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Abstract: The actuator of a particleboard glue-dosing system, the glue pump motor, is affected by
external disturbances and unknown uncertainty. In order to achieve accurate glue-flow tracking,
in this paper, a glue pump motor compound control method was designed. First, the prescribed
performance control method is used to improve the transient behaviors, and the error of the glue
flow tracking is guaranteed to converge to a preset range, as a result of the design of an appropriate
performance function. Second, two extended state observers were designed to estimate the state
vector and the disturbance, in order to improve the robustness of the controlled system. To further
strengthen the steady-state performance of the system, the sliding-mode dynamic surface control
method was introduced to compensate for uncertainties and disturbances. Finally, a Lyapunov
stability analysis was conducted, in order to prove that all of the signals are bounded in a closed-loop
system, and the effectiveness and feasibility of the proposed method were verified through numerical
simulation.

Keywords: glue pump motor; prescribed performance; sliding-mode dynamic surface; extended
state observer

1. Introduction

Particleboard is widely used in the wood industry, due to its highly comprehensive
rate of utilization of wood resources, its uniform structure, and its good processing ability.
As an important procedure in particleboard production, the process of glue-dosing affects
the quality of the board. However, the glue pump motor in a particleboard glue-dosing
system can enter the nonlinear range and is affected by external disturbances and unknown
uncertainties as it operates. Hence, it is necessary to study this kind of actuator [1–3]. In the
design of actual control systems, the performance is influenced by many factors, such as
external disturbances, internal uncertainties, unmodeled dynamics, and so on. To address
these problems, many control strategies have been presented, such as sliding-mode control
(SMC) [4–6], backstepping control [7,8], and adaptive control [9–11].

However, the current research in the field of nonlinear control typically focuses on
stable performance, and less attention is paid to the transient performance of the system,
which includes the overshoot and convergence rate [12–14]. With an increase in the com-
plexity of controlled system models and their real-time performance, the control accuracy
requirements become more stringent; hence, Reference [15] introduced the prescribed
performance control (PPC) strategy for this problem. With this method, the tracking error
is guaranteed to converge to an arbitrarily small range, and the convergence speed and
overshoot can meet the preset conditions. PPC has greatly aroused the attention of schol-
ars [16–21]. In [16], a compound adaptive formation control method for the unmanned
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surface vehicle platoon formation control problem was proposed, where the formation
error always evolved in a bounded, predefined region, according to the prescribed perfor-
mance specification. For the problem of precise and fast trajectory tracking control for a
free-flying space manipulator, a novel PPC based on an adaptive sliding-mode disturbance
observer has been proposed [17], where the stability and accuracy of the attitude control
systems of the base spacecraft were guaranteed. In [18], the problem of attitude tracking
control in spacecraft was studied, and the prescribed performance method guaranteed that
the spacecraft was subject to actuator faults and input saturation. In [19], a path-following
controller for a surface vessel was presented, and a performance-constrained guidance law
based on an error transform function was proposed, in order to ensure that the position
tracking error was within the specified convergence speed and maximum overshoot range.
For the asymptotic tracking control problem for nonaffine systems with disturbance, an
improved decentralized PPC method was introduced to deal with the uncertain actuator
nonlinearity in [20], which ensured the finite-time convergence of the error manifold to
a predefined region. In [21], an adaptive PPC method was presented for a class of un-
certain strict feedback nonaffine nonlinear systems with fuzzy logic systems to resolve
the disturbance.

Through the analysis of the previous research results, it can be seen that the PPC
method can improve the transient performance of a system; however, the traditional
method usually uses a logarithmic function as the transformation function, and the con-
straint condition of the performance function for the system is in the form of an inequality,
which can lead to highly complex control laws. Thus, the complexity of the derivation
of the controller is increased, and its implementation is hindered. Considering this prob-
lem, some scholars have proposed improved methods for simplifying the controller de-
sign [11,22,23]. In [22], a special error transformation was proposed, which transforms the
original constrained system into an output-constrained system. Their results demonstrated
that the improved system was able to guarantee the specified performance. For an output-
constrained system, References [11,23] used a barrier Lyapunov function (BLF) to prevent
constraint violations and derived a stabilizing function with lower complexity by ensuring
the boundedness of the BLF. In this way, the constraint of the transformation error output
was satisfied.

As a constructive method, through reverse design, backstepping control can make
the process of the design of a controller systematic and structured [7,8]. By recursively
constructing the Lyapunov function of the whole system, the structural characteristics of
the system are utilized, such that the trajectory of the closed-loop system is bounded and
converges to the equilibrium point. In this respect, backstepping has been combined with
PPC to simplify the design of controllers [24–26]. However, in the process of designing
a backstepping controller, repeated differentiation of virtual control variables is needed,
leading to the complexity explosion problem [27,28]. To offset this defect, Reference [29]
introduced the first order into each step, in order to calculate the derivatives of the virtual
control law, and it was shown that the proposed method—the dynamic surface control
(DSC) method—allowed for a design where the model was not differentiated. Subsequently,
References [30–33] combined the DSC method with PPC, in order to avoid the problems
of complexity and improve the performance of controllers. In [30], an adaptive PPC
method was introduced, in order to enhance the transient performance in the dynamic
positioning of ships, where an adaptive method was incorporated into the dynamic surface
to improve the robustness of the system. For an electrohydraulic system, Reference [31]
proposed a PPC method based on a dynamic surface, in order to restrict the position
tracking error. Furthermore, they designed a V function for the unknown uncertainty using
the DSC method.

Meanwhile, in view of the fast response and strong robustness of SMC, some studies
have combined it with DSC by introducing a sliding-mode surface into the process of
dynamic surface design [34–36]. In [34], DSC was combined with adaptive fuzzy sliding-
mode control, in order to improve the dynamic performance of a gyroscope, and it was
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shown that the combination of the two methods had better control performance and
improved the timeliness and effectiveness of tracking. In [35], an adaptive control scheme
for a ball-screw-driven system with high position tracking precision by using sliding-
mode dynamic surface control (SMDSC) was proposed. In [36], a novel integral-dynamics
surface control was proposed, in order to ensure the accurate tracking control of fully
actuated mechanical systems, and a quasi-terminal sliding-mode (TSM) was produced in
the trajectories of the tracking error to adjust the error convergence rate.

