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Abstract: Robotic hands with unique designs, capabilities and applications have been presented in
the literature focusing on sensing, actuation, control, powering and manufacturing, most of which
are created by manual assembly process. However, due to advancements in additive manufacturing,
new capabilities have replaced traditional methods of manufacturing. In this paper, we present a
soft 3D-printed robotic hand actuated by custom-made coiled shape memory alloy (SMA) actuators.
The hand uses additive manufacturing of flexible thermoplastic polyurethane (TPU) material, which
allows flexing at the joint and hence eliminates the need for additional assembly. Here, we present
the full characteristics of the robotic hand such as object grasping categorized by size and weight
from the ARAT kit and others. The robotic hand is 425 mm in length, weighs 235 g and is able to
operate at a frequency of 0.125 Hz without active cooling. It can grasp an object of 55–81 mm widths,
weighing up to 133 g, while consuming an average power of 7.82 W. We also show the time domain
response of our custom-made coiled SMA to different current inputs, and its corresponding force and
displacement. The current design yields a lightweight and low cost artificial hand with significantly
simplified manufacturing for applications in robotics and prosthetics.

Keywords: robotic hand; prosthetic hand; coiled SMA; helical SMA; TPU hand; biomimetic; grasping

1. Introduction

Robotic hands have been researched for many years due to the need of grasping
and manipulating complex objects to perform assistive functions for humans. Robotic
hands are the key components of social robots and industrial manipulators. A century
of robotic hands has been recently presented by Piazza et al. [1], illustrating a century-
old effort in realizing the perfect robotic hand. There are many challenges in the design
and development of robotic hands, including selection of actuators, design, control and
manufacturing methods. These design decisions are often related to the application where
the hand is going to be used. Our objective in this work is to design and develop a robotic
hand that has as many of the following properties and capabilities as possible:

• Size: Adult-sized hand and forearm, typical size of adult hand is 396–517 mm based
on the 5–95th percentile of the human forearm length [2].

• Object manipulation: Be able to manipulate commonly used objects of size 50–100 mm
size, such as handling of daily usage objects.

• Manufacturing: The design should be easy for manufacturing, customizable to desired
size and preferably using 3D printing for modification in rapid prototyping systems.

• Weight: The design and the material should result in a lightweight structure that
should be under 300 g.

• Cost: Material cost for manufacturing the robotic hand should be low; typically the
material cost should be less than $200.

• Load capacity: The robotic hand should hold a mass of at least 100 g.
• Design for manufacturing: Adheres to design for manufacturing (DFM) and assembly

(DFA) principles.
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• Operating conditions: The operating temperature of the device is room temperature
20 degrees Celsius.

• Noise: Low or no noise generated from the system for silent operation.

In the meantime, we would like to perfect the design and manufacturing method and
evaluate the performance of the hand, which can then be later transformed for prosthetic
purposes. This approach allows for maturing the design iterations and making a gradual
transition from robotics to humans. Light weight is especially essential in prosthetic
applications, as heavy prosthetics are often uncomfortable due to cantilever moments
transmitted to the residual limb [3,4]. Several efforts to achieve this have been made in
many aspects of robotic hand design and development.

The Humanoid, Biorobotics and Smart Systems (HBS) lab at UT Dallas has designed
and developed numerous unique robotic hands in the past few years. The modes of actua-
tion vary, including RC (Radio Controlled) servo motors [5], shape memory alloy (SMA)
wires [6], TCP (Twisted and Coiled Polymer) muscles [7], hybrid actuation using Dynamixel
servo motors and TCP actuators [8] and robotic finger actuated by cold and hot water [9].
These experiences and test results have helped us to review all the required components
for practical applications of robotic hands. Many of the necessary feedback systems and
sensors (such as thermal and flex sensors) are readily available for implementation into
newly developed artificial hands. This work focuses primarily on the development of the
hand and its mechanical performance and strengths with custom-made actuators as the
core component; sensors and feedback control will be implemented at a later time.

This paper outlines the design and implementation of a novel robotic hand that uses
coiled shape memory alloy muscles. It also pioneers the usage of entirely 3D-printed
flexible thermoplastic polyurethane (TPU) to construct the hand, allowing for ease of
construction while still touting significant force output and response times. The electrical
current provided to muscles is also varied to determine the effects it plays on overall
actuation displacement and speed; such data can be utilized later for implementation of
feedback control. The hand was found to be capable of grasping multiple objects and loads
up to 133 g, while still achieving actuation frequencies of up to 0.125 Hz. The paper is
organized as follows: first, we will present a literature review of related works on existing
robotic hands and coiled SMA actuators. Next, we will discuss the design and construction
of the robotic hand along with the components. This will be followed by the experimental
setup to characterize the coiled SMA actuators and the robotic hand. Then, we will present
experimental results such as actuation angles, grasping capacities and discussion. Finally,
summary, conclusion and future work will be provided.

