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Abstract: Successful control of a dielectric elastomer actuator (DEA) can be a challenging task,
especially if no overshoot is desired. The work presents the first use of the PIλDµ control for a
dielectric elastomer actuator to eliminate the overshoot. The mathematical model of the dielectric
elastomer was established using the fractional Kelvin-Voigt model. Step responses are first tested
in the Laplace domain, which gave the most satisfactory results. However, they did not represent
the real model. It cannot have negative force acting on the dielectric elastomer actuator. Simulations
in Matlab/Simulink were performed to obtain more realistic responses, where output of the PIλDµ

controller was limited. Initial parameters for a PID control were obtained by the Wang–Juang–Chan
algorithm for the first order plus death time function approximation to the step response of the model,
and reused as the basis for the PIλDµ actuator control. A quasi-anti-windup method was introduced
to the final control algorithm. Step responses of the PID and the PIλDµ in different domains were
verified by simulation and validated by experiments. Experiments proved that the fractional calculus
PIλDµ step responses exceeded performance of the basic PID controller for DEA in terms of response
time, settling time, and overshoot elimination.

Keywords: dielectric elastomer actuator; fractional calculus; fractional Kelvin-Voigt; fractional
calculus control; fractional PID; anti-windup

1. Introduction

Soft actuators are actuators whose performance tries to mimic the behavior of a
biological muscle. A biological muscle performs only two simple motions: contraction
and relaxation. Even though this movement seems very simple, the reality is quite the
opposite. The basic structure of a biological muscle is a bundle of muscle fibers. Muscle
fibers are a compound of myofibrils, of which the basics are sarcomeres. A sarcomere has
two parts: myosin filaments and actin filaments. They interact with each other with the
help of Ca2+ ions. The presence of Ca2+ ions contracts the muscle fiber by δL, whereby
the duration of the contraction depends on the amount of these ions [1]. Contraction of
the muscle generates F force; the product of contraction and force is A = δL · F. If A is
measured over time, one can obtain power P = F · δL/δt generated by the contraction of
a muscle.

Regarding the activation principle, soft actuators that are most like biological muscles
are ionic electroactive polymers [2,3]. They deform their principal shape when there is an
internal difference in the ionic state. Even though the principle is similar, its deformation
differs from biological muscles. They usually exhibit bending movement with a very slow
deformation rate. Activation energy to change ionic state is applied by electrical energy. It
is a reverse process, but it has a slow recovery rate.

On the other hand, there is another group of soft actuators called dielectric elastomer
actuators, also known as DEAs. Their activation energy is also electricity with 1000 times
higher potential then in ionic actuators. The principle of the activation of the structure
differs from ionic actuators. DEA has a similar structure as a parallel plated capacitor. It has
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upper and lower conductive electrodes with elastomer used as the dielectric. Elastomer is
considered incompressible. Its Poisson number is 0.5. Only direct current can be applied on
a DEA. When DC voltage is applied, attractive force is generated between the positive and
negative potentials. This is also called the Maxwell stress. Figure 1 shows the basic structure
and principle of activation of a planar DEA. When DC voltage is applied, the elastomer
dimensions change from l1 → l1′ , l2 → l2′ , and l3 → l3′ according to Figure 1. The ratio
of change in each direction can be described as δ1 = l1/l1′, δ2 = l2/l2′, and δ3 = l3/l3′,
respectively. Since elastomer is incompressible, the following applies: 1 = δ1δ2δ3.
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The basic principles of DEAs’ movement are not the same as for biological muscles, but,
in comparison with ionic actuators, they move much faster and exhibit larger movements.
Under applied voltage they can also hold the tension or position. As such, they can be used
as soft actuators with similar behavior as biological muscles.

The introduction of fractional calculus dates back to the 17th century, where Leibniz
addressed a letter to L’Hopital asking him about the existence of a half derivative [4]. This
date is marked as the beginning of fractional calculus. Fractional calculus defines integrals
and derivatives with non-integer orders, so the name might be a bit confusing, but since
then, this term has been generally accepted. Two centuries later the proper definition was
developed, with the works of Riemann et al. [5].

Fractional calculus can be used in different areas. Lately it is being used in describing
the bursting of the two pancreatic β-cells working in synchronization. With the help of
changing only fractional orders, they are able to model different bursting activities of
insulin [6]. Studying biological conditions with memory characteristics that can be defined
with the fractional calculus is another interesting area of use [7]. Readers interested in
areas where fractional calculus is expanding should refer to the work of Sun et al. [8].
Among others, the main areas of research with fractional calculus are in physics, control,
signal and image processing, mechanics and dynamic systems, biology, environmental
science, materials, viscoelasticity, and economics [8]. Fractional calculus is also being
used to describe fractional order chaotic systems, systems that are very sensitive to initial
conditions [9]. One such interesting area for using fractional calculus is rheology, part
of which is viscoelasticity. The behavior of viscoelastic materials can be simulated using
fractional calculus in rheological models, where basic rheological models can be converted
into fractional ones [10]. It can also be used in control theory to convert a classical PID
controller into a fractional one [5,11,12]. Expressed as PIλDµ, the fractional controller has
five tuning parameters, which enables a wider fitting range for fine tuning.

