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Abstract: Based on the superiority of the piezoelectric elements, including lightweight, high elec-
tric mechanical transformation efficiency and a quick response time, a piezoelectric-based micro-
positioning actuator is developed in this investigation. For eliminating the effects of hysteresis and
modeling uncertainties that appeared in this micro-positioning actuator, a nonlinear adaptive fuzzy
robust control design with a perturbation cancellation ability is proposed for this micro-positioning
design to achieve a positioning resolution of 1 µm. Structurally, this proposed robust control method-
ology contains two particular parts: a universal fuzzy approximator and a robust compensator,
which are employed to cancel the modeling uncertainties caused by the perturbed parts of the
micro-positioning actuator and mitigate the approximation error between the modeling uncertainties
and the universal fuzzy approximator, respectively. From both the numerical simulations and real
validations, this proposed micro-positioning design performs a promising positioning performance
in the micrometer level.

Keywords: piezoelectric element; hysteresis; robust control; fuzzy approximation

1. Introduction

Due to the ongoing development of the miniaturization of electronic elements and
the dense integration of electronic chips on silicon wafers, there has been a tremendous
and growing demand for more advanced and innovative micro/nano positioners in recent
decades [1]. Implementations of micro/nano positioning systems have been exploited
in numerous fields, including micro/nano manipulators [2]; aerial vehicles [3]; internal
combustion engines [4]; image and optical systems [5]; and the applications involved in
manufacturing communities and research disciplines, including mechanical systems [3,4],
the semiconductor industry, and biotech, neuroscience, and materials science [6].

There exist several categories of micro/nano positioners, including the piezoelectric
actuator [7], shape memory alloy (SMA) [8], electromagnetic actuator [9], electrostatic actua-
tor [10], and electrothermal actuator [11], which are classified based on their mechanisms of
actuation. Among all categories, much attention has been paid to the piezoelectric actuator
owing to its superior characteristics, such as higher resolution in terms of displacement,
overwhelming force [12], negligence of wear and tear [13], lightweight and high electric
mechanical transformation efficiency [14], great stiffness, wide bandwidth, fast response,
good stability, long lifespan, anti-electromagnetic interference [15], etc.

Except for these advantages, the piezoelectric actuator also attaches the harmful
hysteresis effect, which results from its unique crystalline polarization effect [16]. The
hysteresis effect induces a dynamic lag response between the input voltage and output
displacement and demotes the linearity as well as the applicability of the piezoelectric
actuator to perform high-accuracy positioning. Thereby, resolving the hysteresis effect of
the piezoelectric actuator is one of the most considerable concerns in the micro-positioning
design of piezoelectric-based actuators [17].
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In the published literature, many approaches and methods regarding solving the hys-
teresis effect of piezoelectric actuators have been cultivated. These approaches and methods
vary with the models and the controllers or compensators adopted on the piezoelectric-
based micro-positioning actuators [17]. The mathematical representation of piezoelectric
actuators mainly separates them into three approaches. One utilizes an operator mod-
eling technique or polynomial technique, such as the Prandtl–Ishlinskii model, Preisach
model, or Krasnoselskii–Pokrovskii model, to approximate the ascending and descending
character of a hysteresis curve, while the Backslash model, Duhem model, and Bouc–Wen
model aim to model a piezoelectric actuator through interpreting the system according
to dynamic equations, with which it is easy to implement and determine the parameters
of the dynamic equations to match the hysteresis curve. Among these three models, the
Bouc–Wen model is presented with a set of first-order differential equations; it would
be appropriate to apply them to the nonlinear control design of eliminating hysteresis.
Several data-driven models based on neural networks have been proposed in the past
decade [18–20]. Precise approximations for the hysteresis effect can be achieved, and an
advantage of not knowing the inversion model of hysteresis can be obtained for developing
the corresponding control laws via using neural network models of the above-mentioned
published research. However, positioning error convergence and robustness properties
with respect to modelling uncertainties and disturbances are not easy to guarantee from
these designs, and higher computational power consumptions are always needed as well
due to the structural complexities of adopted neural network models.