2. Literature Review

There are many artificial hands that have been developed for both robotic and pros-
thetic purposes in the past century, most of which attempt to mimic the dexterity and
functionality of a human hand [10–14]. Although many hands have been built by academic
labs, industrial efforts have also found their way to the marketplace [4,15]. However,
such commercial hands tend to be extremely expensive, with prices ranging from 6600
to 100,000 USD [16]. Table 1 provides a comprehensive summary of existing robotic and
prosthetic hands using different modes of actuation, including traditional electric mo-
tors [10,12–14,17–19], hydraulic/fluidic [3,20,21] pneumatic [22] and artificial muscles [7].
Analysis of design, manufacturing and performance of different robotic hands are also
presented in numerous review articles [1,4,23–25]. While electric motors are considered
standard due to their high efficiency and ease of control, they have the disadvantage
of weight and bulkiness in comparison to recently developed artificial muscles such as
twisted and coiled polymer (TCP) muscles [7] and shape memory alloy (SMA) muscles [26].
Furthermore, many of the hands in literature are quite complex in construction and con-
sist of several revolute joints to accommodate each degree of freedom. In contrast, this
paper presents a simple 3D printed soft robotic hand constructed from thermoplastic
polyurethane and is actuated by coiled shape memory alloy muscles.
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Nickel titanium (Ni-Ti/Nitinol) shape memory alloys (SMAs) have been used for
various applications outside of just artificial muscles, including biomimetic robotics, sound-
proofing and aircraft control systems [27–30]. SMA muscles benefits from features such as
compact size, high force-to-weight ratio and silent operation, but have low energy efficiency,
low operational frequency and low stroke (approximately 5%) [31]. As a result, many of the
applications using linear SMA muscles suffer from complex designs to implement routing
systems that increase usable displacement of the muscles [26]. However, the stroke can be
greatly increased by coiling the SMA into a helical structure, while frequency can be in-
creased using active cooling techniques [32]. SMA plates have also been utilized in robotic
hand actuation, but require embedding the actuator directly within the finger [33,34]. While
linear SMA muscles have been widely used in artificial hand applications [26,35–37], there
has been less applications of coiled shape memory alloy muscles in artificial hands. When
the coiled form or the helical form of the SMA is used, force of the actuator will reduce
significantly, while the actuation stroke will increase significantly. Therefore, a tradeoff
between force and actuation strain is required depending on the application of the robotic
hand [31].

Relevant information is provided in refs. [38–46] for a robotic hand or finger design,
but one of the first usage of coiled shape memory alloy (SMA) muscles in a robotic finger
via antagonistic pairs occurred in an earlier work in 1989. Bergamasco et al. demonstrated
coiled SMA muscles (0.45 mm wire diameter, 1.5 mm spring diameter, 14 coils and length
of 6.3 mm) capable of lifting 3.5 N load a height of 10 mm at 0.11 Hz [45]. A robotic
hand using coiled shape memory alloy actuators for individual phalangeal control was
demonstrated by Farias et al. [44]. Their hand has four fingers and 22 muscles (0.2 mm wire
diameter, 1.3 mm spring diameter, 12 coils and a length of 7 mm) arranged in antagonistic
pairs to control each of its 11 degrees of freedom robotic hand. It also implements magnetic
locking structures to maintain finger positions without the need of continuous actuation
of the muscles. In another work, Taniguchi et al. presented the concept of a child sized
prosthetic hand using two coiled SMAs (0.5 mm wire diameter, 1 mm spring diameter,
20 coils and length of 20 mm) with coupled actuation and a biased return spring. While the
hand uses conventional Joule heating for actuation, it also employs fluidic cooling of the
muscles with fluorine refrigerant to increase frequency of actuation [46]. Recently in 2019,
Park et al. [47] showed the usage of bundled coiled SMAs and fluidic heating/cooling
pumps to simulate muscles (the SMA bundles) composed of muscle fibers (the individual
coiled SMAs). Whereas the vast majority of SMA actuations are powered by resistive
heating, their SMA bundles use hot water (40–93 degrees Celsius) to initiate actuation,
and cold water (28 degrees Celsius) to cool the muscles. Their work shows the immense
strength of coiled SMA muscle bundles, which can lift up to 10 kg at 50–58% strain and
up to 1 Hz frequency. They also showed relatively higher frequency at 1.67 Hz, but the
strain for the 10 kg lifting decreased to 28.7% strain. Park et al. also showed the usage of
the SMA bundles in actuating an elbow joint of an arm, in which two bundles are mounted
in an antagonistic pair.

Other novel artificial muscles used for robotic hands include those made from polymer
fibers, such as twisted coiled polymer (TCP) muscles [7]. While these muscles are inexpen-
sive to manufacture and boast fairly high force outputs with decent stroke, they require
relatively high power consumption and low frequency of actuation. Furthermore, TCP
muscles have limited lifespans, some of the reported life cycle for 6-ply TCP is 800 cycles
at 0.25 Hz in water and 200 cycles at 0.017 Hz in air [48]. Although equally thermally
inefficient, the small size of coiled SMA actuators reduces the total power consumption,
while having higher actuation strain and frequency.

According to the literature review above, not much research has been done on coiled
SMA for robotic hand application. In this paper, we demonstrated the first usage of 3D-
printed soft thermoplastic polyurethane (TPU) elastomer in combination with coiled SMA
in robotic hands, as shown in Figure 1. This unique hand is designed with 200-micron
diameter coiled shape memory alloy actuators and the hand is capable of grasping objects
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up to 133 g without the help of thumb actuation. Although not often discussed by other
authors, ease of manufacturing is a key benefit of this hand, as there are few parts beyond
the actuators, all of which are 3D printed. This hand also has very simple assembly and has
a lightweight overall structure as a result of the small coiled SMA actuators. Furthermore,
the overall cost of the hand was low, while still demonstrating fair actuation for grasping in
terms of strength and speed. The overall size of the hand was 425 mm in length, 120 mm in
width and 75 mm in height. This size was considering the orientation of the thumb, which
was at angle with the palm plane. The next section will discuss the detailed design and
characteristics of the robotic hand.

Table 1. Characteristics of existing artificial hands and fingers compared with coiled shape memory alloy (SMA)
actuated hand.