Since most dielectrics used in DEA applications perform viscoelastic behavior, it is
challenging to achieve satisfactory position control without overshoot. Babič et al. [13]
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used a basic Kelvin-Voigt model for material parametrization and self-tuning PID control.
They got the first parameters for PID from the Ziegler–Nichols open-loop method. An
experiment was conducted with DEA attached to a servo linear motor that maintained a
constant force for pre-stretching. They were able to generate displacements up to 2 mm.
Position control had 10–20% of overshoot and 0% of stationary error.

In the work of Sarban et al. [14], they used a Kelvin-Voigt model with three springs in
series, where two springs had dampers in parallel connections for material parametrization
of an adaptive vibrational isolator in cylindrical form. They used feedforward control, a
method based on knowing the mechanical behavior of the plant. The feedforward adaptive
control approach was used to predict the mechanical behavior of the isolator. They achieved
active vibrational isolation but had no measured step responses.

The Gent model is also commonly used for the parametrization of viscoelastic ma-
terials, and it has one spring and a pair of spring dampers in parallel connection. It was
used in the work of Li et al. [15] for DEA parametrization. They used PID control on the
proposed model on a sine wave reference signal. They were able to capture amplitude and
frequency, but with a phase shift of 90◦.

In the work of Ngujen et al. [16], they used the Mooney–Rivlin model for the material
parametrization of cylindrically configured DEA. They used a PWM-PID control that did
not eliminate overshoot and still performed small oscillation around the reference point.

In the work of Mustaza et al. [17], they used a modified Voigt model for the material
parametrization of a DEA compound of three equally spaced cylinders disposed at 120◦ in
a symmetrical radial configuration. The modified Voigt model had been already introduced
by Yeoh [18]. Displacement control was implemented with the help of model-based control.
The performance of the control depended on the accuracy of the material parametriza-
tion. Experiments show that although control is possible, overshoot and static error are
not eliminated.

A worm-like soft actuator was created as well as a controller in the work of Cao et al. [19].
For material parametrization they used a multi-layer Kelvin-Voigt model. They used
feedforward plus feedback control schemes. They used a PI control in the feedback loop.
Its parameters were gained with the help of the Nichols–Ziegler method. Simulations were
tested in MATLAB/Simulink, where step responses were given without overshoot or static
errors. Once tested on a real model, the performance of the proposed control algorithm
showed poor performance regarding overshoot and static error.

In the work of Rizzello et al. [20,21], DEA in the shape of an annular membrane
was used for position control. It was pre-stretched on the disc, so there was no need for
additional load. However, a spring and an additional load were attached to the actuator.
The model was derived with the help of Helmholtz free energy and a nonlinear version
of a standard linear solid model. Position control was performed with PID, with the
linearization of the model with PID, and with a robust H∞ control algorithm. Although
PID control gave satisfactory results, overshoot was not eliminated. On the other hand,
linearized PID and H∞ control gave excellent performance with little to no overshoot.

As can be seen, it is quite challenging to eliminate overshoot when dealing with
position control on viscoelastic materials.

The use of fractional calculus in mathematical modeling and position control of the
DEA is presented for the first time to improve the step response of the DEA and to eliminate
the overshoot. The planar structure of DEA is used where pre-stretch is maintained with
the help of appropriate weight. Since the performance of the PID control did not give
satisfactory results, the control was upgraded to fractional control with the help of the
PIλDµ. The step response of the model was compared to the step response of the first order
plus death time (FOPDT) function. The parameters for the PID controller were obtained
with the help of FOPDT and the Wang–Juang–Chan algorithm. These parameters and
λ = µ = 0.5 are starting parameters for a PIλDµ controller. Nevertheless, the FOMCON
toolbox was used in the search for the optimal parameters for the PIλDµ controller [22].
With its help, different starting parameters were chosen to find the optimal parameters.
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The step responses of optimal parameters were tested in Laplace, time, and discrete
domains, where responses were, surprisingly, not the same. Consequently, all optimized
parameters needed to be validated with a real experiment. For the implementation of
PIλDµ to a real controller, its fractional order of integration and derivation needs to be
approximated with an Oustaloup filter. The new transfer function of PIλDµ with fractional
orders approximated can be transformed into a discrete domain and implemented into
the microcontroller. Implementing the standard PID Simulink block on a microcontroller
provides an anti-windup method for limiting the output of the integrator. However, the
possibility of integral windup is not eliminated by implementing PIλDµ in the form of
an approximated discrete transfer function. Consequently, a quasi-anti-windup method
was developed and implemented on the microcontroller. Real experiments showed the
advantages of using PIλDµ over a PID controller regarding response time, settling time,
and overshoot.

In the Materials and Methods section, a summary is given of the fractional calculus
applied to the Kelvin-Voigt model and on parameter identification. Some basics are also
presented for the use of fractional calculus in control theory. A Laplace transformation was
employed to transform the fractional Kelvin-Voigt model into the s-domain. The step re-
sponse was analyzed and compared with the step response of the first order plus death time
(FOPDT) function. After the parameters of the FOPDT function were identified, the Wang–
Juang–Chan algorithm was introduced to identify parameters of the PID controller [23].
The identified parameters represented the starting points for parameter identification of
the PIλDµ controller. The optimization of the PIλDµ controller was explained using the
FOMCON toolbox in Matlab [22]. The PIλDµ controller needed to be transformed into the
Laplace and discrete domain from the time domain. Also presented is the implementation
of the PIλDµ controller to a microcomputer. A quasi-anti-windup method was introduced
to limit windup output of the approximated controller in the real experiment.

