follows:

∆G3 = p00 + p10x + p01y3 + p20x + p11xy, (17)
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where p00 = −2.057 × 10−7, p10 = 7.069 × 10−7, p01 = −0.02261, p20 = −4.141 × 10−7,
p11 = 0.3128. x is the armature stroke, y is the Gaussian error data. Figure 5 shows Gaussian
error data fitting.
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The MFL permeance of the solenoid valve G3 can be improved. Now, assuming that P
is the FEM data matrix and Q is the DPM data matrix, Er can be written as follows:

Er = P − Q (18)

If ∆G depicts the permeance error of the sampling point, Er can be derived as follows:

Er =


∆G11 ∆G12 · · · ∆G1m

∆G21
. . . ∆G2m

...
. . .

...
∆Gn1 ∆Gn2 · · · ∆Gnm

, (19)

where n is the PM segment number, m is the sampling point position. i = 1, 2, . . . n. j = 1, 2,
. . . m.

The basis function can be defined as fk(x1, x2 . . . xq), k = 1, 2, 3, . . . n, where q is the
dimension. fk(x1, x2 . . . xq). The function can be written as:

f
(
x1, x2, . . . , xq

)
= min

{
fk
(
x1, x2, . . . , xq

)
− Er[k;]

}
. (20)

Based on Equation (20), the polynomial function is adopted for the armature stroke, l,
∆G and f (x1, x2 . . . xq). This function is written as follows:

∆G = p00 + p10l + p01 f 3(x1, x2 . . . xq) + p20l + p11l f (x1, x2 . . . xq). (21)

Equation (21) can also be written as follows:

fer
(
l, x1, x2, . . . , xq

)
= X

[
∆G, l, f

(
x1, x2, . . . , xq

)]
(22)

where fer(l, x1, x2 . . . xq) is the penalty function for the error data of the sampling point with
armature displacement. The ith MFL permeance or soft magnetic resistance can be defined
as qi(x), where x is the unknown quantity. Therefore, wi(x) can be obtained as follows:

wi(x) = feri(x) + qi(x) (23)
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where wi(x) is the improved DPM data, and it is very close to the FEM data.

3. MFL Permeance Prejudge the Error Data Based on Kriging PIP

To improve the overall calculation efficiency of the program, the predictive identifi-
cation program is applied to prejudge the scatter data before employing the kriging base
function.

The basis function can be defined as f (x), a = (x1, x2, . . . xn) ∈ Rn, where f (x) is
continuous and differentiable in the field of definition.

∇ f (x)(x− a) < 0, (24)

where f (x) is the maximum with x = xk.
Similarly,

∇ f (x)(x− a) > 0, (25)

where f (x) is the minimum with x = xk.
The extreme function can be analyzed according to Equations (24) and (25), and the

gradient of f (x) can be written as follows:

∇ f (x) =
[

∂ f (x)
∂x1

,
∂ f (x)

∂x2
, . . . ,

∂ f (x)
∂xn

]T
. (26)

Based on the characteristic of the first derivative, the adjacent points xi and xi+1 are
the local maxima or minima. Therefore, the adjacent points are used as the criteria to judge
the curve of the function. If the adjacent points of the function data are monotonically
increasing, and the second derivative product is positive, this shows that the function is
unimodal and it has a maximum. Therefore, it can be obtained as follows:

∂ f (x)
∂x1

= 0, ∂ f (x)
∂x2

= 0, . . . , ∂ f (x)
∂xn

= 0
f (xi) < f (xi+2)
f (xi+1) < f (xi+3)
∂2(x)∂2 f (x)
∂2xi∂

2xi+2
> 0

, (27)

Similarly, 
∂ f (x)
∂x1

= 0, ∂ f (x)
∂x2

= 0, . . . , ∂ f (x)
∂xn

= 0
f (xi) > f (xi+2)
f (xi+1) > f (xi+3)
∂2(x)∂2 f (x)
∂2xi∂

2xi+2
> 0

. (28)

From Equation (28), the function is unimodal and has a minimum.
Similarly, 

f (xi) < f (xi+2), f (xi) > f (xi+2)
∂ f (x)
∂x1

= 0, ∂ f (x)
∂x2

= 0, . . . , ∂ f (x)
∂xn

= 0
f (xi+1) > f (xi+3), f (xi+1) < f (xi+3)

. (29)

If the adjacent points of the function data are monotonically increasing or decreasing,
then the function has a multi-crest. As such, the derivative can identify the extremum of
the scatter data, and the shape of the multi-crest based on the number of extremum points.

To identify the more complicated scatter data curve, the standard function for numeri-
cal matching of the scatter data is applied. When the trend of the curve for the standard
function is the same as the trend of the distribution for the scatter data, it can be said that
the corresponding kriging basis function is practical for this type of standard function.