Type of
Actuator

Motion
Transmission Mode

No. of
Actuators

Finger Return
Mode

No. of
Fingers Weight Total

DOF
Name/

Developer

Muscles Tendon 40 Muscles 5
0.4 kg (hand)

+1.13 kg
(forearm)

23 Human hand §

(male) [38]

Electrical
motors

Flexible driven train
(flex shaft) 14 Actuator 5 – 14 Robonaut hand

[19]

Tendon driven
mechanism 19 Torsional

springs 5
0.09 kg (hand)

+0.96 kg
(forearm)

19 DART hand [14]

Tendon/gear driven
mechanism 16 Actuator 5

0.665 kg (hand)
+3.3 kg

(actuators)
16 NAIST hand 2

[12]

Tendon driven
mechanism 16 Helical springs 5 – 16 UB Hand 3 [18]

Linkage mechanism 5 Actuator 5 0.42 kg (hand) 5 HIT-DLR hand
[39]

Tendon driven
mechanism 10 Actuator 5 0.942 kg (hand

+ forearm) 16 Xu and Todorov
[40]

Tendon driven
mechanism 2 Actuator 5 – 19 Pisa/IIT

SoftHand 2 [41]

Twisted string
mechanism 3 Actuator 5 0.280 kg (hand) 10 UC Softhand [42]

– – – 5 1.27 kg (hand) 6 DEKA LUKE
Arm [15]

Fluidic
actuators Hinge structure 18 Elastomeric

spring 5 – 13 Karlsruhe Univ.,
Germany [3]

Pneumatic Tendon driven
mechanism 38 Actuator 4 – 19 UTAH/MIT [22]

Nylon
actuators

Tendon driven
mechanism 10 Actuator/torsional

springs 5
0.053 kg (hand)

+ 0.087 kg
(forearm)

16 TCP UTD hand
[7]

SMA

SMA wires 9 Actuator 3 – 8 SMA hand [26]

SMA plates 2 Actuator 1 0.044 kg
(finger) 1 Engeberg et al.

[33]

SMA plates 10 Actuator 5 0.282 kg (hand) – She et al. [34]

Coiled SMA 22 Actuator 4 0.6 kg (hand) 11 Farias et al. [44]

Coiled SMA 8 Actuator 5 0.235 kg (hand
+ forearm) 14

THIS PAPER
(TPU SMA

Hand) *
§ Natural hand for benchmark comparison. * The robotic hand developed in this study at the University of Texas at Dallas (UTD).
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Figure 1. CAD (Computer Aided Design) model of the robotic hand actuated by helically wound shape memory alloy
muscles with flexible thermoplastic polyurethane (TPU) fingers.

3. Design and Construction of the Robotic Hand
3.1. Mechanical Design

The primary principle of the soft robotic hand is shown in Figure 2. The 3D-printed
TPU finger and hand were actuated by a pair of coiled shape memory alloy muscles in
parallel antagonistic setup. The flexor muscle was actuated, contracting to perform flexion
of the finger, while the antagonist flexor muscle stretched. To return the finger, the extensor
muscle was actuated, creating an opposite motion. This kind of actuation of agonist and
antagonistic pairs is quite common [40,44,49] and found to be effective in robotic hands.
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Each finger has three degrees of freedom (DOF), with three flexible joints connecting
the proximal, intermediate and distal phalanges to the palm (metacarpals). The hand is
considered underactuated, as all the joints are actuated by a single muscle and their motion
is coupled. Thumb motion was not fully implemented due to its complexity, with the
additional motions of abduction, adduction and opposition. This prototype only includes
thumb flexion and extension, so the thumb is considered mostly obsolete, although it is
theoretically functional.

The hand was designed in PTC Creo Parametric CAD software using an adapted
model from our previous robotic hand [7,50]. As shown in Figure 1, the hand consists of a
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new single solid body composed of finger parts connected via a thin 0.5 mm band (compli-
ant joint), which acts as the flexible finger joint. The strength of such a thin geometrical
feature was then verified by SolidWorks static simulation and was able to withstand an
axial tensile force along the finger of 40 N (4 kgf, higher than the design specification of
100 g) without yielding. The hand was then 3D-printed from thermoplastic polyurethane
(TPU) 92A plastic rubber using a Stratasys F370 3D printer, Figure 3. TPU 92A was selected
as the material of choice due to a low flexural modulus (25.6 MPa) and high flexural
strain while maintaining the ability to be 3D printed [51]. Recently, TPU has been used for
multidirectional flexible joints in conjunction with metal pin joints [52]. However, the hand
presented in this paper has only flexible TPU joints in the fingers and uses metal fasteners
solely for coupling the hand to the forearm. The printed hand and build plate are shown in
Figure 3. The TPU is black colored, and the white part is the QSR support material, which
can easily dissolve in solvent. This manufacturing strategy significantly helps in the design
and development of robotic hands, as it minimizes the assembly time and such capabilities
were not available until recently. The total volume of material used to print one hand was
3 in3 (98 cm3) with a printing time of approximately 9 h. Solid infill pattern was used with
a resolution (layer thickness) of 0.254 mm.
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The remaining parts (wrist, forearm and “deck plate,” which holds the muscles),
shown assembled with the hand in Figure 1, were 3D printed from acrylonitrile butadiene
styrene (ABS) plastic. The forearm and deck plate both feature honeycomb cutout patterns
to further reduce weight while maintaining structural integrity. In total, there are only four
individual 3D printed parts, demonstrating ease of manufacturing and assembly, which
supports DFMA principles. The overall hand including the forearm has a length of 425 mm,
a volume of 232 cubic centimeters and a mass of 235 g.