The simulation results were validated by experiments and deviations in different
domain models are presented in the Results section.

The Discussion section highlights conclusions and outlines proposals for future work.

2. Materials and Methods
2.1. Using Fractional Calculus in Rheology and Control Theory

To apply a dielectric elastomer actuator (DEA) as a controlled soft actuator one needs
to develop the governing equations of the system. The DEA uses the elastomer as the main
platform on which conductive electrodes are applied. The elastomer VHB 4910 from the
company 3M was used in this specific case [24]. The planar structure of the DEA was used
as shown in Figure 1. The elastomer was cut to the initial non stretched dimensions of
(50 × 49 × 1) mm according to the coordinate system used in Figure 1. After inserting the
elastomer into the gripping jaws the dimensions between the jaws was (10 × 49 × 1) mm.
Conductive paste from Bare Conductive [25] was applied to the stretched elastomer, where
the dimensions changed to (60 × 49 × 0.16) mm. Since high voltage can spark over the
edge, creating a short circuit, the active surface of the DEA was reduced to (60 × 40) mm.
Figure 2 shows the planar configuration of the stretched elastomer and active surface of the
DEA, as well as the applied coordinate system. When DC voltage is applied, the elastomer
expands in the longitudinal or x direction. However, small movement is also seen in the y
direction, which represents the loss of energy in the system.
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Figure 2. Stretched elastomer on the left and active surface of the DEA on the right.

2.1.1. Fractional Calculus in Rheology

Dynamic analysis of the used elastomer revealed viscoelastic behavior, which means
that the elastomer performed with both elastic and viscous behavior. According to [10,26,27],
one can model material behavior with fractional calculus and rheology. Using the Kelvin-
Voigt model and fractional calculus, one can modify the basic Kelvin-Voigt model to a
fractional Kelvin-Voigt model, which consists of two parts: a spring and a springpot. The
springpot is an element that is a combination of a spring and a dashpot. Its characteristic is
determined with the springpot constant and the derivative order

F(t) = kx(t) + c
dαx(t)

dtα
(1)

which is its main advantage over the basic Kelvin-Voigt model [5,10,27]. In Equation (1)
the Grünwald–Letnikov definition of fractional derivative is used

aDp
t f (t) = lim

h→0
h−p

n

∑
r=0

(−1)r
(

p
r

)
f (t− rh). (2)

The Grünwald–Letnikov definition is chosen since it can easily handle fractional
derivation (p) and integration (−p), and it is also suitable for the numerical calculation
of fractional derivatives and does not lead to difficulties when applying it to real-world
problems [5,28].

If the derivative order of a springpot equals 1, the element represents a dashpot; if
the derivative order equals 0, the element represents a spring. With fractional calculus
the derivative order is no longer limited to integers and can be any real number between
0 and 1.

2.1.2. Fractional Calculus in Control Theory

To show that the fractional Kelvin-Voigt model is stable it must be transformed into
the Laplace domain and written in the form of commensurate order.

A Laplace transform in fractional calculus transforms fractional derivation into frac-
tional multiplication and fractional integration into fractional division. The following
equation,

L
{

d0.47 f (t)
dt0.47

}
= s0.47L{ f (t)} (3)

represents the Laplace transform of a fractional derivative with zero initial conditions.
The following equation,

x(s)
F(s)

=
1

csα + k
(4)

represents the transfer function of the fractional Kelvin-Voigt model. The dynamic charac-
teristics of the elastomer VHB 4910 were identified in our previous work [29,30], where
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the parameters were described in the relationship of δ− ε and can be used for any specific
dimensions. The constants for the fractional Kelvin-Voigt model were calculated for the
specified DEA according to

E =
σ

ε
=

F·L
A·∆l

=
k·L
A
→ k =

E·L
A

(5)

and
σ = η·d

αε

dtα
→ η =

σ
dαε
dtα

=
F

A
dα( ∆l

L )
dtα

=
F

A 1
L

dα(∆l)
dtα

=
c·L
A
→ c =

η·L
A

. (6)

In Equations (5) and (6), E = 1.06106 N/mm2, η = 0.086904 Ns/mm2, and L = 60 mm
and is the extended length in the x direction, and A = 49× 0.16 mm2 and is the cross-section
of the elastomer.

After recalculation, the parameters were k = 0.138645 N/mm, c = 0.086904 Ns/mm,
and α = 0.47, where α is the same as in the δ− ε relationship. To transform it into commen-
surate order parameter α needs to be written in the form of α = 47/100 and α = β× 47,
where β = 1/100 [31]. If complex variable sβ = σ, one can form the commensurate order
transfer function of the fractional Kelvin-Voigt model:

x(σ)
F(σ)

=
1

cσ47 + k
(7)

Since the order of the transfer function changed, the stability criterion also changes from

|arg(TF(s))| > π

2
(8)

to
|arg(TF(σ))| > β

π

2
. (9)

As can be seen in Figure 3, all poles of the commensurate order transfer function of
the fractional Kelvin-Voigt model satisfied the stability criterion in Equation (9), which
shows that the fractional order Kelvin-Voigt model is mathematically stable.
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The equation of motion expressed with the fractional Kelvin-Voigt model is given as

F(t) = m
..
x(t) + c

dαx(t)
dtα

+ kx(t) (10)

where m = 0.0001 kg and represents the mass of the elastomer.