As to the control or compensated methods, Preisach- or Prandtl–Ishlinskii-based
compensators [21–23] dominate the field. Through multiple operation points, the Preisach
and Prandtl–Ishlinskii models transform the hysteresis curve of input–output coordinates
into one-to-one mapping. As a result, an inversion-based compensator can reverse the
one-to-one mapping, compensate for the dynamic lag, and then flatten the hysteresis curve.
Nonetheless, the operator modeling approach requires a large amount of driven data, and its
operation region is constrained by the operation points. On the other hand, control methods
established on a set of first-order differential equations are more concrete from a structural
perspective and are much easier to manipulate. It is also worth noting that there was an
increasing trend of feedback control methods being applied in the design of piezoelectric
actuators. By implementing an inversed-based compensator as an inner open loop and
combining it with a feedback controller as an outer loop, several hybrid control methods
have attempted to possess the advantages of inversed-based compensators in dealing
with hysteresis and the closed-loop controller in converging tracking error according to
time [24–26]. However, the overall control structures of these hybrid control methods are too
complicated, and high calculation power is always required. Some feedback-linearization-
based and sliding-model-based nonlinear controllers, which integrate the Bouc–Wen model
for mitigating hysteresis, have been proposed recently [27,28], and these control designs
have achieved acceptable micrometer positioning performances. Nevertheless, the dynamics
of piezoelectric actuators in these investigations are assumed as exactly known functions
without any parameter perturbations; hence, the effects of modelling uncertainties should
not be considered in the control designs of these latest studies, and the robustness of
these control designs cannot be guaranteed even though the Bouc–Wen model is used to
compensate for the hysteresis of piezoelectric actuators. For the sake of achieving the control
structure’s simplicity and a high positioning accuracy for the proposed micro-positioning
system with modelling uncertainties, a nonlinear control methodology which integrates a
Bouc–Wen model, a feedback linearization control law, an adaptive fuzzy approximator,
and a robust compensator is exploited to actively cancel the uncertain perturbation and
eliminate approximation errors and hysteresis without composing any inversed-based
compensators. Based on the above arrangement, a nonlinear control method that possesses
several good properties, including simplicity of the control structure, the global stability,
the guaranteed convergence of positioning error, the guaranteed robustness with respect to
modeling uncertainties, and the precise micro-positioning ability is delivered.
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The organization of this investigation is arranged as follows: In Section 2, the hysteresis
character of a used piezoelectric element and the dynamics of the micro-positioning actuator
are briefly described. Derivation and proof of the proposed robust control design are
revealed in Section 3. Next, simulation and discussion are investigated in Section 4, and
the real verification is conducted in Section 5. Finally, the conclusion is made in Section 6.

2. Dynamics of the Controlled Piezoelectric Actuator

The micro-positioning actuator discussed in this investigation basically is constructed
from the piezoelectric material. The Bouc–Wen model that is presented with a set of first-
order differential equations is used to model the behavior of the piezoelectric material with
the hysteresis effect. In the beginning, a brief introduction about hysteresis of piezoelectric
material is given. Then, the dynamics of the overall micro-positioning actuator, which
comprises of this piezoelectric material, will be formulated.

2.1. Hysteresis Effect

Hysteresis is a particular character of piezoelectric elements. As shown in Figure 1, the
hysteresis loop of a controllable piezoelectric material is usually an unrepeated continuous
loop that starts at the origin, saturates at a certain point, and lags to some degree when
descending and ascending. Owing to this inherent property and the memory-like lagging
dynamics, it is always a challenging issue to model hysteresis precisely and moderate the
effect of hysteresis of the piezoelectric actuator.
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Figure 1. Illustration of the hysteresis loop.

2.2. Dynamic Model of Micro-Positioning Actuators

As depicted in Figure 2, except for the piezoelectric element, the micro-positioning
actuator developed in this investigation consists of two symmetrical electrodes, A and B,
and a fastener that can carry affordable loads. The micrometer displacement of the buckled
fastener can be controlled by electrodes A and B.
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Theoretically, the dynamics of the piezoelectric-based micro-positioning actuator in
Figure 3 are equivalent to a nonlinear spring–mass–damper system combining with a
hysteresis model as plotted in Figure 3, and it could be presented by a set of differential
equations such as:

m
..
z + b

.
z + kz = k(du− l) (1)

.
l = αd

.
u− β

∣∣ .
u
∣∣l|l|i−1 − γ

.
u|l|i (2)

y = z (3)

where m, b, and k denote the mass, the damping coefficient, and the stiffness of the
equivalent spring–mass–damper system. Meanwhile, l denotes the hysteretic displacement;
parameters d, α, β, and γ are strictly positive coefficients; and i denotes the transition state
from elastic to plastic [29], where i = 1 is chosen in general. The displacement of the
micro-positioning actuator is defined as z. The derivative of u physically denotes the
input voltage of the controlled micro-positioning actuator, which is regarded as the real
control input in this investigation. In the presence of modeling uncertainties, each system
parameter (m, b, k, d, α, β, and γ) is denoted as the combination of the nominal terms
(m, b, k, d, α, β, and γ) and the perturbed terms: (m̃, b̃, k̃, d̃, α̃, β̃, and γ̃), i.e., the system
parameters can be expressed as m = m + m̃, b = b + b̃, k = k + k̃, d = d + d̃, α = α + α̃,
β = β + β̃, and γ = γ + γ̃, respectively.
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3. Nonlinear Control Design of Micro-Positioning Actuators

For micro-positioning applications, development of an appropriate control scheme is
the most crucial task, especially in facing of the modeling uncertainties (unmodeled dynam-
ics or undetermined parameters). To begin with, a well-known feedback linearization (FL)
control design is constructed with the nominal values: m, b, k, d, α, β, and γ; subsequently, it
will be upgraded to a robust control form called adaptive fuzzy robust (AFR) control design
for achieving the accurate micro-positioning. Concerning the existence of the modeling
uncertainties, our control design objective is to cultivate a nonlinear controller for precisely
converging the positioning error of the micro-positioning actuator at a micro-meter scale
as small as possible.