3.2. Coiled SMA Fabrication

Coiled shape memory alloy (SMA) muscles were fabricated from Dynalloy 0.008
(0.20 mm) diameter Nitinol wire by tightly coiling it around a 0.64 mm diameter steel
mandrel (piano wire from Precision Metals). This was done using a custom-made setup,
shown in Figure 4a. The manufacturing setup consists of two stepper motors, a linear
motor, a mandrel and SMA wire spool. The primary winding motor draws wire from the
SMA spool unwinding motor and coils it around the thin mandrel. The pitch is controlled
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by the linear screw motor, which moves downwards as the coils are wound. The fabricated
SMA had a pitch of 0.25 mm/coil and a total length of 50 mm, shown in Figure 4b.
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Figure 4. Muscle fabrication (a) custom coiled SMA fabrication setup; (b) annealed muscle (50 mm) and (c) muscle cut
into two 25-mm halves and crimped. The two rotary motors are Adafruit NEMA-17 0.35 A 12 V Stepper motors, while the
linear stepper is a Moons HD4001–20N Stepping Motor. The motors are controlled by an Arduino Uno microcontroller and
two stacked Adafruit motor shields (V2). The motor shields are connected to a Topward 6306D power supply, with 12 V,
0.7 A for the two Adafruit motors and 0.25 A, 9 V for the Moons stepper. The Arduino has code written to synchronize the
rotations of the motor such that the mandrel and spool have equal tangential velocities.

The Nitinol wire was then crimped to the mandrel and removed from the setup. The
muscle was annealed in a Thermolyne FD1535M furnace at 350 ◦C for 45 min to set the
desired shape memory properties. After the annealing was complete, the muscle was
allowed to cool for 10 min, and then cut in half to form two muscles of 25 mm length each.
Crimps were attached to assist connection of electrical wires. The final muscles are shown
in Figure 4c.

The manufacturing process presented here is similar to the one by Potnuru and
Tadesse [53]. However, the two stepper motors shown in Figure 4 help in holding the SMA
wires tightly and fabricating of consistent actuators for use in the robotic hand, which was
found to be more effective than the previous setup. Consistency was maintained as much
as possible to prevent the fingers from actuating at unintended angles. The fabrication of
these coiled SMAs was also generic and could therefore support varying dimensions of
spring diameter and pitch for other applications as well.
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3.3. Hand Construction

The assembly process is straightforward, as there are few parts to assemble. Each
finger is threaded with sewing thread to act as tendons, which is tied to a lobster clamp to
interface with the muscles. The hand, wrist and forearm are linked together via nuts and
bolts. The deck plate acts as the static anchor for the muscles and is attached to the forearm
via nails. The muscles are stretched via pretension to a length of 100 mm in order to attach
the tendons to the rear anchor on the deck plate (stretched 400% of its original length). The
properties of each muscle are shown in Table 2, and a slight variation in length of muscles
(±2–3 mm) is observed, which will be discussed later in the section. While there is support
for thumb flexors and extensors in both the circuitry and design of the hand/forearm, these
muscles were not implemented due to the aforementioned incomplete nature of thumb
abduction. The final constructed hand is shown in Figure 5a, while the operating schematic
diagram of the hand is shown in Figure 5b.

Table 2. Muscles used in the hand: length/voltages/power.

Muscle Initial Length (mm) Input Voltage at 0.5 A
(V)

Power Input at 0.5 A
(W)

Index flexor 24 4.0 2.00
Middle flexor 25 4.4 2.20

Ring flexor 26 4.1 2.05
Pinky flexor 23 4.1 2.05

Index extensor 25 4.0 2.00
Middle extensor 23 3.7 1.85

Ring extensor 22 3.6 1.80
Pinky extensor 24 4.1 2.05

3.4. Circuitry and Microcontroller

The actuation circuitry for the SMAs consists of ten MOSFET (Metal oxide silicon field
effect transistors) and a voltage regulator that are soldered to a breadboard; each transistor
controls a single muscle. Two are redundant, as they were intended to control the thumb,
which is not being used. The voltage regulator provides 3 V to the MicroPython Pyboard
1.1 microcontroller. Each MOSFET receives a pulse width modulation (PWM) signal from
the Pyboard microcontroller, which is programmed via a Python script. The MOSFET then
functionally reduces the battery voltage via PWM to the necessary power and provides it
to the muscle for actuation. The overall circuit diagram is shown in Figure 5c. The script
was written from scratch and implements an object-oriented programming style, with a
finger object being created to maintain records of each finger’s required PWM input, and
relevant functions for flexion and extension. The code is provided in Appendix A. Power
is provided from a 6.6 V, 30 Wh rechargeable battery and is projected to be able to operate
continuously for 3.84 h at an actuation frequency of 0.1 Hz.
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Figure 5. (a) Image of hand and circuitry; (b) functional schematic of the wiring and (c) circuitry
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4. Experimental Results and Discussion

We conducted several tests to assess the performance of the coiled SMA-actuated
robotic hand using the experimental setup shown in Figure 6. Initially, we characterized
the fabricated SMA actuators for the time domain response, and then performed tests on
the robotic hand such as finger bending angles, cyclic tests, grasping and holding objects.
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Figure 6. Muscle characterization setup (a) image and (b) schematic. A coiled shape memory alloy
muscle was prepared with the characteristics listed in Table 3. The muscle was pretensioned to
100 mm, with one end attached to a force probe, while the other end was attached to the spring. A
square wave of varying magnitudes (0.3, 0.5 and 0.7 A) was applied to the muscle, with a 2 s on and
8 s off cycle for 5 cycles.
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Table 3. Coiled SMA muscle characteristics.