Actuators 2021, 10, 18 7 of 19

Using the Laplace transform on Equation (10) one obtains the following equation:

x(s)
F(s)

=
1

ms2 + csα + k
(11)

while using the fractional derivative plant model, a logical conclusion was to use fractional
PID control, which is written in the form of PIλDµ, since more adjustable parameters are
available for the fine tuning of the controller. The fractional PIλDµ has the same parameters
for gains as the basic PID, except that it has two additional parameters: derivation and
integration order. Since fractional calculus is used, orders are limited to real numbers
between 0 and 1. It should be noted that derivation and integration are reciprocal operations.
According to the Grünwald–Letnikov definition of fractional calculus, positive order
describes derivation, whereas negative order describes integration. In the case of the PIλDµ,
in the control theory it is commonly known that the integral part should be negative, even
though, in most literature, it is positive.

When using fractional calculus in the plant model as well as for PIλDµ control, one can
expect different slopes in the Bode diagram. Fractional derivatives impose a phase shift of
−απ/2, where α is the derivation order. It also changes the slope to−20α dB/dec. Figure 4
shows Bode diagrams for the fractional (k = 0.138645 N/mm, c = 0.086904 Ns/mm, and
α = 0.47) and the basic Kelvin-Voigt model (k = 0.138645 N/mm and c = 0.086904 Ns/mm).
It can be seen how the slope of the fractional Kelvin-Voigt changes. To create Bode plots it
is recommended to use the FOTF Matlab Toolbox [32] or the FOMCON Toolbox [22].
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Figure 4. Difference in Bode diagrams of the fractional and the basic Kelvin-Voigt model.

The next step in identifying parameters for the PIλDµ controller was to compare the
step responses of the plant model with the FOPDT function. Equation (12) shows the
FOPDT function and its parameters.

Gp(s) = k
e−Ls

Ts + 1
(12)

k− process gain
L− process time delay [s]
T − process time constant [s]

Comparing the step responses of both functions, one can obtain the parameters of
FOPDT as k = 5.6652, L = 0.0055 s, and T = 0.7891 s. Using the Wang–Juang–Chan
algorithm [23] for PID parameters identification, the following parameters were obtained:
kp = 7.179, ki = 5.665, and kd = 0.03107. After the parameters of the PID controller were
obtained, the parameters of the PIλDµ gains were taken from the PID, and derivative and
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integral orders were chosen to be both at 0.5 [33,34]. Figure 5 shows the step responses
of the plant model with the PID and the PIλDµ controller in the Laplace domain. Both
controllers gave fast responses. The PID controller produced no steady-state error, whereas
the PIλDµ produced a small steady-state error of about 0.5% of the desired value, which
makes sense since only half of the integrator was used.
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2.2. Optimization of Parameters for the PIλDµ Controller by the Use of the FOMCON Toolbox in
Matlab and Implementation of the PIλDµ Controller on a Microprocessor

Optimization of Parameters for the PIλDµ Controller

The initial parameters for gains of the PIλDµ controller were calculated with the
Wang–Juang–Chan algorithm, whereas derivation and integration orders were chosen
freely. Optimization of PIλDµ parameters can be performed according to the work of
Tepljakov [22,33], who developed the FOMCON toolbox, which stands for Fractional Order
Modeling and Control. Figure 5 shows the FOMCON toolbox for the PIλDµ parameter
optimization. According to Tepljakov, the best way to find optimized parameters is to
fix the gains of PIλDµ and to vary the integration and derivation orders [33]. The plant
model, which is defined as a fractional order transfer function, can be optimized according
to the gain and phase margin of the open-loop control model. Different optimization
algorithms are available, as well as different performance metrics. In this specific case,
the Nelder–Mead optimization method was used, since it is a direct search method and is
therefore well suited to optimizing a function with unknown derivatives [33,35]. A gain
margin of 10 dB and a phase margin of 45◦ were selected as the optimal responses of the
closed-loop plant model. Different initial parameters were taken to be optimized with the
FOMCON. It can optimize only gains, only orders, or all parameters at once.

The methodology of the optimization is such that fractional transfer function of the
plant is first approximated with the Oustaloup filter with the selected order of approxi-
mation and frequency range. Open-loop frequency response is then performed with an
approximated transfer function where the gain and phase margins are calculated. The
Nelder–Mead optimization method was selected to optimize gains and order parameters.
It varies gains and order parameters inside constraints for each parameter, where gains
were constrained between 0 and 100, and orders were constrained between 0 and 1. The
integral square error (ISE) method was selected to evaluate the error between the desired
and calculated phase and gain margins. The Nelder–Mead method calculates the centroid
of all points regarding the optimized parameters. If the calculated error ISE is greater than
in the previous step, then the method contracts points for finding the optimum. If the
calculated error ISE is smaller than in the previous step, then the method expands points
for finding the optimum [33]. The first optimization was performed and tested with a step
function in the Laplace domain with initial parameters kp = 1, ki = 1, kd = 1, λ = 0.5, and
µ = 0.5. Response time Tr[s], settling time Ts[s], and overshoot P [%] were measured and
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observed for both controllers. The fastest response time, settling time, and no overshoot
were demanded. The second optimization was performed with initial parameters that
were calculated with the help of the Wang–Juang–Chan algorithm, namely, kp = 5.665,
ki = 7.179, kd = 0.031, λ = 0.5, and µ = 0.5. Once again, the best response was obtained
when optimizing all parameters at once. The observed differences in the step responses of
the controlled plant optimized with different initial parameters were small, and may be
neglected in the Laplace domain.