We define the micro-positioning error as:

e = y− yd (4)

where yd ∈ C∞ is the desired trajectory, which is continuously differentiable.
Taking the triple derivative for Equation (4), a third order error dynamic system with

the control command
.
u can be obtained:

...
e =

...
y −

...
y d

= F(z) + G(z)
.
u−

...
y d

(5)
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where
F(z) = − b

m
..
z− k

m
.
z

G(z) = k
m (d− αd + βsgn(

.
u)l + γ|l|).

3.1. Adaptive Fuzzy Robust Control Design with Respect to Unknown System Perturbations

Initially, if we assume all parameters of the dynamics of F(z) and G(z) in Equation (5) are
exactly known, a feedback linearization control law can be easily derived as the following form:

.
u =

1
G(z)

(
−F(z)− λ0e− λ1

.
e− λ2

..
e +

...
y d
)

(6)

Substituting Equation (6) into Equation (5), a third-order differential equation for the
positioning error is obtained as below:

...
e + λ2

..
e + λ1

.
e + λ0e = 0 (7)

Ideally, without considering the modeling uncertainties, the positioning error of the
controlled micro-positioning actuator could be proven to asymptotically converge to zero
if the control gains λ2, λ1, and λ0 are appropriately chosen to let Equation (7) satisfy
Hurwitz’s condition.

In practice, assuming all parameters of the dynamics of F(z) and G(z) are exactly known
values is a strong assumption because parameters of piezoelectric elements are inevitably
inconsistent after a batch manufacture and slight variations among piezoelectric elements can
be found normally; hence, the perturbed terms (m̃, b̃, k̃, d̃, α̃, β̃, and γ̃) do exist. For this reason,
the feedback linearization control law in Equation (6) should be modified as:

.
u =

1
G(z)

(
−F(z)− λ0e− λ1

.
e− λ2

..
e +

...
y d
)

(8)

where
F(z) = − b

m
..
z− k

m
.
z

G(z) = k
m (d− αd + βsgn(

.
u)l + γ|l|).

Based on the control law in Equation (8), dynamics of the positioning error for
Equation (8) becomes a third-order differential equation with a perturbed input that is the
integration of all modeling uncertainties:

...
e + λ2

..
e + λ1

.
e + λ0e = ω (9)

where ω is the overall modeling uncertainties caused by perturbed terms, and ω will be
detailed in the following section.

Remark 1. Obviously, the overall modeling uncertainties ω strongly affect the convergence of the
positioning error e and should be eliminated, and if the overall modeling uncertainties ω can be
perfectly canceled, the micro-positioning error in Equation (9) will asymptotically converge to zero.

3.2. Perturbation Elimination

From Remark 1, cancellation of modeling uncertainties would be the solution to the
positioning problem of this micro-positioning actuator. For eliminating the effect of the
overall modeling uncertainties ω, a robust control law combined with an adaptive fuzzy
approximator and a robust compensator with the perturbation elimination property is
proposed. Merging the feedback linearization controller in Equation (8) with an adaptive
fuzzy approximator ω̂(e, θω) and a robust compensator ue yields a modified robust control
law as the following:
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.
u =

1
G(z)

(
−F(z)− ω̂(e, θω) + ue + v +

...
y d
)

(10)

where v denotes a virtual controller that will expressed later, ue denotes a robust compen-
sator, and the adaptive fuzzy approximator ω̂(e, θω) that is utilized to approximate the
overall modeling uncertainties ω can be expressed as a fuzzy regression form [30,31]:

ω̂(e, θω) = θT
ωξ(e) = ξT(e)θω (11)

where ξ(e) is the fuzzy set vector, and θω is the tunable weight vector.
The optimal parameters θ∗ω of the parameters θω are denoted as:

θ∗ω = arg min
θω∈Ωω

[
sup
e∈Ωe

‖ω− ω̂(e, θω)‖
]

(12)

where two suitable boundary sets for the parameter θω and the positioning error e are
individually denoted as Ωω and Ωe.

Remark 2. It is worth mentioning that the number of fuzzy sets in ξ(e) is always a trade-off
between the complexity of the approximator and the approximation capability. Normally, the more
fuzzy sets that are applied, the more accurate approximation that can be obtained.

Details of the overall modeling uncertainties ω caused by the perturbed terms (m̃, b̃, k̃,
d̃, α̃, β̃, and γ̃) can be calculated as the following:

ω =
(

F(z)− F(z)
)
+
(
G(z)− G(z)

) .
u (13)

The overall modeling uncertainties ω can be approximated by using an adaptive
fuzzy approximator ω̂(e, θ∗ω) because of the universal approximation property of the fuzzy
system in Equation (11) [30,31], and the remained approximation error can be presented as:

ωa = ω− ω̂(e, θ∗ω) (14)

Substituting the modified robust control law in Equation (10) into dynamics of posi-
tioning error in Equation (5), we get:

...
e = v +

(
ω̂
(
e, θ∗

ω

)
− ω̂(e, θω)

)
+ ue + ωa (15)

Or equivalently,
.
E = v + BξT(e)θ̃ω + Bue + Bωa (16)

where θ̃ω = θ∗ω − θω is the parameter error vector, E =
[

e
.
e

..
e
]T , B =

[
0 0 1

]T ,
v = AE and

A =

 0 1 0
0 0 1
−λ0 −λ1 −λ2


in which, λi > 0, for i = 0, 1, and 2.