However, the ability of the SMDSC to compensate for disturbances and unknown
uncertainties is limited, and it often requires a large switching gain to eliminate external
disturbances and uncertainties, leading to chattering and effects on the stability of the
system. Thus, other methods are still needed to assist in dealing with such uncertainties
and disturbances [37,38]. In [37], an adaptive sliding-mode disturbance rejection controller
with prescribed performance was proposed to ensure the transient and steady-state per-
formances of the trajectory tracking control for robotic manipulators driven by electric
motors. For the linear induction motor system, Reference [38] proposed a novel prescribed-
performance-based model-free adaptive-sliding-mode-constrained control to resolve the
trajectory tracking problem. Nevertheless, many variables are difficult to directly measure,
and this increases the economic costs. Therefore, in the case of the estimation of state vari-
ables and the treatment of uncertainty, the study of system control schemes is an important
subject, having both theoretical significance and practical requirements.

To solve the problem mentioned above, David G. Luenberger introduced the idea of
reconstructing the state vector of a linear system [39]. The state vector is reconstructed by an
observer in order to obtain a linear system, which is incorporated into a controlled system,
providing the observed state to the system. In consideration of the superiority of the state
observer, some scholars have improved it in recent years [40,41]. As for the compensation
of disturbances by the control, References [42–44] presented an extended state observer
(ESO) to observe the total disturbance and unknown uncertainty as new state variables
and compensated for them in the feedback loop. In [42], an adaptive multiple-input
multiple-output ESO was presented, in order to estimate the nonmeasurable linear and
angular velocities, as well as the unknown external disturbance, which was then canceled
in a feed-forward manner. Considering the problem of the time-varying formation of
multi-agent systems, Reference [43] constructed an extended state observer to estimate
the disturbance compensation. Then, the influence of disturbance compensation on the
formation center function was analyzed. In [44], an adaptive control method for active
disturbance rejection for the problem of motion control in a hydraulic servo system was
proposed. Two extended state observers were constructed for the uncertainties; high-gain
feedback was avoided, and the tracking performance was expected to improve.

Motivated by the above discussions and inspired by the ESO design concept de-
scribed in [44] and the integration of the prescribed performance output control [31], a
compound control method that uses SMDSC is proposed for a glue pump motor in the
presence of external disturbances and unknown uncertainties, including matched and
unmatched uncertainties.

Compared with previous research on glue pump motors, the proposed controller
combines the robust control performance of the sliding-mode dynamic surface, which
realizes the global adjustment of the system without the chatter. At the same time, the
prescribed performance function is introduced to ensure the convergence speed and over-
shoot of the output of the system. In order to achieve accurate and fast flow control for the
particleboard glue tracking system to improve the production process of the particleboard,
the contributions of this paper can be summarized as follows:

1. Two extended state observers are constructed for each channel in a glue-dosing
system that contains uncertainties. The matched and unmatched uncertainties are
estimated, such that the compound controller can compensate for them in a feed-
forward manner;
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2. A compound controller is proposed, in combination with the prescribed performance
method and the sliding-mode dynamic surface control method. With this control
scheme, the transient and steady-state performance of the system are guaranteed,
by limiting the output error to a specified range. By introducing a specific error
conversion function, the prescribed performance specifications are incorporated into
a closed-loop design with the controller, which effectively promotes the derivation of
the design process;

3. Considering that the observers cannot completely estimate and compensate for the
uncertainty in each channel, the sliding-mode surface with the hyperbolic tangent
function is introduced into the dynamic surface, in which the complexity explosion
problem is addressed by introducing a first-order filter into the control steps, and the
learning burden of the ESOs is reduced without chattering to the actuator, in order to
avoid high-gain or high-frequency feedback.

The remainder of this paper is organized as follows: In Section 2, the particleboard
glue-dosing process is introduced and the mathematical model is established for the
following design and analysis. Section 3 provides the design process of the compound
controller design process, including the PPC scheme, the ESOs, and the SMDSC method.
The convergence of the closed-loop system is proven after the design of the controller.
In Section 4, simulation results are provided, in order to verify the effectiveness of the
proposed controller. Finally, our conclusions are given in Section 5.

2. Process and Plant Description
2.1. Particleboard Glue-Dosing Process

The glue-dosing process is one of the most important parts of particleboard production,
as it defines its technical level. The key to judging the quality of the effects of the control of a
glue-dosing system is determining whether the glue can be accurately mixed, according to
the requirements of the formula. In the process of production, too much glue will lead to a
high water content in the finished particleboard, which can result in blistering phenomena
and increases in the rates of product waste, raw material wastes, and production costs. If
the amount of glue is too small, the physical and mechanical properties of the particleboard,
such as its static bending strength, plane tensile strength, and so on, may be reduced. The
plasticity of the particleboard will also be reduced, which makes it more difficult to press,
thus ultimately reducing the quality of the product. Therefore, the level of automation
of particleboard glue-dosing control devices and actuators directly affects the market
competitiveness and benefits of particleboard production enterprises.

Such a system is divided into two subprocesses—glue preparation and glue-dosing. The
schematic diagrams of the particleboard glue-dosing process are shown in Figures 1 and 2.
In the preparation part, the volumes of various raw materials (including the curing agent,
waterproofing agent, curing buffer agent, water, and adhesive) are measured using a liquid
level detector. The raw materials then flow into the mixing case, as a result of gravity. A ball
valve is used to control the amounts of raw materials. All raw materials are mixed by an
agitator in the mixing case, which is divided into sections dedicated to the surface layer and
the core layer of the particleboard.
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Figure 1. Glue preparation subprocess of the particleboard glue-dosing process: 1. curing agent;
2. waterproofing agent; 3. curing buffer agent; 4. water; 5. liquid level detector; 6. quantitative barrel;
7. electronically controlled throttle valve; 8. feeding tube; 9. cylinder; 10. ball valve; 11. blanking tube;
12. agitator; 13. glue mixing case.
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Figure 2. Glue-dosing subprocess of the particleboard glue-dosing process.