2.3. Continuous and Discrete Simulink Models of DEA

To obtain a functional controlled DEA actuator, the optimized parameters need to be
tested in Simulink, since the real DEA is controlled with a Simulink model uploaded to the
DSP controller.

PIλDµ in the Laplace domain must be approximated with a filter for implementation
into Simulink. The Oustaloup filter was used for the PIλDµ approximation [23,36]. Its
mathematical expression is represented as

G f (s) = K
N

∏
k=−N

s + ω′k
s + ωk

, (13)

ω′k = ωb

(
ωh
ωb

) k+N+1/2(1−γ)
2N+1 , ωk = ωb

(
ωh
ωb

) k+N+1/2(1+γ)
2N+1

K = ω
γ
h

ωb − lower frequency bound
ωh − upper frequency bound
N − order of approximation
∏−product of sequence
k− order of product of sequence
γ− order of fractional derivative

It must be pointed out that the Oustaloup filter only approximates the integration and
derivation orders, rather than the complete transfer function. The final transfer function of
the approximated PIλDµ controller is then computed with individual approximation. The
combined order of the approximated transfer function unfortunately becomes very high.
The order of transfer function depends on the N order of approximation. The higher the
order of approximation, the more accurate it is.

A continuous Simulink plant model of the DEA with the PIλDµ approximation
was built with the use of the FOTF toolbox. To implement the PIλDµ control to the
DSP microcontroller, a continuous time approximation with an Oustaloup filter must be
converted into a discrete model. This is achieved with the Matlab function c2d and by
defining the sampling time.

The discrete Simulink model was built with the FOMCON toolbox, as it includes
blocks for discrete PIλDµ controller implementation. The output of the controller is the
force with which it is applied on the DEA. In the continuous and in the discrete Simulink
model the controller output is saturated between 0 and 1.5. Negative values of the controller
output must not have any impact on the DEA model in the Simulink simulation, since only
internal connections of polymers can retract elastomer. The output represents a generated
force of 1.5 N, which is the maximum force that can be generated on the real DEA model
with the applied voltage source. The maximum force was calculated with the help of
the Maxwell stress equation, where stress was converted into force with the specified
dimensions of the elastomer in use [3]. The Maxwell stress generated on the DEA when
voltage is applied is expressed as

P = ε0εrE2 = ε0εr

(
V
z

)2 [
N/mm2

]
(14)
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Force can be calculated from multiplying Equation (11) with the active surface as

FMax = ε0εrE2l1l2 = ε0εr

(
V
z

)2
l1l2 [N] (15)

In Equation (13), εr = 4.7 is relative permittivity according to [37], and l1, l2 and z are
the dimensions of the active surface and the thickness of the DEA, respectively.

2.4. Implementation of PIλDµ on the DSP Microcontroller

In the discrete Simulink model, the discrete PIλDµ block from the FOMCON toolbox
was used, which performs an Oustaloup approximation of individual parameters automat-
ically. However, as this block does not enable resetting the PIλDµ controller outputs, an
integral windup problem can occur. In order to implement the PIλDµ controller into the
DSP microcontroller TMS320F28069M from Texas Instruments [38], the PIλDµ needed to
be approximated with an Oustaloup filter, written as a transfer function and then translated
into a discrete transfer function with the ability to reset it. This is called the quasi-anti-
windup method. Figures 6 and 7 show the Simulink model for DSP implementation with
serial communication to Matlab/Simulink, and real time monitoring. Figure 8 shows the
structure of the ADC_ISR block, where ADC and control are performed. Figure 9 shows the
approximated transfer function of fractional control updated with the quasi-anti-windup
method implemented on DSP.
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Figure 9. Simulink model of the fractional control algorithm with the quasi-anti-windup method.

The quasi-anti-windup method resets the discrete transfer function when the output of
the approximated discrete PIλDµ controller exceeds two times the maximum output from
saturation, which represents a force of 4 N. The method proved to be very successful, which
becomes more evident in the Results section, where the experimental results are shown.

3. Results

The step responses of optimized PIλDµ parameters on average had the same rise time,
the settling time was approximately 5.5 times faster, and overshoot was nearly eliminated
in comparison to its PID counterpart, as can be seen in Table 1. However, the Laplace
domain can easily handle fractional orders since derivative is translated into multiplication
and integration into division. Even more, the output of the regulator in the Laplace
domain is not limited, which means its output can be infinite. Configuring the model in
Simulink where the output of the controller must be limited is vital to testing optimized
parameters before performing the real experiment. The most promising parameters for the
real experiment are highlighted with yellow and the best parameters are highlighted with
green in Table 1.

The step responses of the continuous and the discrete Simulink model were compared
with the step responses of the Laplace domain model for all optimized parameters. Table 2
shows the results of the step responses of the same controller plant model built and tested
in different domains with optimized parameters.
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Table 1. Initial, optimal, and comparing parameters of the PIλDµ and PID and their step responses in the Laplace domain.