Ni-Ti Properties [54]

Density (g/cm3) 6.46

Specific Heat (cal/g◦C) 0.20

Melting Point (◦C) 1300

Thermal Conductivity (W/cm ◦C) 0.18

Martensite Resistivity (µΩ cm) 80

Austenite Resistivity (µΩ cm) 100

Austenite Start Temperature (◦C) 70

Muscle Characteristics

Initial Trained Length (mm) 28

Wire diameter (mm) 0.20

Overall diameter (mm) 1.04

Pitch (mm/coil) 0.25

Mass (g) 0.343

Pretensioned length (mm) 100

Max measured force output (N) 1.11

4.1. Muscle Characterization

A single coiled shape memory alloy muscle was created to demonstrate the muscle ca-
pabilities, with characteristics shown in Table 3. The muscle was attached to a force sensor
on one end, with the other end being attached to a spring (spring constant = 0.14 N/mm),
illustrated in Figure 6a. The schematic diagram of the setup is shown in Figure 6b. Other
parameters measured include displacement via a laser sensor and temperature via ther-
mocouples attached to the muscle. Differing current amplitudes of 0.3, 0.5 and 0.7 A were
then tested on the muscle for 2 s, followed by an off period of 8 s. This corresponds to
a frequency of 0.1 Hz and duty cycle of 20%, for 5 cycles. As shown in Figure 7a, the
0.7 A pulse generated the highest temperature and corresponding force and displacement.
The 0.3 A pulse generated significantly less displacement and force than both the 0.5 and
0.7 A pulses, likely because the heating time of 2 s was not enough to cause the necessary
phase change temperature in the SMA. Since the 0.5 A pulse is shown to generate similar
actuation displacement and force to the 0.7 A pulse, it is chosen as the default operating
current to avoid damaging the muscles when actuated for long heating periods. It should
be noted that the manufacturer recommended current input is 0.66 A for 1 s [54].

Although variations in muscle length in the robotic hand are observed in Table 2, this
does not significantly affect the muscle characteristics. Such slight deviations arise from
the manufacturing process step of dividing the original 50 mm muscle in two to form
muscles of 25 mm length each. However, due to the pre-tensioning method described
in Section 3.3, the differences of ±2–3 mm are effectively negated by the much larger
pretensioned length of 100 mm. Each muscle attempts to recover to its original length via
the shape memory effect, but is limited to a maximum contraction of approximately 50 mm
due to the geometry of the finger and placement of the muscles, and thus the variation is
not noticeable in practice. This is also not reflected in the muscle characterization due to
the bias spring limiting the displacement stroke to 10 mm maximum.
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plot. The 0.7 A pulse was able to produce the highest temperature from the Joule heating, and a corresponding high displacement and force. The 0.3 A pulse had significantly lower
displacement and force output.
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Temperature variations were observed between the first and later cycles (Figure 7).
In the first 2 s heating interval, the muscle reached 41, 55 and 85 degrees Celsius (0.3, 0.5
and 0.7 A respectively) from the room temperature of 22 degrees Celsius. The muscle
then cooled to slightly above room temperature (27, 31 and 35 degrees Celsius) during the
8 s cooling period. The maximum temperature was not reached until the later (usually
second/third) cycles, peaking at 44, 71 and 99 degrees Celsius. However, it should be
noted that the large variations in temperature with the 0.7 A pulse did not correspond
with a significant change in force and displacement (Figure 7a), as the muscle produced a
fairly consistent force (1.1 N) and displacement (10 mm). Additionally, since the maximum
displacement is limited by the spring extension, it is not indicative of the usable recovery
stroke of the pretensioned coiled SMA in the hand application. The magnified plots of the
temperature, displacement and force of the first cycle are shown in Figure 7b–d illustrating
the profiles of the curves corresponding to the electrical current magnitudes.

4.2. Preliminary Tests on a Single Finger

A single finger was first tested to observe the actuation of the muscles and flexibility
of the TPU joints. Markers were placed on the side of the finger to indicate the start and
end of each phalange, which were then used to calculate angular displacement from the
horizontal plane, as shown in Figure 8a. Two current magnitudes, 0.3 and 0.5 A, were
provided to the actuator on the fingers via the electrical circuitry, with a 5 s pulse to the
flexor, and then a 10 s pulse to the extensor, which results in a period of 15 s. As shown
in Figure 8b,c, the 0.5A pulse was able to generate higher angles, with a DIP angle (distal
interphalangeal joint) of nearly 240 degrees, 50 degrees more than the 0.3 A pulse. In the
preliminary tests 0.7 A was not utilized to avoid damaging the muscles due to the long
constant heating times of 5 and 10 s. In both cases, the PIP (proximal interphalangeal
joint) magnitude was almost the same and the MCP (metacarpophalangeal joint) had less
magnitude at 0.5 A.

4.3. Electrical Current Tests

After all the muscles (four muscles pair) were installed onto the hand and forearm,
tests at different currents were conducted to observe effects on overall hand speed and
actuation. The test current (0.4, 0.5 and 0.7 A) was applied to the flexor for 2 s, followed
by a 1 s off period. The extensor was then powered by 0.5 A for 5 s, followed by a 5 s off
period. This cycle was then repeated for 5 cycles. The heating cycle was changed from
the preliminary tests (flexor heating for 2 s, extensor heating for 5 s) due to suboptimal
usage of the resistive heating, as shown in the plateaued zero regions in Figure 8 where
the finger is not moving. However, to compensate for the shorter flexor heating time, the
lowest input current had to be raised to 0.4 A from 0.3 A for observable actuation. Safe
and effective actuation is a combined effect of heating time and current magnitude, as long
heating times at higher current will damage the muscles.