After mixing the prepared glue in the glue mixing case, it flows to the glue pump
motor through valve A and is measured by an E + H electromagnetic flowmeter. Then,
the glue is transported to the mixing device through pipeline A. At the same time, the
raw shaving particles are weighed by a belt-weighting device, then transported to the
mixing device. In the process of the production of particleboard, two separate mixing
devices are needed to stir the surface- and core-layer particles. For convenience, only one
mixing device is shown in Figure 2. In order to simulate the process, a set of particleboard
glue-dosing equipment (GMD-A -type) was used for this study, which is shown in Figure 3.
The core actuator of the simulated system—that is, the glue pump motor—is shown in
Figure 4.
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Figure 3. GMD-A-type particleboard glue-dosing simulation system.

Figure 4. Glue pump motor.

2.2. Plant Description

A schematic diagram of the glue-dosing process is shown in Figure 5. The desired
glue flow signal is delivered to the system, and the real-time flow signal is measured by
the electromagnetic flowmeter, which sends the output value back to the control system.
By determining the difference between the two signals, the error value is obtained, which
is processed by the flow regulator. Then, the regulation and the speed of the motor are
changed by the frequency converter, in order to change the running speed of the gear
pump. The change in the speed of the gear pump speed adjusts the amount of glue sent
into the pipeline for glue flow control.



Actuators 2021, 10, 282 7 of 28

Glue Pump Motor

Regulator Converter
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Figure 5. Schematic diagram of the glue-dosing process.

In [45], a simple and practical mathematical model for a variable-frequency voltage-
regulating power supply system was derived. For a converter under the condition of a
constant voltage frequency ratio in a squirrel cage motor, the linear model, with small
deviation, is constructed as follows:

Jω̇ = −(D + pK0)ω + pK0ω1 − pm, (1)

K0 =
p
r2
(

V10

ω10
)2, (2)

where ω1 and ω represent the deviations of the stator’s power frequency and the rotor’s
electric angular velocity, respectively; V10 and ω10 represent the voltage and frequency
values of the stator power supply at the static work point, respectively; p is the role pair
number; r2 represents the rotor resistance converted to the stator side; D represents the
friction coefficient; m is the deviation of the load torque.

For the pump load, the torque is proportional to the square of the speed. When
linearized with a small deviation, the relation of the deviation is [46]:

m = Kmω, (3)

where Km is a torque deviation constant. By substituting Equations (2) and (3) into Equation (1),
the mathematical expression for the load of the pump motor is obtained as:

Jω̇ = −(D + pK0 + Km)ω + pK0ω1, (4)

the transfer function is:
ω(s)
ω1(s)

=
Kd

1 + Tds
, (5)

where Td = (D + pK0 + Km)/J, Kd = pK0/J.
In the working process of the motor, the flywheel torque of its driving system is

usually greater than the rate at which the speed of the load fluctuates. This can be ensured
by adjusting the appropriate times for acceleration and deceleration. For the pump load,
in order to reduce the water hammer effect, an integrator must be set, causing the output
frequency to change slowly when the control signal changes:

ω1(s)
c(s)

=
Kv

1 + Tvs
, (6)

where c represents the control signal processed by the regulator and Kv and Tv are
controller parameters.

In order to eliminate the static error in the control system, the flow regulator is set as
an integral loop:

c(s)
u(s)

=
1

Cus
, (7)

where Cu is a regulator parameter.
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As for the mathematical model of the pump–pipeline part of the system, a set of partial
differential equations can be used to fit the response curve of the glue flow:

y(s)
ω(s)

=
(Kb − Kg)s

1 + Tbs
, (8)

where y represents the glue flow, Kb is the control constant, Kg represents the differential
coefficient of the liquid’s antiregulation role, and Tb represents the time constant of the
glue inertia.

Through the above analysis, the nominal mathematical model of the dosing system
for the glue pump motor is obtained through the combination of Equations (5)–(8):

y(s)
u(s)

=
(Kb − Kg)KvKd

Cu(1 + Tbs)(1 + Tds)(1 + Tvs)
. (9)

As the actuator and sensor can be disturbed in the working process of the glue pump
motor system, they will enter the nonlinear region under high-frequency conditions. In the
pump–pipeline part of the system, the pipeline pressure has an impact on the glue flow.
Therefore, the state equation of the system with disturbances and uncertainties is obtained
by referring to the nominal model given in Equation (10):

ẋ1 = x2

ẋ2 = x3 + ∆g(x1, x2, x3) + d1

ẋ3 = f (x1, x2, x3) + ku + ∆ f (x1, x2, x3) + d2

y = x1

, (10)

where ∆g(x1, x2, x3) = ∆g1x1 + ∆g2x2 + ∆g3x3 and ∆ f (x1, x2, x3) = ∆ f1x1 + ∆ f2x2 +
∆ f3x3 represent the unmodeled dynamics, d1 and d2 are the external disturbances to
the system, k = (Kb − Kg)KvKd, f (x1, x2, x3) = f1x1 + f2x2 + f3x3, f1 = Cu, f2 = (TbTd +
TbTv + TdTv)Cu, and f3 = TbTdTvCu.

Assumption 1. The external disturbance di and the unmodeled dynamics are bounded by |di| 6
Di(i = 1, 2) and |∆g(x1, x2, x3)| ≤ G,|∆ f (x1, x2, x3)| ≤ F, in which Di, G, and F are all
unknown positive constants.

Assumption 2. The desired trajectory y is a known bounded function of time, for which there
exists a known bounded derivative.

Assumption 3. The state x = [x1, x2, x3] is available for measurement.

Remark 1. The disturbances di(i = 1, 2) are caused by the operations of the motor and sensor,
which are unknown and bounded. ∆g and ∆ f represent the uncertainty of the parameters and some
unmodeled dynamics caused by the application of the glue, as well as the pressure and temperature.
Assumption 3 is given for the subsequent observer and controller design.

3. Controller Design
3.1. Prescribed Performance Control

In the design of the prescribed performance control, the performance function and
error transfer function are proposed to control the steady-state and transient performance
of the system, including the overshoot and convergence rate.