Kp Ki Kd λ µ Tr [s] Ts [s] P [%]

PIλDµ
Initial param. 1 1 1 0.5 0.5

Optimal param. 0 6.58 0.53 0.5 0.5 0.014 0.92 0

PID Comp. parameters 0 6.58 0.53 1 1 0.004 8.98 10.8

PIλDµ Initial param. 1 1 1 0.5 0.5

Optimal param. 3.46 100 0.16 0.47 0.81 0.007 0.04 3

PID Comp. parameters 3.46 100 0.16 1 1 0.009 0.22 1.6

PIλDµ Initial param. 1 1 1 0.5 0.5

Optimal param. 1 1 1 0.09 0.7 0.004 1.93 5

PID Comp. parameters 1 1 1 1 1 0.004 5.9 1.62

PIλDµ Initial param. 5.66 7.17 0.03 0.5 0.5

Optimal param. 0 23.18 1.25 0.5 0.5 0.014 0.92 0

PID Comp. parameters 0 23.18 1.25 1 1 0.004 9.49 3.6

PIλDµ Initial param. 5.66 7.17 0.03 0.5 0.5

Optimal param. 1.91 100 0.18 0.46 0.79 0.011 0.04 2.8

PID Comp. parameters 1.91 100 0.18 1 1 0.012 0.24 3

PIλDµ Initial param. 5.66 7.17 0.03 0.5 0.5

Optimal param. 5.66 7.17 0.03 0.86 0.9 0.01 0.75 0

PID Comp. parameters 5.66 7.17 0.03 1 1 0.015 0.75 0

PIλDµ averages 0.010 0.77 1.16

PID averages 0.008 4.26 3.44

The best results were obviously obtained in the Laplace domain. There are more
explanations for this. Fractional derivatives and integrals can be transformed easily into
the Laplace domain. This could be understood as having an exact plant model with a
PIλDµ controller. The second reason is that the output of the PIλDµ controller in the
Laplace domain is not saturated between 0 and 1.5 N to limit its output to the maximum
force that could be applied on the DEA. Not only is its output not limited, but it also
enables the output to be negative. Negative output from the controller means negative
force acting on the DEA model, which reduced the settling time and the overshoot. On the
other hand, the continuous Simulink model uses a high order Oustaloup filter for PIλDµ

approximation since direct use is not possible in Simulink. The output of the approximated
PIλDµ controller was saturated between 0 and 1.5, which was responsible for the longer
settling time and the overshoot of the DEA model. For the simulation of the continuous
Simulink model, a variable simulation step was chosen. The simulation step in the discrete
model was set to 0.1 µs, which was the same as the step used in the microprocessor. When
a grater step was chosen, discrete simulation in Simulink did not converge successfully or it
had large settling time. If a small enough step size is chosen for the discrete simulation then
the differences between the continuous and the discrete Simulink models are significantly
lowered. Otherwise, the differences can be obvious.

Optimal parameters for the model built in the Laplace domain were also optimal
for the continuous and discrete Simulink model. The best parameters for all domains are
highlighted in green, and the worst parameters used for PID control in all domains are
highlighted in red in Table 2.
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Table 2. Comparison of the step response of the DEA in the different domains of controller models.

Laplace TF Simulink Contin. Simulink Discrete

Kp Ki Kd λ µ Tr [s] Ts [s] P [%] Tr [s] Ts [s] P [%] Tr [s] Ts [s] P [%]

PID 0 6.58 0.53 1 1 0.004 8.98 10.8 0.38 9.9 47 0.38 9.6 68

PIλDµ 0 6.58 0.53 0.5 0.5 0.014 0.92 0 0.014 1 28 0.014 0.85 15

PID 3.46 100 0.16 1 1 0.009 0.22 1.6 0.04 0.42 30 0.04 0.42 30

PIλDµ 3.46 100 0.16 0.47 0.81 0.007 0.04 3 0.01 0.12 46 0.01 0.12 43

PID 1.91 100 0.18 1 1 0.092 0.24 3.10 0.05 0.75 48 0.050 0.75 48

PIλDµ 1.91 100 0.18 0.46 0.79 0.008 0.04 2.80 0.010 0.11 45 0.010 0.11 42

PID 5.66 7.17 0.03 1 1 0.011 0.75 0.00 0.05 0.36 1 0.05 0.35 1

PIλDµ 5.66 7.17 0.03 0.86 0.9 0.01 0.75 0.50 0.02 0.30 0 0.02 0.31 1

PID 1 1 1 1 1 0.004 5.9 1.62 1.24 8.20 20 1.24 8.20 20

PIλDµ 1 1 1 0.09 0.7 0.004 1.93 5 0.35 8.42 1 0.48 2.56 No.

PID 0 23.1 1.25 1 1 0.004 9.49 3.6 0.28 9.90 96 0.220 9.90 90

PIλDµ 0 23.1 1.25 0.5 0.5 0.009 0.22 0 0.015 0.23 4 0.040 0.22 2

After the DEA was set up for the experimental part it was then mounted on the
platform in a vertical position and loaded with 315 g weight. According to previously
conducted experiments, this is the appropriate weight to hold the DEA in the desired
position, otherwise its internal polymers’ connections would bring it back to the initial
unloaded state [29]. Laser position sensor Wenglor YP05MGV80 [39] was mounted on the
DEA. A laser was used since it offers contactless measurements. A high voltage supply
was generated from DC to the HVDC converter E1-P600/Y [40]. Figure 10 shows the
experimental setup for the real DEA.
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3.1. Step Responses of the Real DEA with PID and PIλDµ Control