The positioning problem of the proposed micro-positioning actuator with param-
eter perturbations is equivalent to optimize the H∞ performance index denoted as the
following form:

max
ωa∈L2[0,t f ]

min
ue∈L2[0,t f ]

∫ t f
0

[
ET(t)QE(t) + uT

e (t)Rue(t)
+ 1

rω
θ̃T

ω(t)θ̃ω(t)

]
dt∫ t f

0 ωT
a (t)ωa(t)dt

≤ ρ2 (17)
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Or equivalently,

max
ωa∈L2[0,t f ]

min
ue∈L2[0,t f ]

∫ t f

0

[
ET(t)QE(t) + uT

e (t)Rue(t)
+ 1

rω
θ̃T

ω(t)θ̃ω(t)

]
dt ≤ ρ2

∫ t f

0
ωT

a (t)ωa(t)dt (18)

where t f denotes the final time of the positioning process, Q and R denote as strictly
symmetric positive-definite weighting matrices, rω > 0 stands for a strictly positive scalar,
and ρ is the attenuation level for measuring the worst-case effect of the overall modeling
uncertainties ωa on the system output z. Normally, a value between 0 and 1 is the proper
region of the attenuation value ρ for a robust positioning design.

Furthermore, if the initial values are considered, then inequality in Equation (18) can
be modified as:

max
ωa∈L2[0,t f ]

min
ue∈L2[0,t f ]

∫ t f
0
[
ET(t)QE(t) + uT

e (t)Rue(t)
]
dt

≤ ET(0)PE(0) + 1
rω

θ̃T
ω(0)θ̃ω(0) + ρ2

∫ t f
0 ωT

a (t)ωa(t)dt
(19)

where P = PT > 0 is a weighting matrix for the initial value of the error system E(0).

Theorem 1. The robust positioning problem of the proposed micro-positioning actuator with
parameter perturbations can be solved, if the following adaptive fuzzy robust control law is applied
for the nonlinear perturbed dynamics of the micro-positioning actuator in Equations (1)–(3):

.
u =

1
G(z)

(
−F(z) + ξT(e)θω + ue + v +

...
y d

)
(20)

where
ue = −R−1BT PE (21)
.
θω = rωξ(e)BT PE (22)

As to the matrix P = PT > 0, it is the solution of the following Riccati-like equation:

PA + AT P + Q + PB
(

1
ρ2 I − R−1

)
BT P = 0 (23)

Proof of Theorem 1. Choose a Lyapunov candidate as:

V =
1
2

ET PE +
1

2rω
θ̃T

ω θ̃ω (24)

The time derivative of V is:

.
V =

1
2

(
.
E

T
PE + ET P

.
E
)
+

1
rω

.
θ̃

T

ω θ̃ω (25)

Substituting Equations (16) and (21) into Equation (25), we obtain:

.
V = 1

2

(
v + BξT(e)θ̃ω + Bue + Bωa

)T
PE

+ 1
2 ET P

(
v + BξT(e)θ̃ω + Bue + Bωa

)
+ 1

rω

.
θ̃

T

ω θ̃ω

= 1
2 ET(AT P + PA

)
E− 1

2 ET(PBR−1BT P + PBR−1BT P
)
E

+ 1
2 θ̃ω

Tξ(e)BT PET + 1
2 ET PBξT(e)θ̃ω

+ 1
rω

.
θ̃

T

ω θ̃ω + 1
2 ωT

a BT PE + 1
2 ET PBωa

(26)
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Noticing that Equation (21) can simplify the term ET PBR−1BT PE, we thus obtain:

.
V = 1

2 ET(AT P + PA− PBR−1BT P
)
E− 1

2 uT
e Rue

+ 1
2 θ̃ω

Tξ(e)BT PET + 1
2 ET PBξT(e)θ̃ω + 1

rω

.
θ̃

T

ω θ̃ω + 1
2 ωT

a BT PE + 1
2 ET PBωa

(27)

Since
.
θ̃ω = −

.
θω, Equation (27) can be rewritten as:

.
V = 1

2 ET(AT P + PA− PBR−1BT P
)
E− 1

2 uT
e Rue

+ 1
2 θ̃ω

Tξ(e)BT PET + 1
2 ET PBξT(e)θ̃ω − 1

rω

.
θ

T
ω θ̃ω

+ 1
2 ωT

a BT PE + 1
2 ET PBωa

(28)

Moreover, it is easy to check out that θ̃ω
Tξ(e)BT PET = ET PBξT(e)θ̃ω; therefore,