Considering the controlled system shown in Equation (10), we define the tracking
error as follows:

e = y− yd, (11)
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where yd is the desired tracking signal. In order to ensure the transient performance of the
system, the performance function is defined as follows:

Definition 1. A smooth function ρ : <+ → <+ is called a performance function (ρ ∈ P) if [15]:

1. ρ is positive and decreasing;
2. limt→∞ ρ(t) = ρ∞ > 0.

In general, a function that satisfies the conditions in Definition 1 can be used as a
performance function. For this paper, the following performance function was selected [31]:

ρ(t) = (ρ(0)− ρ(∞))e−νt + ρ(∞), (12)

where ρ(0) is the initial value of the performance function, ρ(∞) is a positive constant, and
ν is an adjustable parameter.

To ensure the transient performance of the system, the tracking error of the system
output satisfies the following inequality:{

− δρ(t) < e < ρ(t), e(0) > 0

− ρ(t) < e < δρ(t), e(0) < 0
, (13)

where 0 ≤ δ ≤ 1.
According to Equation (13), the tracking error is constrained in a specified range and,

finally, converges to an arbitrarily small area, in which the upper bound of the system
stability error is determined by ρ(∞). The slope of the performance function, ρ(t), is the
lower convergence speed of the tracking error, and the overshoot is constrained by δρ(0).

Through the above analysis, it can be found that the transient performance of the
system can be controlled by changing the performance function shown in Equation (12).
However, the form of the constraint is an inequality, which may lead to difficulties in
the subsequent controller design. Under this condition, the error transfer function is
introduced, in order to solve this problem.

Substituting Equation (11) into Equation (13) gives:{
− δρ(t) + yd < y < ρ(t) + yd, e(0) > 0

− ρ(t) + yd < y < δρ(t) + yd, e(0) < 0
. (14)

According to Equation (14), the nature of the prescribed system performance control
problem is a kind of output-constrained problem, which the BLF method can effectively
solve. The following BLF candidate was chosen:

V1 =
1
2

log
1

1− ε2 , (15)

where ε is the error transformation function, and

ε =
2z1 − (p(t) + q(t))

q(t)− p(t)
, (16)

where z1 = e, p(t) = −ρ(t), and q(t) = δρ(t).
For the convenience of analysis in the subsequent design, the following lemmas

are introduced:

Lemma 1 ([47]). Let Z = {ξ ∈ R : |ξ| < 1} ⊂ R and N = Rl × Z ∈ Rl+1 be open sets.
Considering the system:

η̇ = h(t, η),
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where η = [W , ξ]T , the function h : R+ × N → Rl+1 is piecewise continuous at time t for
R+ and satisfies the local Lipschitz condition for η. Assuming the existence of a connected and
differentiable positive-definite function U : Rl ×R+ → R+, V1 : Z → R+ satisfies

|ξ| → 1,V1(ξ)→ ∞, γ1(‖W‖) 6 U (W , t) ≤ γ1(‖W‖),

where γ1 and γ2 are class K∞ functions. Let V(η) = V1(ξ) + U (W , t) and ξ(0) ∈ Z . If the
following inequality holds:

V̇ =
∂V
∂η
≤ 0,

then ξ(t) ∈ Z when t ≥ 0.

Lemma 2 ([48]). For |ε| < 1 and any positive integer a, the following inequality holds:

log
1

1− ε2a <
ε2a

1− ε2a .

3.2. Extend State Observer Design

As the traditional ESO [42] can only observe and compensate for the matching uncer-
tainty, it is not suitable for the system model given in Equation (10). By referring to [44],
two ESOs were constructed:

˙̂x1 = x̂2 + η1ωe1(x1 − x̂1)

˙̂x2 = x3 + x̂e1 + η2ω2
e1(x1 − x̂1)

˙̂xe1 = η3ω3
e1(x1 − x̂1)

, (17)

{
˙̂x3 = f (x1, x2, x3) + ku + x̂e2 + ζ1ωe2(x3 − x̂3)

˙̂xe2 = ζ2ω2
e2(x3 − x̂3)

, (18)

where x̂i(i = 1, 2, 3) represent the observations of the state xi(i = 1, 2, 3), the unmatched
uncertainties ∆g(x1, x2, x3) + d1 are extended as the additional state xe1, the matched
uncertainties ∆ f (x1, x2, x3) + d2 are extended as the additional state xe2, x̂i(i = 1, 2) are the
estimated values, and ωei, ζi(i = 1, 2), and ηi(i = 1, 2, 3) are the tuning parameters for the
observer bandwidth.

The system model shown in Equation (10) can be rewritten as follows:
ẋ1 = x2

ẋ2 = x3 + xe1

ẋe1 = h1(t)

, (19)

{
ẋ3 = f (x1, x2, x3) + ku + xe2

ẋe2 = h2(t)
, (20)

where h1(t), h2(t) represent the rate of change of the uncertainty, which are unknown but
bounded by H1 and H2, which are expressed in terms of Di, Fi, Gi, |xi|, and u. The observa-
tional errors are defined as x̃i = xi − x̂i and x̃ei = xei − x̂ei. Theorem 1 is given as follows.

Theorem 1. Consider the system model described in (19). By appropriately choosing the observer
gain [η1, η2, η3] providing the Hurwitz matrix (A3), there exist the positive-definite matrices P and
Q that satisfy the Lyapunov Equation (A6). The estimated error ε is bounded by a region Ω described
in (A9). As for Equation (12), the observer gain [ζ1, ζ2] is chosen to provide the Hurwitz matrix
(A12); there exist the positive-definite matrices P1 and Q1 that satisfy the Lyapunov Equation (A15).
The estimated error v is bounded by a region Ω1 described in (A18).
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Proof of Theorem 1. See Appendix A.

Remark 2. Based on Theorem 1, the tuning parameter x̃e1 is adjustable for reducing the boundary
Ω and the tuning parameter x̃e2 is adjustable for reducing the boundary Ω1.