Based on the trend of the ∆Gi curve, the Schwefel function has similar characteristics.
Figure 6 shows the standard Schwefel function.
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The Schwefel function can be written as follows:

f (x) = x sin
(√
|x|
)

(30)

From Equation (30), the parameters can be modified to have the following:

f (x) = −1− 2.6x sin
(
−3.8 + 15

√
|x− 0.02|

)
(31)

The Schwefel functions are compared with ∆G3 and ∆G4, as shown in Figure 7.
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The similarity between the Schwefel function, ∆G3 and ∆G4 can be obtained using the
Tanimoto method. This method is stated as follows:

T(x1, x2) =
∑ x1ix2i

∑ x2
1i + ∑ x2

2i −∑ x1ix2i
(32)
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By calculation, the similarity of ∆G3 with the Schwefel function is 0.7654, and the
similarity of ∆G4 with the Schwefel function is 0.7775. The similarities of ∆G with the
Schwefel function are further detailed in Table 2.

Table 2. Schwefel function and ∆G similarity.

Schwefel Similarity
∆G1 ∆G2 ∆G3 ∆G4 ∆G5 ∆G6 ∆G7

0.005 0.0662 0.7654 0.7775 0.1674 0.5698 0.0013

In Table 2, the similarities of ∆G3 and ∆G4 with the Schwefel function are over 0.7,
while the similarities of other ∆G1, ∆G2, ∆G5, ∆G6 and ∆G7 are the same as the trigono-
metric function. The similarities of ∆G are compared with the trigonometric function, as
shown in Table 3.

Table 3. Trigonometric function and ∆G similarity.

Trigonometric Similarity
∆G1 ∆G2 ∆G3 ∆G4 ∆G5 ∆G6 ∆G7

0.8625 0.921 0.231 0.1922 0.8124 0.7958 0.7642

It can be concluded that the similarities which are over 0.7 conform to the corre-
sponding standard function. Hence, the kriging basis function can be selected. When the
similarity of the ∆G curve and the Schwefel function is over 0.7, ∆G can be modified by the
Gaussian function. When the similarity of the ∆G curve and the trigonometric function is
over 0.7, ∆G can be modified by the Fourier function.

4. The Error Correction of MFL Permeance and Soft Magnetic Resistance of
Solenoid Valves

To verify the practicality of the proposed method, the kriging model based on the basis
function adjustment is used to modify the error of the MFL permeance and soft magnetic
resistance data of the solenoid valve magnetic system. Substituting modified data into the
DPM, the electromagnetic force can be obtained.

From Figure 8, it can be observed that the unmodified DPM permeance mean error
reaches 13.1% (see Figure 2), and the modified DPM mean error reaches 4.7%.
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The soft magnetic resistance in la1 and la2 segments is taken as an example, without
the presence of an excitation current in the coil and at different armature positions. Figure 9
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shows the soft magnetic resistance of FEM and the unmodified and modified DPM. The un-
modified DPM permeance mean error reaches 9.94%, while the modified DPM permeance
mean error reaches 3.7%.
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The modified MFL permeance and soft magnetic resistance data are substituted into
the DPM. The FEM results are compared with the modified and unmodified DPM results
of the force on the armature for a coil excitation of 1800 AT and −1800 AT, as shown in
Figure 10. The unmodified DPM mean error is 10.2%, and the modified DPM mean error is
3.8%. The FEM and measurement results mean error is 3%.
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Figure 11 shows the flow chart of the improved method for the DPM of solenoid valves
based on the kriging basis function PIP. An appropriate function is selected by the PIP for
error correction, and by substituting modified data into the DPM, the electromagnetic force
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can be obtained. Under the same calculation conditions, the output force of one armature
displacement point cost 420 s in the FEM, and 56 s in the DPM.
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5. Conclusions

To improve the calculation accuracy and efficiency of the solenoid valve DPM, an
improved method for the DPM based on the kriging basis function PIP is proposed in this
paper. From the experiments and the results, the following conclusions are drawn:

1. Based on the characteristics of the kriging basis function curve, the relationship
between the kriging basis function and the MFL permeance error data can be obtained,
and an appropriate function is selected by contrasting various basis functions with
error data curves. Then it is applied to gain error compensation between the FEM and
DMP data. The PIP is introduced to prejudge the error data by comparing the standard
function to the selected basis function. The modified MFL permeance and the soft
magnetic resistance data are then substituted into the DPM of the electromagnetic
device to calculate the attraction force.

2. The proposed method can effectively improve the calculation accuracy of the solenoid
valve electromagnetic system. Compared with the FEM data, the unmodified MFL
permeance of the DPM mean error is 13.1%, and the modified MFL permeance of the
DPM mean error is 4.7%. The unmodified MFL permeance of the DPM mean error is
9.94%, and the modified MFL permeance of the DPM mean error is 3.7%.

3. The results of the DPM solenoid valve electromagnetic system in the case study
showed a significant improvement. Particularly, the calculation accuracy improved
by reducing the DPM mean error from 10.2% to 3.8%.
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