Equation (28) can be rearranged as:

.
V = 1

2 ET(AT P + PA− PBR−1BT P
)
E− 1

2 uT
e Rue

+

(
ET PBξT(e)− 1

rω

.
θ

T
ω

)
θ̃ω

+ 1
2 ωT

a BT PE + 1
2 ET PBωa

(29)

Inserting the adaptive law in Equation (22) into Equation (29) yields:

.
V = 1

2 ET(AT P + PA− PBR−1BT P
)
E− 1

2 uT
e Rue +

1
2 ωT

a BT PE + 1
2 ET PBωa

= 1
2 ET(AT P + PA− PBR−1BT P

)
E− 1

2 uT
e Rue +

1
2 ωT

a BT PE + 1
2 ET PBωa

+ 1
2ρ2 ET PBBT PE− 1

2ρ2 ET PBBT PE

= 1
2 ET

(
AT P + PA + PB

(
1
ρ2 I − R−1

)
BT P

)
E− 1

2ρ2 ET PBBT PE

− 1
2 uT

e Rue +
1
2 ωT

a BT PE + 1
2 ET PBωa

(30)

Based on the result of Equation (23), the following result can be found:

.
V = − 1

2 ETQE− 1
2 uT

e Rue
− 1

2ρ2 ET PBBT PE + 1
2 ωT

a BT PE + 1
2 ET PBωa

− 1
2 ρ2ωT

a ωa +
1
2 ρ2ωT

a ωa
= − 1

2 ETQE− 1
2 ue

T Rue

− 1
2

(
1
ρ BT PE− ρωa

)T( 1
ρ BT PE− ρωa

)
+ 1

2 ρ2ωT
a ωa

(31)

If the worst-case perturbation equals ωa = 1
ρ2 BT PE, then Equation (31) can be pre-

sented as a concise form as:

.
V ≤ −1

2
ETQE− 1

2
uT

e Rue +
1
2

ρ2ωT
a ωa (32)

Integrating Equation (32) from t = 0 to t = t f , we obtain:

V
(

t f

)
−V(0) ≤ −1

2

∫ t f

0

[
E(t)TQE(t) + uT

e (t)Rue(t)
]
dt +

ρ2

2

∫ t f

0
ωT

a (t)ωa(t) dt (33)

Since V
(

t f

)
≥ 0, the above inequality indicates the following fact:

1
2

∫ t f
0
[
ET(t)QE(t) + ue

T(t)Rue(t)
]
dt

≤ 1
2 ET(0)PE(0) + 1

2rω
θ̃T

ω(0)θ̃ω(0) +
ρ2

2

∫ t f
0 ωT

a (t)ωa(t)dt
(34)
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Obviously, Equation (34) can be described as the following equivalent form:∫ t f
0
[
ET(t)QE(t) + ue

T(t)Rue(t)
]
dt

≤ ET(0)PE(0) + 1
rω

θ̃T
ω(0)θ̃ω(0) + ρ2

∫ t f
0 ωT

a (t)ωa(t) dt
(35)

Equation (35) is the same as Equation (19); hence, the proof of Theorem 1 is completed.
�

4. Simulation and Discussion
4.1. Parameters of the Micro-Positioning Actuator and the Proposed Controller

By means of the particle swarm optimization (PSO) method, the nominal parameters of
the micro-positioning actuator can be identified and listed in Table 1. To control parameters
of this proposed method, they are resolved by a Ricatti solver that is provided in the control
toolbox of the simulation platform MATLAB R2020b (Tainan, R.O.C.) and all related control
parameters are listed in Table 2.

Table 1. Nominal parameters of the proposed micro-positioning actuator.

Parameter Value Unit

m 0.128 kg
b 1.58× 101 Ns/m
k 1.957× 103 N/m
d 1.734× 10−6 m/V
α 0.358
β 0.036
γ 0.027

Table 2. Fuzzy membership functions and control parameters of this proposed method.

Fuzzy Membership Functions

ξω1 =

[
exp

(
−‖e−cj ·10−6‖2

r

)
, . . . , exp

(
−‖e−cj ·10−6‖2

r

)]
,

ξω2 =

[
exp

(
−‖ .

e−dj ·10−6‖2

r

)
, . . . , exp

(
−‖ .