3.3. Design Steps for a Compound Controller

By using the sliding-mode dynamic surface control method combined with the design
of the prescribed performance control described in Section 3.1 and the ESOs described in
Section 3.2, the compound controller was designed. First, an appropriate BLF candidate
was selected to construct the error conversion function, in order to solve the problem of
the limitations of the system output, thus ensuring the preset performance of the system.
Second, the error transfer function was introduced in the first subsystem of the process of
dynamic surface design, while a first-order filter was applied in the second subsystem. The
derivative of the virtual control input was calculated with the DSC method, in order to
avoid the expansion of the differential term caused by the backstepping control method.
Finally, the new variable was used as the input to the third subsystem, and the observations
of the unknown uncertainties of the ESOs were used to realize the design of the control
input.

Step 1: The tracking error of the first subsystem is:

z1 = x1 − yd, (21)

and the derivative with respect to time for z1 is:

ż1 = ẋ1 − ẏd

= x2 − ẏd.
(22)

The Lyapunov function is chosen as shown in Equation (15) for the first subsystem,
and the derivative is:

V̇1 = ε̇
ε

1− ε2 . (23)

The derivative of the error transformation shown in Equation (16) with respect to time
is as:

ε̇ =
2ż1 − ( ṗ + q̇)

q− p
− [2z1 − (p + q)](q̇− ṗ)

(q− p)2 . (24)

Define the second subsystem tracking error z2:

z2 = x2 − α1, (25)

where α1 is the virtual control variable.
Considering Equations (22)–(25), we have:

V̇1 = [
2(z2 + α1 − ẏd)

q− p
− 2

z1(q̇− ṗ)− pq̇ + ṗq
(q− p)2 ]

ε

1− ε2 . (26)

To facilitate subsequent stability analyses in Section 3.4, the virtual control for the
second subsystem α1 is designed as:

α1 = −k1z1 +
k1(p + q)

2
+ ẏd +

z1(q̇− ṗ)− pq̇ + ṗq
(q− p)2 , (27)

where k1 > 0 is the tuning parameter.
Substituting Equation (27) to (26), we have:

V̇1 = ε(− k1ε

1− ε2 +
2z2

(1− ε2)(q− p)
), (28)
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where |ε| < 1 according to Lemma 1.
Step 2: By differentiating the second subsystem tracking error z2, we have:

ż2 = ẋ2 − α̇1

= x3 + xe1 − α̇1.
(29)

According to Equation (26), the derivative of the virtual control α1 with respect to
time is as:

α̇1 =− k1ż1 +
k1( ṗ + q̇)

2
+ ÿd +

[ż1(q̇− ṗ) + z1(q̈− p̈)− pq̈ + p̈q]
q− p

− [z1(q̇− ṗ)− pq̇ + ṗq](q̇− ṗ)
(q− p)2 .

(30)

The Lyapunov function of the second subsystem is chosen as:

V2 =
1
2

z2
2. (31)

For the reason of mismatch uncertainty, the virtual control of the third subsystem α2
combined with the ESO is designed as:

α2 = −k2z2 + α̇1 −
2ε

(1− ε2)(q− p)
− x̂e1, (32)

where k2 > 0 is the tuning parameter, which denotes the feedback gain.
The input α2 is passed through a first-order low-pass filter, and we take its output, α2d,

as a new virtual control variable in the third subsystem:

τα̇2d + α2d = α2, (33)

where τ is a time constant and α2d(0) = α2(0).
Hence, the tracking error of the third subsystem z3 is:

z3 =x3 − α2d

=ż2 + α̇1 − xe1 − α2d.
(34)

The filter error is:
eα = α2d − α2. (35)

By differentiating Equation (31):

V̇2 =z2ż2

=z2(z3 + xe1 + α2d − α̇1)

=z2(z3 + xe1 + eα − k2z2 + α̇1 −
2ε

(1− ε2)(q− p)
− x̂e1 − α̇1)

=− k2z2
2 + z2z3 + eαz2 −

2εz2

(1− ε2)(q− p)
+ z2 x̃e1.

(36)

Step 3: By differentiating the third subsystem tracking error z3, we have:

ż3 =ẋ3 − α̇2d

= f (x) + ku + xe2 − α̇2d,
(37)
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where:
α̇2d =α̇2dc + α̇2du

α̇2dc =
∂α2d

∂t
+

∂α2d
∂x1

x2 +
∂α2d
∂x2

(x3 + x̂e1) +
∂α2d
∂x̂e1

˙̂xe1

α̇2du =
∂α2d
∂x2

x̂e1,

(38)

In Equation (38), α̇2dc indicates that known and computable, which is used in the
controller design, and α̇2du indicates the unknown part must be suppressed by some
robust feedback due to uncertain nonlinearity [44]. α̇2d can be obtained from Equation (32).
Considering that the observation cannot completely compensate for this uncertainty, it is
necessary to strengthen the robust control in the third subsystem.

The third subsystem is defined as the sliding-mode surface referring to [49]:

s = z3. (39)

The Lyapunov function of the third subsystem is defined as:

V3 =
1
2

s2, (40)

and the derivative with respect to time is:

V̇3 =sṡ

=s( f (x) + ku + xe2 − α̇2d).
(41)

Based on Equations (37) and (41) and the SMC method, the control law u is designed as:

u =
1
k
(−k3z3 − f (x)− z2 − x̂e2 + α̇2 − γsgn(z3)), (42)

where k3 is the tuning parameter and γ is the switching term gain, which satisfies γ ≥
D2 + F.

Remark 3. In order to prevent the observers from being affected by noise interference, the appropri-
ate observer gains were not chosen too high. Although this will lead to the decline of observation
performance, the prescribed performance and sliding-mode dynamic surface control were used as a
supplement to further improve the steady-state performance of the system. As for the control gain γ
in sliding-mode control, let γ ≥ D2 + F to eliminate disturbance and uncertainty.

Considering the chattering of the control signal induced by the switching term
−γsgn(z3), which may lead to the actuators’ damage, a hyperbolic tanh function θ(s)
was introduced instead of sgn(s):

θ(s) =
e

s
µ − e−

s
µ

e
s
µ + e−

s
µ

(43)

where µ > 0. The comparison between y = 5θ(s) and y = 5sgn(s) is shown in Figure 6. It
can be seen that the hyperbolic tangent function θ(s) can realize a smooth transition and
avoid system chattering caused by high-frequency switching.
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Figure 6. Time response of the hyperbolic tangent function.