Figure 9 shows the general actuation process and is representative of a typical flexion
and extension cycle of the entire hand. However, as shown in Supplementary Video S1,
the 2 s 0.4 A pulse was not enough to bring the index and little fingers to close. The first
cycle of the 0.5 A pulse was able to close, but then encountered the same issue with the
index and little fingers afterwards. This is likely due to the fact that both the index and
little fingers have increased friction on the tendons, as the tendons experience a slight
change in direction in order to pass through the carpal tunnel. The actuators are placed
in the forearm and connected to the fingers through tendons that bend at a sharper angle
to the index and little fingers. Additionally, the little finger muscle was older than the
remaining muscles, as it was used in the preliminary tests. Nevertheless, the 0.7 A pulse
shown in Figure 9 demonstrates promising actuation given the short pulse time and high
actuation response, although the fingers were not always able to open back up fully during
the extensor heating period.
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and (c) angles for 0.5 A cycles. The heating cycle applied was 0.3/0.5 A to the flexor for 5 s, then the same amount to the
extensor for 10 s. The period of actuation is thus 15 s.
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4.4. Horizontal Grasping Tests

To test the capability of the hand in conforming to different shapes, the hand was
mounted horizontally (Figure 10a) on a test stand and different shapes were placed into
the palm. The heating cycle used was 0.5 A to the flexor for 4 s, followed by a 0.2 A pulse
to the flexor for another 5 s (to maintain the heat within the muscle), and then a 1 s off
period. A 7 s 0.5 A was then applied to the extensor to extend the fingers. As shown in
Figure 10b–d, the hand was able to conform to the shape of a sphere (73 mm diameter,
160 g), box (56 mm, 85 g) and cup (70 mm, 12 g). These objects were taken from the standard
action research arm test (ARAT) kit. Upon opening its grasp, the sphere and cup rolled out
of the hand, demonstrating a firm grasp. Due to the non-cyclic nature of the grasping tests,
the index and little fingers did not encounter any of the flexion issues observed from the
cyclic current tests. See Supplementary Video S2.
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Figure 10. Horizontal grasping of objects from the ARAT kit and others: (a) experimental setup; (b) box; (c) ball and (d) cup.
In horizontal grasping tests, mass is irrelevant as the palm bears the weight. The fingers prevent the object from rolling out
of its grasp (see accompanying videos). The heating cycle used was 0.5 A (flexors) for 4 s (to flex the fingers), followed by
0.2 A (flexors) for 5 s (holding), 1 s off and then 0.5 A (extensors) for 7 s (to extend the fingers).

4.5. Vertical Grasping and Mass Tests

The hand was then reoriented and mounted vertically (Figure 11a), and objects were
placed facing the palm to test how much mass the hand could carry. The heating cycle was
the same as the horizontal grasping tests. Different shapes such as a cup, box and funnel
were tested, as illustrated in Figure 11b–e. The weight capacity was tested by placing a
cup filled with water into the hand’s grasp. The water in the cup was increased at 5 g
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intervals, until the failure criteria of dropping the cup was met. The hand was able to hold
a maximum weight of 133 g (a 3 g cup filled with 130 g of water). See Supplementary
Video S3. Such tests are essential because one of the purposes of robotic hands is for
handling daily used objects.
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Figure 11. Vertical grasping of objects: (a) experimental setup; (b) empty cup, 3 g; (c) cup with water, 133 g; (d) box, 12.67 g
and (e) funnel, 7.3 g. Since the thumb is not in use, the gripping force is generated purely from the main fingers. As shown
in (c), the thumb is not assisting the grip. It should also be noted that the increased weight from the water causes the cup to
sink in the hand’s grip. Heating cycle remained the same as the horizontal grasping, with 0.7 A (flexors) for 2 s (to flex the
fingers, followed by 0.2 A (flexors) for 10 s (holding) and then 0.5 A (extensors) for 8 s (to extend the fingers).

4.6. Frequency Tests

Differing actuation cycles were also applied to increase the frequency of actuation of
the hand. Three tests, 8, 10 and 12 s cycles (0.125, 0.100 and 0.083 Hz, respectively), were
run with the following heating methods. A current of 0.5 A was provided to the flexor for
2 s, followed by a 1 s off period. Then, the extensor was powered by 0.5 A for 4, 5 and 6 s,
followed by a 1, 2 and 3 s off period, respectively. As shown in Supplementary Video S4,
all of the cycles demonstrated good initial actuation on the first iteration; however, later
iterations of the 8 and 10 s cycle showed issues with actuation of the index and little fingers.
Again, due to the reasons outlined earlier in Section 4.3, the little finger had less angular
displacement than the other fingers and in some cases did not move.

While the maximum frequency of 0.125 Hz is less than the maximum flexion frequency
of 2 Hz for a human hand [55], cyclic actuation speed can be increased by implementing
active cooling methods. As shown by Park et al. 2019, water-quenched coiled SMAs were
able to reach frequencies up to 1.67 Hz while still maintaining significant force output [47].
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However, to maintain the low material cost and lightweight properties and other character-
istics as defined at the beginning of this paper, such cooling systems were not implemented.
This can be a future research goal to investigate and implement such additions.