e−dj ·10−6‖2

r

)] f or j = 1, . . . , 21

ξω =
[

ξω1 ξω2

]
c1 = −10, c2 = −9, . . . , c20 = 9, c21 = 10
d1 = −10, d2 = −9, . . . , d20 = 9, d21 = 10

r = 10−12

rω = 100

Parameters of the robust compensator ue
ρ = 0.5

R = 0.01

Q =

 104 0 0
0 103 0
0 0 102


rω = 10

Parameters of the virtual controller v
λ0= 10, λ1 = 8, λ2 = 6

4.2. Simulation Results

In the following simulation verification, micrometer positioning performances of
two developed control laws—1. feedback linearization (FL) control law and 2. adaptive
fuzzy robust (AFR) control law—will be compared. The feedback linearization (FL) and
adaptive fuzzy robust (AFR) methods are realized by using Equations (8) and (10), and
related control parameters adopted for constructing the feedback linearization (FL) and the
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adaptive fuzzy robust (AFR) control laws are listed in Table 2. For validating the micrometer
positioning performance, two desired trajectories, including a trapezoid-type trajectory
(with the magnitude of ±90 µm) and a sinusoid-type trajectory (with the magnitude of
±100 µm and a frequency of π/3), are used. Concerning the arrangements of the model
perturbed uncertainties (m̃, b̃, k̃, d̃, α̃, β̃, and γ̃) in the following scenarios, ±1% random
perturbations are set up for perturbed terms (m̃, b̃, k̃, d̃, α̃, β̃, and γ̃) individually. The
reason why only ±1% random perturbations are considered for these perturbed terms is
that the feedback linearization (FL) design will diverge for a micro-positioning actuator
with perturbed bounds beyond this value. Furthermore, a time-varying positive nominal
perturbation will be added on the nominal value m of the actuator mass for performing
the practical situation that fastener on the micro-positioning actuator in Figure 2 carries
different loads.

In total, two simulative scenarios will be conducted and discussed in this section:

Scenario 1: A trapezoid-type trajectory with the magnitude of ±90 µm is used as the
desired trajectory. Moreover, ±1% random perturbations are arranged for perturbed terms
(m̃, b̃, k̃, d̃, α̃, β̃, and γ̃) and, a positive perturbation (20% of m) is added for the mass m
during 0–5 s and 10–19 s.

Scenario 2: A sinusoid-type trajectory with the magnitude of ±100 µm and a fixed fre-
quency of π/3 is applied as the desired trajectory. Moreover, ±1% random perturbations
are set up for perturbed terms (m̃, b̃, k̃, d̃, α̃, β̃, and γ̃), and a fixed 20% positive nominal
perturbation is arranged for the mass m.

In the following, discussions for both scenarios will be detailed individually.
Scenario 1:

Figures 4–6 are the simulation results of the feedback linearization (FL) and the adap-
tive fuzzy robust (AFR) methods for Scenario 1. Initial positions of the controlled micro-
positioning actuator for these two control methods are set up as 10 µm. From Figure 4, it is
easy to find out that the controlled output displacement z of the proposed adaptive fuzzy
robust (AFR) method precisely follows the desired trajectory. However, the tracking result
of the feedback linearization (FL) method is worse due to modeling uncertainties ω caused
by the dopped system parameters’ perturbations. Rapid convergence of the positioning
error revealed in Figure 5 for the proposed method shows us the exponential convergent
property of this proposed method in positioning errors. Additionally, a slight positioning
error can be spotted in transient responses of each turning point when tracking the desired
trapezoid-type trajectory, but all positioning errors vanish within a few seconds.
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(red dotted line).
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tion method.

Figure 6 displays the overall control commands of feedback linearization (FL) and
adaptive fuzzy robust (AFR) method, respectively. As shown in Figure 6, the range of the
control inputs is within (−100 V, 50 V) for these two methods. Both of these two methods
have the same tendency in control commands, but the feedback linearization (FL) method
cannot generate proper control commands for achieving the micro-positioning mission in
Scenario 1.

As displayed in Figure 7, a positive perturbation (20% of m) is added for the mass m
during 0–5 s and 10–19 s for the micro-positioning verification of Scenario 1.
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The original model functions F and G described by using the nominal values and
perturbed values for Scenario 1 are displayed with respect to F and G in Figure 8, respec-
tively. From the comparisons in Figure 8, biases and model distortions caused by the
time-varying variation of mass and 1% random perturbations for the other parameters can
be easily observed. These perturbations in model functions downgrade the micro-positioning
performance of the feedback linearization (FL) method that always requires the exact model
functions. However, as shown in Figures 4 and 5, modeling uncertainties ω due to these
parameters’ variations do not influence the micro-positioning performance of the proposed
method that integrates an adaptive fuzzy approximator ω̂(e, θω) and a robust compensator ue.
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Scenario 2:
In Scenario 2, one more tough testing is examined in order to verify the robustness