The configuration of the compound controller obtained through the above analysis is
shown in Figure 7.

The Proposed Controller

Error Transformation 
Function

First Step Second Step Third Step

First-Order 
Fliter

Extended State 
Observers

Particleboard Glue 
Dosing System

Figure 7. The configuration of the compound controller.

3.4. Stability Analyses

In this section, the stability of the system is analyzed by constructing the Lyapunov
function. Before that, the following preparations are given below. First, define a set of
scalars as:

Ω1 :=
{
(yd, ẏd, ÿd) : y2

d + ẏ2
d + ÿd)

2 ≤ υ
}

,

Ω2 :=
{

log
1

1− ε2 + z2 + z3 + eα ≤ 2φ

}
,

κ1 =w2ω2
e1, κ2 = w3ω2

e1

∣∣∣∣∂α2

∂x2

∣∣∣∣, κ3 = w3ωe2,

ς1 =
µ2

2
(we1 − 1), ς2 =

µ3

2
(we2 − 1),

ϑ =
µ2

2
(
‖P1θ1‖|h1(t)|max

ω2
e1

)2 +
µ3

2
(
‖P2θ4‖|h2(t)|max

ω2
e2

)2

(44)

where υ, φ, w2, w3, µ2, µ3 are positive constants and P1, P2 are positive definite matrices
satisfying ηT P1 + P1η = −I, ζT P2 + P2ζ = −I.
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Differentiating Equation (34), we obtain that:

ėα =α̇2d − α̇2

=
α2 − α2d

τ
− (−k2ż2 + α̈1 − ż1 − ˙̂xe1) +

∂

∂t
(

2ε

(1− ε2)(q− p)
)

=− eα

τ
+ L

, (45)

where L = −(−k2ż2 + α̈1 − ż1 − ˙̂xe1) +
∂
∂t (

2ε
(1−ε2)(q−p) ).

The Lyapunov function is constructed as:

V =
3

∑
i=1

Vi +
1
2
(e2

α + µ2X̃T
12P1X̃12 + µ3X̃T

3 P2X̃3)

=Vc + Vo

, (46)

where Vc = ∑3
i=1 Vi +

1
2 e2

α, Vo =
1
2 (µ2X̃T

12P1X̃12 + µ3X̃T
3 P2X̃3).

Invoking Equations (28), (36), (41), and (44), the derivative of Equation (45) is:

V̇c =
3

∑
i=1

V̇i + eα ėα

=− k1ε2

1− ε2 − k2z2
2 − k3z2

3 − γ|z3| −
e2

α

τ
+ Leα + z2eα + z2 x̃e1 + z3 x̃e2

V̇o =−
1
2
(µ2ωe1

∥∥X̃12
∥∥2

+ µ3ωe2
∥∥X̃3

∥∥2
)

+ µ2X̃T
12P1θ2

h1(t)
ω2

e1
+ µ3X̃T

3 P2θ4
h2(t)
ωe2

, (47)

The upper bound M of L in Equation (46) is defined on set Ω1 ×Ω2, then L2

M2 − 1 ≤ 0.
According to Lemma 2 and Young’s inequality:

V̇c ≤− k1log
1

1− ε2 − k2z2
2 − k3z2

3 − γ|z3|

− e2
α

τ
+ Leα + |z2||eα|+ |z2||x̃e1|+ |z3||x̃e2|

≤ − k1log
1

1− ε2 − k2z2
2 − k3z2

3 − γ|z3|

− e2
α

τ
+

L2e2
α + 1
2

+
z2

2 + e2
α

2
+

z2
2 + x̃2

e1
2

+
z2

3 + x̃2
e2

2

≤− k1log
1

1− ε2 − γ|z3| − (k2 − 1)z2
2 − (k3 −

1
2
)z2

3

− (
1
τ
− 1 + L2

2
)e2

α +
1
2

∆

, (48)

where ∆ = x̃2
e1 + x̃2

e2, which depends on the observation error from the observation. Based
on Remark 2, let ∆max ≥ ∆.

Consequently, the tuning parameters are chosen as:

k1 ≥ $, k2 − 1 ≥ $, k3 −
1
2
≥ $,

1
τ
≥ (1 + M2)

2
+ $, (49)

where $ is a very small positive constant, and then:

V̇c ≤ −2$Vc +
1
2

∆max, (50)
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Lemma 3. For V : [0, ∞) ∈ R, the solution of inequality V̇ ≤ −αV + f , ∀t ≥ t0 ≥ 0 is:

V(t) ≤ e−α(t−t0)V(t)0 +
∫ t

t0

e−α(t−τ) f (τ)dτ , (51)

where α is an arbitrary constant.

Proof of Lemma 3. See Appendix B.

According to Lemma 3, the solution of Equation (49) is:

Vc ≤e−$(t−t0)Vc(t0) +
1
2

∆2
max

∫ t

t0

e−$(t−τ)dτ

=e−$(t−t0)Vc(t0)−
1

2$
∆2

max(1− e−$(t−τ))

, (52)

where the Lyapunov function Vc(t) = 1
2$ ∆2

max, t→ ∞, and the derivative V̇c can be ensured
to converge to zero exponentially.

We define a positive definite matrix, Λ, as:

Λ =

Λ1 0 Λ3
0 ς1 0

ΛT
3 0 Λ2

, (53)

where Λ1 =

[
ω2 −ω2

2
−ω2

2 ω3

]
, Λ2 =

[
ς1 0
0 ς2

]
, Λ3 =

[
− κ1

2 0
− κ2

2 −κ3

]
.

Theorem 2. For the positive-definite Lyapunov function, Vo is bounded by:

Vo(t) ≤ Vo(0)e−λ2t +
ϑ

λ2
(1− e−λ2t), (54)

where λ1 = min1, 1
ω2

, 1
ω3

, λ2 = 2λmin(Λ)min
{

λ1, 1
µ2λmax(P)1

, 1
µ3λmax(P)2

}
[44].