4.7. Structural Analysis

Since the finger is entirely made with TPU material with a very thin cross-section joint,
we performed structural analysis by applying an axial force at the fingertip and fixing
it at the “knuckle” (the vertical cylinder). Axial tension force with different magnitude
10, 40 and 50 N were then applied to the fingertip. While 10 N is the desired operating
regime for most purposes, the finger is still capable of withstanding a 40 N load with
a safety factor of 1.24. However, the 50 N load causes yielding on the underside of the
joint. Figure 12a–c show the boundary and loading conditions and the stress and deflection
results corresponding to applied axial forces.
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A perpendicular loading simulation was also performed, shown in Figure 12d–f.
Gravity was applied to the finger, and a small additional point load at the finger tip of 0,
0.3 and 0.6 N. While large displacement is observed due to the cantilever loading, this is
not a typical loading condition of the hand when in use, as loads are usually applied to the
palm. However, low stresses are observed, and using linear extrapolation, we can assume
that the finger can likely sustain higher loads without yielding. Another configuration
against gravity was also tested on one finger while the finger is placed downward without
pretensioning as shown in Figure 13. In this case, we can see in both experimental and
simulation results, the finger bends comparable magnitude of displacement 30 mm due to
gravity (bending angle of 23◦ for simulation and 27◦ experimental). The large deflection is
usually compensated by the agonist and antagonist configuration of actuation when it is
used in the robotic hand.
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Figure 13. Simulation and experiment of the index finger bending due to gravity, without tendons and actuators, and
upside down configuration: (a) stress due to gravity load; (b) displacement due to gravity; (c) supporting the hand with
gravity towards downward and (d) bending of the finger due to gravity.

5. Conclusions and Summary

As shown in the experimental results and accompanying videos, the TPU hand is
capable of carrying significant amounts of weight (up to 130 g) with relatively fast response
flexion times. The hand is also lightweight, with a total mass of 235 g including the forearm
and 656 g when the battery is added. It also touts higher frequency of actuation, with 12 s
actuation cycles demonstrating decent actuation. While shape memory alloys are generally
considered to be inefficient, with a thermal efficiency of 1–2%, the muscles used in the
hand are very small (20–25 mm contracted length) and only have an overall power draw of
around 2 W. However, such limitations are countered by the benefits of the muscle being
incredibly lightweight and having very high power density, with the demonstrated 0.343 g
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muscle outputting 1.1 N of force, or approximately 112 g of force (300 times its own weight).
The 3D-printed hand presented in this paper, actuated by our custom-made coiled SMA
actuators, has potential for applications in robotic and prosthetic hands featuring low-noise
and compact design. The summary of the robotic hand characteristics is shown in Table 4.

Table 4. Summary of the robotic hand characteristics.

Mass (g) 235

with circuitry 297

with battery 656

Volume (cm3) 232

generalized (L × W × H, mm) 425 × 120 × 75

Degrees of freedom 12

Maximum holding mass (g) 133

Maximum holding size (mm) 80

Minimum holding size (mm) 55

Maximum frequency (Hz) 0.125

Averaged power input (W) 7.82

Estimated life cycle (hours) 3.84

Manufacturing time (hours) 22

6. Future Work

The presented artificial hand has been used in corresponding research develop-
ments in the HBS laboratory, including end-to-end speech control interface as shown in
Figure 14a [56] and the social robot named HBS-2 (Figure 14b). Further work would include
modifying the forearm and adapting it for prosthetic purposes as shown in Figure 14c,d.
In such an application, the circuitry can be reduced by utilizing a printed circuit board
(PCB) in tandem with smaller lithium ion batteries that can be housed within the forearm
to make the hand more compact. In addition to implementing sensors and a feedback
control system by changing parameters in electrical current and heating time via the mi-
crocontroller, the prosthetic adaptation could use electromyography (EMG) signals and
sensory feedback to allow amputees to better control actuation of the fingers.

Some mechanical improvements can be made to the TPU hand to include thumb
abduction and adduction, and reworking the carpal tunnel to decrease friction between
the tendons. Smaller diameter coiled shape memory alloys or utilizing the SMA bundles
presented by Park et al. [47] could be used to increase force output of the muscles and
further increase actuation displacement. Active cooling techniques such as water cooling
or fans can also be implemented to increase actuation frequency [32]. Such future develop-
ments will allow for even further performance enhancements in artificial hand strength
and speed.



Actuators 2021, 10, 6 20 of 24
Actuators 2021, 10, x FOR PEER REVIEW 20 of 24 
 

 

 
(a) 

   

(b) (c) (d) 

Figure 14. Future work concepts use in conjunction with: (a) speech control interface, (b) social robot, (c) prosthetic appli-
cation and (d) enlarged view showing similar sizing of the current design to the adult hand. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Video S1 
Cyclic Actuation of Hand at Various Electrical Currents. All of the finger flexors are actuated at the 
electrical currents of 0.4 A (increased from 0.3 A because the predetermined 2 s heating time was 
insufficient for such low currents), 0.5 and 0.7 A. The heating cycle used was 2 s at 0.4, 0.5 and 0.7 A 
to the flexor, 1 s off, then 0.5 A to the extensor for 5 s. This was repeated for 5 cycles. The video is 
also available in the following HBS lab YouTube link: https://youtu.be/_2xYi5oBvkk. Video S2 
Grasping of Different Shaped Objects. The hand is shown grasping different shaped objects such as 
a spherical ball, rectangular box, and cylindrical cups in both horizontal and vertical positions. The 
actuation of the hand mostly conforms to the shapes of these objects. The video is also available in 

Figure 14. Future work concepts use in conjunction with: (a) speech control interface, (b) social robot, (c) prosthetic
application and (d) enlarged view showing similar sizing of the current design to the adult hand.