of this proposed method corresponding to a highly varying trajectory and modeling
uncertainties. Figures 9 and 10 are the simulation results of the feedback linearization
(FL) method and the proposed method for Scenario 2. As the setting in Scenario 2, a
sinusoid-type trajectory is adopted along with a fixed 20% variation of m being added on
the mass m and 1% random variations being dopped to system parameters (m̃, b̃, k̃, d̃, α̃, β̃,
and γ̃). Initial positions of the micro-positioning actuator for these two control methods are
set up as 10 µm in this case. From Figure 9, it is easy to find out that the micro-positioning
of the proposed method precisely follows the desired trajectory. However, the positioning
result of the feedback linearization (FL) method is worse, and a harmonic type positioning
error appears (>1 µm) due to the dopped system parameters’ perturbations in Figure 10.
Similar to the results in of Scenario 1, a rapid convergence of the positioning error to near
zero can be found from Figure 10 for the proposed method under the effect of modeling
uncertainties, and these results show us the exponential convergent property in positioning
error and the robustness property of this proposed method.
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line) and feedback linearization method (blue dash line) with respect to a desired sinusoidal trajectory.
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Figure 11 displays the overall control commands of feedback linearization method
and the proposed method, respectively. According to Figure 11, the control outputs are
bounded around (−100 V, 100 V) for these two methods. Both methods have a similar
sinusoidal profile in control commands, but the feedback linearization method cannot
output appropriate control commands for achieving the micro-positioning requirement of
Scenario 2.
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In this Scenario (Figure 12), a fixed 20% positive nominal perturbation is arranged
for the mass m for the purpose of verifying the micro-positioning performance of the
proposed method.
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Model functions F and G with the nominal values and perturbed values for Scenario 2
are displayed in Figure 13. From the comparisons in Figure 13, biases and model distortions
caused by the 20% variation of mass and 1% random perturbation for the model parameters
can be easily observed. These perturbations in model functions downgrade the micro-
positioning performance of the feedback linearization (FL) method that always requires
the exact model functions. However, as shown in Figures 9 and 10, modeling uncertainties
ω due to these parameters’ random variations do not affect the micro-positioning per-
formance of the proposed method that integrates an adaptive fuzzy approximator and a
robust compensator.

Actuators 2021, 10, x FOR PEER REVIEW 16 of 21 
 

 

Model functions F  and G  with the nominal values and perturbed values for Sce-

nario 2 are displayed in Figure 13. From the comparisons in Figure 13, biases and model 

distortions caused by the 20% variation of mass and 1% random perturbation for the 

model parameters can be easily observed. These perturbations in model functions down-

grade the micro-positioning performance of the feedback linearization (FL) method that 

always requires the exact model functions. However, as shown in Figures 9 and 10, mod-

eling uncertainties   due to these parameters’ random variations do not affect the micro-

positioning performance of the proposed method that integrates an adaptive fuzzy ap-

proximator and a robust compensator. 

  

(a) (b) 

Figure 13. Comparisons of model functions F  and G  (green line) with F  and G  (red dotted line) in Scenario 2. (a) 

F and F , (b) G  and G . 

Obviously, from Scenarios 1 and 2, the proposed method outperforms the feedback 

linearization (FL) method for tracking a sinusoid-type and a trapezoid-type trajectory un-

der effects of the above-mentioned modeling uncertainties and hysteresis. Significantly, 

this proposed method delivers a positioning accuracy of nanoscale (maximum 20 nm for 

scenario 1 and 0.4 nm for Scenario 2) which is far outstripping the required micro-posi-

tioning specification: “micrometer”. 

5. Validation of Real Micro-Positioning System 

For validation of the micrometer-level positioning ability of this proposed method, a 

micro-positioning platform integrates a mover (piezoelectric-based actuator), a position 

measuring system that has a resolution of 1 μm, a driving system, and a desktop for cal-

culating the proposed control algorithm. These are exhibited in Figure 14b. The piezoelec-

tric-based actuator used as a mover of loads and made of the piezoelectric element and a 

fastener is installed (as shown in Figure 14a) and the maximum range of this mover’s 

movable displacement is within (−5000 μm, 5000 μm). The black object mounted on the 

fastener of this mover is the added load, and its weight is 20% of the nominal mass. The 

above setting is established to verify the robustness of this proposed micro-positioning 

method with respect to a fixed modeling uncertainty. Electrodes A and B are set up on 

each side of the fastener symmetrically to precisely control the piezoelectric element to 

drive the loaded fastener to move along the x-direction forward or backward. The driving 

system contains a voltage amplifier, named THS4011, that can be adjusted via the digital 

signal processor DSP F28335. As for the desktop, it is used for realizing the real-time cal-

culation of the proposed adaptive fuzzy robust control command. The communication 

between the digital signal processor DSP F28335 and the desktop will bear on the emulator 

through which the real-time feedback position of the load mounted on the fastener meas-

ured by Microtrack 7000, and the calculated control command of the desktop is transmit-

ted. For practical verifications, three scenarios are arranged as: 

Scenario 3: A stair-type trajectory with magnitudes: −500 μm to 500 μm, is set up. 

Figure 13. Comparisons of model functions F and G (green line) with F and G (red dotted line) in Scenario 2. (a) F and F,
(b) G and G.

Obviously, from Scenarios 1 and 2, the proposed method outperforms the feedback
linearization (FL) method for tracking a sinusoid-type and a trapezoid-type trajectory
under effects of the above-mentioned modeling uncertainties and hysteresis. Significantly,
this proposed method delivers a positioning accuracy of nanoscale (maximum 20 nm
for scenario 1 and 0.4 nm for Scenario 2) which is far outstripping the required micro-
positioning specification: “micrometer”.