Proof of Theorem 2. See Appendix C.

Remark 4. Through the analysis of the above content and considering that the controlled subject
shown in Equation (10) satisfies Assumptions 1–3, the extended state observers in
Equations (17) and (18) and the controller defined in Equations (27), (32), (42), and (43) are
applied, and the closed-loop system is globally stable, according to the analysis of the Lyapunov
functions Vc and Vo.

4. Analysis of the Simulation Results
4.1. Simulation Preparation

In this section, the effectiveness of the proposed compound controller is verified
through numerical simulation of a particleboard glue-dosing system. The collected data of
the glue flow in the glue-dosing system (shown in Figure 3) are provided in Table 1.

In order to obtain a specific numerical model, glue flow data were collected from the
GMD-A-type simulator with a constant-frequency input (25 Hz). The results were obtained
in the case where the flow was stable under the relative ideal working conditions without
interference, as shown in the table above. Using the MATLAB parameter identification
toolbox, the following results were obtained: f (x1, x2, x3) = −0.284x1 − 1.58x2 − 2.38x3,
k = 0.028. As for the uncertainties, a specific analysis was carried out under different
scenarios, as presented with the following simulation results.
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Table 1. Collected data of the glue flow in the dosing system.

Time (s) Glue Flow (L/min) Time (s) Glue Flow (L/min)

10 0.0438 90 8.4125
20 0.1375 100 9.0313
30 0.8938 110 9.4375
40 1.8625 120 9.7437
50 3.1813 130 10.1187
60 4.9625 140 10.2188
70 6.4812 150 10.3000
80 7.5813 160 10.3500

4.2. Simulation Analysis

The motivation of this section is to make the output of the established system track the
desired glue flow signal, which is the input to the controlled system. For example, when
glue needs to be applied to the particlebaord at the speed of 10L/min, the output of the
system should track it as quickly and smoothly as possible.

The parameters in the controller were chosen by the trial and error method. A set
of simulation results is shown in Figures 8 to demonstrate this process. Considering that
the PID method has a stable control performance in many applications, in the process of
controller parameter selection, the PID control performance was taken as the expected
goal for parameter design. Firstly, a set of PID parameters was selected as the control
performance goal shown as Curve 1; then, the sliding-mode dynamic surface controller was
designed to approach Curve 2 by constantly changing the design parameters, and Curves
3.4 were obtained; curve 4 means that overshoot occurs when achieving the fast tracking
signal, which is not allowed; the prescribed performance method was added on the basis
of sliding-mode dynamic surface shown as Curve 1, and it can realize a faster tracking
signal than PID due to PPC being able to control the transient performance, including the
convergence speed. It should be explained that the results shown in the figure only selected
several curves representing the parameters’ choosing process.

Figure 9 shows the input of the system. It can be seen that the input curve is smoother
when the tanh function is used as the switching term where µ = 0.01. Compared with the
switching term using a sign function, it can be seen that the chattering is weakened.

Figure 8. Time response of glue flow tracking.
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Figure 9. Time response of control input.

Case 1 : In order to verify the effects of the prescribed performance control method
without extended state observers, we compared it with an adaptive dynamic surface control,
inspired by [50], in order to demonstrate that it has superior transient and steady-state
performance in the controlled system.

Due to the tracking error e(0) = x1(0) − yd = −10 L/min, the parameters of the
performance function were designed as follows:

ρ0 = 25 L/min, ρ∞ = 1× 10−4 L/min, ν = 55.

The tuning parameters for the proposed controller were set as: k1 = 30, k2 = 120,
k3 = 150, η = [3, 3, 1], ζ = [2, 1], ωe1 = ωe2 = 1× 10−2, and γ = 5. Furthermore, the time
constant in the first-order filter was set to τ = 0.001.

The simulation results are shown in Figures 10–12. In Figure 10, Controller 1 represents
the method shown in [50] without the interval type-2 fuzzy neural networks. Controller 2
represents the DSC method. It can be seen that the tracking curve was able to quickly and
accurately track the desired flow signal. Compared with adaptive DSC, it had a higher
convergence speed in the transient stage without overshooting, reflecting the effect of
introducing the performance function.

Figure 10. Time response of the glue flow tracking.
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Figure 11. Time response of the performance function.

In order to further verify the effect of the performance function, the inequality in
Equations (13) and (16), which represent the preset performance control, is shown in
Figure 11. It can be seen that the flow tracking error and convergence speed were always
within the specified range without overshooting, which indicates accurate application of
the prescribed amount of glue; this is an important and representative embodiment of the
process. Although the transformation error of the system does not converge to zero and
the jitter is obvious, it is still stable in the field near zero. This does not affect the preset
performance control algorithm, which still plays a significant role in the process of accurate
and rapid control of the system.

The virtual control input and output of the first-order filter in the dynamic surface
control is shown in Figure 12. As the results showed, the output curve is relatively smooth,
and the virtual input variation error after passing through the first-order filter in the second
subsystem can be maintained in a relatively small field, which proves that it ha a good
ability to calculate the virtual input derivative.

Figure 12. Time response of the first-order filter.

Case 2: To illustrate the effectiveness of the two extended state observers, we used the
sliding-mode dynamic surface control scheme based on the ESOs’ combined
prescribed performance.
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The tuning parameters of the proposed controller were chosen as k1 = 50, k2 = 200,
k3 = 130, η = [3, 3, 1], ζ = [2, 1], ωe1 = ωe2 = 1× 10−2, γ = 1000; the time constant
in the first-order filter was chosen as τ = 0.001. The simulation results are shown in
Figures 13–16.

Figure 13. Time response of glue flow tracking.

The time response of glue flow tracking is shown in Figure 13. Controller a represents
the improved active disturbance rejection control method based on the neural network state
observer shown in [51]. Controller b represents the high-gain observer-based sliding-mode
dynamic surface control method. Controller c represents the DSC method. Controller d
represents the SMC method.