Supplementary Materials: Video S1 Cyclic Actuation of Hand at Various Electrical Currents. All
of the finger flexors are actuated at the electrical currents of 0.4 A (increased from 0.3 A because
the predetermined 2 s heating time was insufficient for such low currents), 0.5 and 0.7 A. The
heating cycle used was 2 s at 0.4, 0.5 and 0.7 A to the flexor, 1 s off, then 0.5 A to the extensor for
5 s. This was repeated for 5 cycles. The video is also available in the following HBS lab YouTube
link: https://youtu.be/_2xYi5oBvkk. Video S2 Grasping of Different Shaped Objects. The hand is
shown grasping different shaped objects such as a spherical ball, rectangular box, and cylindrical
cups in both horizontal and vertical positions. The actuation of the hand mostly conforms to

https://youtu.be/_2xYi5oBvkk
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the shapes of these objects. The video is also available in the following HBS lab YouTube link:
https://youtu.be/Wqm0hpa_8P8. Video S3 Vertical Grasping of Objects at Different Masses. A
cup of varying amounts of water was held by the hand without assistance of the thumb. The total
masses were 8, 53, 103 and 133 g. Although the higher weights slid lower in the hand’s grasp, they
were still firmly held up to 103 g. The video is also available in the following HBS lab YouTube link:
https://youtu.be/PSyabmWQReA. Video S4 Cyclic Actuation of Hand at Different Frequencies.
Different heating cycles were used to attempt to achieve 8, 10 and 12 s actuation cycles (0.125, 0.100
and 0.083 Hz, respectively). All the fingers responded to the 10 and 12 s cycles, with exception to
little finger issues, as described in the main text. The 8-s cycles started seeing issues with full flexion
of all the fingers, as the extensors did not receive sufficient time to cool and thus provide additional
resistance against the flexors. The video is also available in the following HBS lab YouTube link:
https://youtu.be/CLl_NhxdmV8.
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Appendix A. Code

import pyb
# import _thread
#define timers for the pins
timer2 = pyb.Timer(2, freq = 1000)
timer8 = pyb.Timer(8, freq = 1000)
timer4 = pyb.Timer(4, freq = 1000)
#assign channels to timers
indexFlexor = timer2.channel(1, pyb.Timer.PWM, pin = pyb.Pin.board.X1,

pulse_width_percent = 0)
indexExtensor = timer2.channel(2, pyb.Timer.PWM, pin = pyb.Pin.board.X2,

pulse_width_percent = 0)
middleFlexor = timer2.channel(3, pyb.Timer.PWM, pin = pyb.Pin.board.X3,

pulse_width_percent = 0)
middleExtensor = timer2.channel(4, pyb.Timer.PWM, pin = pyb.Pin.board.X4,

pulse_width_percent = 0)
ringFlexor = timer8.channel(1, pyb.Timer.PWM, pin = pyb.Pin.board.Y1,

pulse_width_percent = 0)
ringExtensor = timer8.channel(2, pyb.Timer.PWM, pin = pyb.Pin.board.Y2,

pulse_width_percent = 0)
pinkyFlexor = timer4.channel(1, pyb.Timer.PWM, pin = pyb.Pin.board.X9,

pulse_width_percent = 0)
pinkyExtensor = timer4.channel(2, pyb.Timer.PWM, pin = pyb.Pin.board.X10,

pulse_width_percent = 0)
thumbFlexor = timer4.channel(3, pyb.Timer.PWM, pin = pyb.Pin.board.Y3,

pulse_width_percent = 0)
thumbExtensor = timer4.channel(4, pyb.Timer.PWM, pin = pyb.Pin.board.Y4,

pulse_width_percent = 0)
#define Finger object

https://youtu.be/Wqm0hpa_8P8
https://youtu.be/Wqm0hpa_8P8
https://youtu.be/PSyabmWQReA
https://youtu.be/PSyabmWQReA
https://youtu.be/CLl_NhxdmV8
https://youtu.be/CLl_NhxdmV8
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class Finger:
staticLEDNum = 0
def __init__(self, flexorChannel, extensorChannel, flexorPWM, extensorPWM):

self.flexorChannel = flexorChannel
self.extensorChannel = extensorChannel
self.flexorPWM = flexorPWM
self.extensorPWM = extensorPWM
Finger.staticLEDNum = (Finger.staticLEDNum % 4) + 1
self.LEDNum = Finger.staticLEDNum
print(self.LEDNum)

#blocks until finished
def actuate(self, timeOn, timeOff):

print(self.LEDNum)
self.flexion()
pyb.LED(self.LEDNum).on()
pyb.delay(timeOn * 1000)
self.extension()
pyb.LED(self.LEDNum).off()
pyb.delay(timeOff * 1000)
self.off()

#for “threading”
def flexion(self):

self.extensorChannel.pulse_width_percent(0)
self.flexorChannel.pulse_width_percent(self.flexorPWM)

def extension(self):
self.flexorChannel.pulse_width_percent(0)
self.extensorChannel.pulse_width_percent(self.extensorPWM)

def off(self):
self.flexorChannel.pulse_width_percent(0)
self.extensorChannel.pulse_width_percent(0)

indexFinger = Finger(indexFlexor, indexExtensor, 60.61, 60.61)
middleFinger = Finger(middleFlexor, middleExtensor, 66.67, 56.06)
ringFinger = Finger(ringFlexor, ringExtensor, 62.12, 54.54)
pinkyFinger = Finger(pinkyFlexor, pinkyExtensor, 62.12, 62.12)
thumb = Finger(thumbFlexor, thumbExtensor, 0, 0)
#Single finger actuation
for i in range(5):

indexFinger.actuate(5, 10)
#Full hand flexion/extension
fingers = [indexFinger, middleFinger, ringFinger, pinkyFinger]
for i in range(5):

for finger in fingers:
finger.flexion()

pyb.delay(2000)
for finger in fingers:

finger.off()
pyb.delay(1000)
for finger in fingers:

finger.extension()
pyb.delay(5000)
for finger in fingers:

finger.off()
pyb.delay(1000)
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