5. Validation of Real Micro-Positioning System

For validation of the micrometer-level positioning ability of this proposed method,
a micro-positioning platform integrates a mover (piezoelectric-based actuator), a posi-
tion measuring system that has a resolution of 1 µm, a driving system, and a desktop
for calculating the proposed control algorithm. These are exhibited in Figure 14b. The
piezoelectric-based actuator used as a mover of loads and made of the piezoelectric element
and a fastener is installed (as shown in Figure 14a) and the maximum range of this mover’s
movable displacement is within (−5000 µm, 5000 µm). The black object mounted on the
fastener of this mover is the added load, and its weight is 20% of the nominal mass. The
above setting is established to verify the robustness of this proposed micro-positioning
method with respect to a fixed modeling uncertainty. Electrodes A and B are set up on each
side of the fastener symmetrically to precisely control the piezoelectric element to drive the
loaded fastener to move along the x-direction forward or backward. The driving system
contains a voltage amplifier, named THS4011, that can be adjusted via the digital signal
processor DSP F28335. As for the desktop, it is used for realizing the real-time calculation
of the proposed adaptive fuzzy robust control command. The communication between the
digital signal processor DSP F28335 and the desktop will bear on the emulator through
which the real-time feedback position of the load mounted on the fastener measured by
Microtrack 7000, and the calculated control command of the desktop is transmitted. For
practical verifications, three scenarios are arranged as:
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Figure 14. Experimental installation of the proposed micro-positioning design: (a) a piezoelectric-based actuator and
(b) the overall micro-positioning system with a position measuring system, a piezoelectric-based actuator, and the proposed
adaptive fuzzy robust control law carried out in the desktop.

Scenario 3: A stair-type trajectory with magnitudes: −500 µm to 500 µm, is set up.

Scenario 4: A trapezoidal-type trajectory with magnitudes: 0 µm to 1000 µm, is set up.

Scenario 5: A sinusoidal-type trajectory with magnitudes: −300 µm to 300 µm, is preset up.

Initial value: The initial position of the fastener with a load is set up at 0 µm for all
these scenarios.

Figure 15 reveals the micro-positioning result with respect to the desired stair-type
trajectory which is with magnitudes: 500 µm ∈ (0 s, 6 s), −500 µm ∈ (6 s, 12 s), and
0 µm ∈ (12 s, 18 s) in Scenario 3. Figure 16 is history of the micro-positioning error deliv-
ered via the proposed AFR method, and from this illustration, the positioning error converges
to zero exponentially.
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Figure 16. Micro-positioning error for a desired stair-type trajectory.

Figures 17 and 18 display the micro-positioning results of this proposed micro-
positioning actuator for Scenario 4. A similar exponential convergent character in the
positioning error can be obtained, and a satisfactory micro-positioning performance is
delivered corresponding to a desired trajectory with ascending and descending slopes.
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Figures 19 and 20 indicate the micro-positioning results of this proposed micro-
positioning design with respect to a desired sinusoidal-type trajectory. Since the desired
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sinusoidal-type trajectory is a signal that varies with a frequency, the micro-positioning
task of this scenario is more sophisticated than the other two scenarios. An exponential
convergent character in the positioning error can be easily observed for Scenario 5 as well,
and this verification consists of the mathematical evaluation in Remark 1. From these
positioning results, it is easy to observe from the outcome of this real test that the real-time
instantaneous position of the moving fastener with a load quickly and precisely follows
the desired sinusoidal-type trajectory after 2.5 s.
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The RMS (root mean square) statistics of positioning errors in the steady state for the
above-mentioned simulation and experiments with 100 runs are listed in Table 3.

Table 3. The RMS statistics of positioning errors in the steady state.

Desired Trajectory RMS Positioning Errors of Simulation Results RMS Positioning Errors of Practical Results

Trapezoidal Trajectory 0.010 (µm) 0.011 (µm)

Sinusoidal Trajectory 0.0003 (µm) 0.003 (µm)

Table 3 reveals the fact that statistics of positioning errors in simulation results and
experiments are similar.
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6. Conclusions

Integrating a piezoelectric actuator and a nonlinear adaptive fuzzy robust control law,
a micro-positioning actuator is established in this investigation. For globally securing the
stability and the micro-positioning ability under influences of hysteresis effect and the
modeling uncertainties, a rigorous mathematical proof about the robustness and stability
of this proposed method has been proven with respect to a specific robust performance
index; the micro-positioning performance of this proposed method can be guaranteed
as well. From the simulation results, it is easy to point out the fact that based on the
perturbation cancellation of the on-line fuzzy approximator and the elimination ability
to approximation error of the robust compensator, this proposed adaptive fuzzy robust
control design performs far better than the feedback linearization control design in micro-
positioning performance when encountering hysteresis and modeling uncertainties caused
by the variations of system parameters. Practical tests of this proposed micro-positioning
design are validated via adopting three desired trajectories with their own features, and
all practical testing results achieve the required accuracy of 1 µm after a short transient re-
sponse. Promising qualities of this proposed micro-positioning method, including stability,
robustness, and micro-positioning performances in these practical tests are identical to the
simulation results.
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