The step responses of the DEA were separated into step responses with PID control
and step responses with PIλDµ control. Figure 11 shows the step responses of individual
sets of PID parameters. Eighteen experiments were performed, where different parameters
were used. Promising parameters were experimented multiple times. Response time and
settling time were measured as well as overshoot (P[%]) and steady-state error. Table 3
shows the results of the step responses of the DEA with PID control. It can be seen from
Figure 11 that not all successful step responses performed in the Laplace domain and in
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the Simulink model gave good results with the real DEA. The best results were obtained
with the experiments of numbers 4, 6, 8, 10, and 17. The average rise time was 1.9 s. The
average settling time was 10.4 s. The average overshoot was 8.1% of the desired value.
Some experiments also produced a steady-state error. The best performers in Table 3 are
marked with the same color as in Figure 11a.
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Table 3. Step responses of a real DEA using a PID control with different parameters.

Exp. Number Kp Ki Kd Tr [s] Ts [s] R [%] Steady-State Error

0 5.6 0.03 7.1 15.8 31.7 2.8 No

1 5.6 7.1 0.03 2 24.8 33.1 No

2 0 23.1 1.2 3.2 No 32.9 Yes

3 3.4 100 0.1 2.5 No 19.4 Yes

4 5.6 7.1 0.03 2.7 9.4 4.3 No

5 0 23.1 1.2 1.8 No 51.18 Yes

6 5.6 7.1 100 2.3 11 5 No

7 0.1 7.1 100 2.3 No 19.7 Yes

8 5.6 7.1 100 1.3 10.7 17.4 No

9 63 63 61 1.2 14.4 33.6 No

10 5.6 7.1 0.03 1.5 9.1 7.9 No

11 5.5 7.1 0.03 1.7 No 30.6 Yes

12 3.4 100 0.1 1.4 No 25.2 Yes

13 0 23.1 1.2 6.1 23.6 18 No

14 0 23.1 1.2 2.2 25.2 34.2 Yes

15 0 23.1 1.2 4.8 24.1 24.2 No

16 0 23.1 1.2 1.2 No 54.8 Yes

17 5.6 7.1 0.03 1.5 11.8 6 No

Figure 11b shows the step responses of the PIλDµ control of the real DEA. An integral
windup problem can be seen at the first four experiment numbers. In some experiments (4
to 9) the integral windup problem did not occur, but this did not guarantee the stability
of the controller. Experiments with numbers 10 to 15 show step responses with the quasi-
anti-windup method applied. The results were greatly improved, as rise times and settling
times were reduced, and overshoots were reduced to an average 2.6% of the desired value.
Table 4 shows the parameters used for individual experiments, as well as the results. The
best results are highlighted with the same color as in Figure 11b.
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Table 4. Step responses of a real DEA using PIλDµ with different parameters, part 1.

Exp. Kp Ki Kd λ µ Tr [s] Ts [s] R [%] Steady-State Error

0 3.4 100 0.16 0.47 0.81 2.7 33.6 13.4 Yes

1 1.9 100 0.18 0.46 0.79 No 40 0 Yes

2 5.6 7.1 0.03 0.86 0.9 2.7 40 54.7 Yes

3 5.6 7.1 0.03 0.86 0.9 1 40 146 Yes

4 5.6 7.1 0.03 0.86 0.9 1.2 40 0 Yes

5 1.91 100 0.18 0.47 0.81 No 10 0 Yes

6 5.6 7.1 0.03 0.98 0.9 1.4 25 0 Yes

7 5.6 23.1 0.03 0.86 0.9 1 30 0 Yes

8 0 23.1 0.03 0.5 0.5 1.1 10 0 Yes

9 0 23.1 1.2 0.5 0.5 1 25 14.2 Yes

10 0 23.1 1.2 0.5 0.5 1 4.2 2.2 Yes

11 5.6 7.1 0.03 0.86 0.9 1 7.4 5.4 1%

12 5.6 7.1 0.03 0.9 0.9 1 15 0 Yes

13 5.6 7.1 0.03 0.6 0.9 1 15 0 Yes

14 5.6 7.1 0.03 0.6 0.8 1 5.8 0 <1%

15 5.6 7.1 0.03 0.5 0.9 1 4.3 9 1%

3.2. Comparing Results of Step Responses for Both Controllers and the Best Parameters in
All Domains

Figure 12 shows the comparison of the step responses of both controllers for a real
DEA. PID controller results are marked with experiment numbers 0 to 4, and PIλDµ

controller results are marked with experiment numbers 5 to 9. The best parameters for PID
control were obtained by the Wuan–Juang–Chan algorithm. Average rise time among step
responses with the PID controller was 1.7 s, the average settling time was 10.4 s, and the
average overshoot was 8% of the desired value. On the other hand, these gain parameters
were also the best for the PIλDµ control where integration and derivation orders were
optimized with help of the FOMCON toolbox. Table 5 shows the comparison of the results
of the step responses obtained with both controllers. It can be seen that the PIλDµ control
improved step responses compared to the PID. For the PIλDµ control the average rise time
was reduced to 1 s, settling time to 5.4 s, and overshoot to 4.3%. With the implementation
of the PIλDµ control a small steady-state error was introduced, which was not greater
than 1% and did not affect the controller’s performance significantly. When the order of
integration in the PIλDµ controller was less than 1, steady-state error was introduced to
the step response of the plant.

Figure 12b shows the comparison of step responses with the same parameters of PID
and PIλDµ control in different domains. These parameters were Kp = 5.66, Ki = 7.17,
Kd =0.03, λ = 0.6, and µ = 0.8. The best results were obtained for experiments 0 and 1,
representing the Laplace domain, where the rise and settling times were the smallest and
there was no overshoot. The reason is that the output of the controller was not saturated
between 0 and 1.5 as it was in the Simulink models. The discrete Simulink models had
slightly greater response and settling time as well as overshoot, as seen for experiments 2
and 3. Experiments 4 and 5 show the experimental results of the PIλDµ and the PID control
on the real DEA, respectively. Table 6 shows the response time, settling time, overshoot,
and steady-state error of the step responses of controllers in different domains.
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Table 5. Comparison of the step responses of the PID (0–4) and PIλDµ (5–8) control of a real DEA.

Exp. Kp Ki Kd λ µ Tr [s] Ts [s] Overshoot [%] Steady-State Error

0 5.6 7.1 0.03 1 1 2.4 9.4 4.3 No

1 5.6 7.1 0.03 1 1 2.1 11 5 No

2 5.6 7.1 0.03 1 1 1.3 10.7 17.4 No

3 5.6 7.1 0.03 1 1 1.4 9.1 7.8 No

4 5.6 7.1 0.03 1 1 1.3 11.8 6 No

5 5.6 23.1 1.2 0.5 0.5 1 4.2 2.2 No

6 5.6 7.1 0.03 0.86 0.9 1 7.4 5.4 1%

7 5.6 7.1 0.03 0.6 0.8 1 5.8 0.6 <1%

8 5.6 7.1 0.03 0.5 0.9 1.1 4.3 9 1%

Table 6. Comparison of step responses with PID and PIλDµ control in different domains.

Exp. Kp Ki Kd λ µ Tr [s] Ts [s] Overshoot [%] Steady-State Error

0 5.6 7.1 0.03 0.8 0.9 0.12 0.41 0 No

1 5.6 7.1 0.03 1 1 0.13 0.44 0 No

2 5.6 7.1 0.03 0.868 0.9 0.09 0.44 5 No

3 5.6 7.1 0.03 1 1 0.09 0.68 3 No

4 5.6 7.1 0.03 0.6 0.8 1.13 5.84 0.6 <1%

5 5.6 7.1 0.03 1 1 1.54 9.14 7.8 No

4. Discussion

The employment of fractional calculus in control theory can improve the PIλDµ

control of the fractional plant. The main objective was to eliminate the overshoot and make
the response as fast as possible for the DEA, which was modeled as fractional plant. The
easiest way to test fractional plant is in the Laplace domain. With the help of the Laplace
transform, fractional derivates are transformed to fractional multiplication and fractional
integrals into fractional division. Step responses performed in the Laplace domain gave
the best results. However, the output of the fractional controller in the Laplace domain
represents the force acting on the DEA plant. If the output is not saturated, then this output
can also be negative, which helps reduce the settling time and overshoot of the DEA plant.
But this is not the case in real application. When performing the experiment, the only force
acting on retracting the DEA to its initial displacement were its internal polymer chains.
That is the reason why continuous and discrete models in Simulink must be saturated
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between 0 and 1.5, which represent the force in N. The introduction of the saturated output
of the controller had some negative effects on the step response. It reduced the response
time and the settling time and increased the overshoot in the Simulink simulations.

Approximation of the PIλDµ controller with high order Oustaloup filter is needed to
perform a Simulink simulation. Continuous simulation was performed with a variable
step solver in Simulink. For discrete simulation, a fixed step was chosen, corresponding
to the microprocessor step. The size of the fixed step for discrete Simulink simulation
must be properly chosen. Greater step size caused larger response time, settling time, and
overshoots in discrete Simulink simulation.

To implement the PIλDµ to the microprocessor it must be approximated with an
Oustaloup filter in transfer function form and transformed into the z-domain with the
same step as defined in the microprocessor. The first position control experiments of the
DEA actuator resulted in large overshoot with a large steady-state error. This implied
an integral windup problem. A quasi-anti-windup method was introduced to reset the
transfer function of the PIλDµ when the output exceeded a threshold value. As shown
by the results, successful implementation and realization of the PIλDµ position control
was achieved for the selected DEA. Rise time was reduced by nearly half to around 1 s,
as was settling time, which was reduced to around 5 s. Overshoot was also much lower,
averaging around 4% of the final value. The main disadvantage of the PIλDµ controller
was the appearance of a steady-state error, even though the error was smaller than 1% of
the desired value and did not influence the performance of the controller.

Observing the transition from the Laplace to the discrete domain, one can conclude
that overshoot in step response in the Laplace domain predicts even greater overshoot in
step response in continuous and discrete domains for the DEA plant. Controller output
in the Laplace domain is not limited as it is in continuous and discrete domains between
0 and 1.5 and can also have negative values, which reduces the overshoot. If overshoot
cannot be eliminated with unlimited output of the controller in the Laplace domain, then
one can expect overshoot in continuous and discrete domains.

In future work, an anti-windup method with a transfer function for PIλDµ approxi-
mation is going to be realized, separated into individual blocks of the z-transform. Each
block will be limited with the output. Hopefully this will bring in even better results for
position control.
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