Controller a represents the ADRC method, which is aimed at practical engineering
combined with the neural network observer to observe the external disturbance. Controller
b represents the sliding-mode dynamic surface control based on a single high-gain observer
without prescribed performance. The comparison between the proposed controller and
Controllers c and d shows that the combination of the two methods can achieve better
control performance. It can be seen that the proposed controller can track the desired flow
signal accurately and quickly by the comparison.

In order to prove the effectiveness of the two extended state observers, the results are
shown in Figure 14. The uncertainties ∆g = 0 and ∆ f = 0 facilitated the analysi,s and the
mismatched/matched disturbances were chosen as compound sinusoidal signals. It can be
seen, from the results, that the designed observers were able to accurately approximate
the matched and mismatched disturbances of the system, thus making it able to effectively
compensate for the external disturbances in the feed-forward channel, in order to enhance
the stability and robustness of the system.
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Figure 14. Time response of the 2 ESOs in the controller.

In Figure 15, uncertainties are still not considered, but the mismatched/matched
disturbances were chosen to be random noise signals, in order to simulate actual working
conditions. The results showed that the ESOs still had excellent approximation perfor-
mance for the mismatched/matched disturbances, even when the performance function
was added and the disturbance were random noise, which caused the complexity of the
controller to increase.

Figure 15. Time response of the ESOs.

The two cases above only considered uncertain linear disturbances, including mis-
matched/matched disturbances. Therefore, we set the uncertainties ∆g 6= 0 and ∆ f 6= 0, in
order to verify the superior robustness of the proposed method. Figure 16 reflects the time
response of the ESOs in the compound controller. Even when the uncertainty functions
were added, the observer could still approximate the uncertainties.
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Figure 16. Time response of the ESOs.

5. Conclusions

In this paper, a robust compound performance control scheme based on ESOs was
proposed for the problem of controlling the glue-dosing speed in a particleboard glue-
dosing system. It was shown to be able to achieve accurate and rapid control performance
for the tracking of the glue flow in the presence of external interferences and unknown
uncertainties. Mismatched/matched uncertainties were approximated and compensated
in a feed-forward way through the design of ESOs, which effectively enhanced the robust-
ness of the control system. A new error transformation function was introduced, and a
prescribed performance control method was used, in order to keep the tracking error and
tracking speed within a small, specified range, ensuring the transient performance of the
system. In order to solve the problem that the observer could not fully approach the uncer-
tainties in order to further improve the performance, the sliding-mode dynamic surface
control method was introduced, and the computational burden of the control scheme was
reduced through the introduction of a first-order filter. The results demonstrated that the
proposed method has a fast convergence speed and a small steady-state convergence error,
both of which satisfy the expectations for the tracking effect, indicating that the glue flow
can be accurately controlled.
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Appendix A

The convergence of the first observer in Equation (17) is proven as follows:
Define the variable:

ε = [ε1, ε2, ε3], (A1)

where ε1 = ω2
e1 x̃1, ε2 = ωe1 x̃2, ε3 = x̃e1.
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Invoking Equations (10) and (17):

ε̇1

ωe1
= ωe1(ẋ1 − ˙̂x1)

= ωe1(x2 − (x̂2 + ωe1η1(x1 − x̂1)))

= −η1ε1 + ε2

ε̇2

ωe1
= (ẋ2 − ˙̂x2)

= xe1 − x̂e1 − η2ω2
e1(x1 − x̂1)

= −η2ε1 + ε3

ε̇3

ωe1
=

ẋe1 − ˙̂xe1

ωe1

=
ẋe1

ωe1
−ω2

e1η3(x1 − x̂1)

= −η3ε1 +
ẋe1

ωe1
.

The observer tracking error is defined as:

1
ωe1

ε̇ = Āε +
1

ωe1
B̄ẋe1, (A2)

where:

Ā =

−η1 1 0
−η2 0 1
−η3 0 0

, B̄ =

0
0
1

 (A3)

The secular equation of matrix Ā is:

∣∣λI − Ā
∣∣ =

∣∣∣∣∣∣
λ + η1 −1 0

η2 λ −1
η3 0 λ

∣∣∣∣∣∣ = 0, (A4)

From this equation, we obtain that:

λ3 + η1λ2 + η2λ + η3 = 0. (A5)

The matrix Ā could satisfy the Hurwitz condition by choosing ηi(i = 1, 2, 3). For any
positive-definite symmetric matrix Q, there will be a positive-definite symmetric matrix P
satisfying the following Lyapunov candidate function:

ĀT P + PĀ + Q = 0. (A6)

Define the observer Lyapunov candidate function:

V =
εT Pε

ωe1
. (A7)

Assuming 1 and differentiating (A7) with respect to time yield:
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V̇ =
ε̇T Pε

ωe1
+

εT Pε̇

ωe1

=(Āε +
1

ωe1
B̄ẋe1)

T Pε + εT P(Āε +
1

ωe1
B̄ẋe1)

=εT ĀT Pε +
1

ωe1
(B̄ẋe1)

T Pε + εT PĀε +
1

ωe1
εT PB̄ẋe1

=εT(ĀT P + PĀ)ε +
2εT PB̄ẋe1

ωe1

≤− εTQε + 2
1

ωe1
‖PB̄‖ · ‖ε‖‖ẋe1‖,

and:

V̇ ≤ −λmin(Q)‖ε‖2 +
2H1‖PB̄‖‖ε‖

ωe1
,

where λmin(Q) are the minimum eigenvalues of Q, and the condition to guarantee V̇ ≤ 0
is:

‖ε‖ ≥ 2H1‖PB̄‖
ωe1λmin(Q)

. (A8)

Hence, it can be concluded that the upper bound of ε is bounded by a region Ω:

‖ε‖ ≤ Ω ,
2H1‖PB̄‖

ωe1λmin(Q)
, (A9)

It can be seen that the convergence rate of state estimation error ε is related to parame-
ter ωe1. When ωe1 is decreased, the convergence speed is faster. With the decrease of ωe1,
the estimation error gradually converges to the region close to zero.

The convergence of the second observer in Equation (18) is proven as follows:
Define the variable:

v = [v1, v2], (A10)

where v1 = ωe2 x̃3, v2 = x̃e2.
Invoking Equations (10) and (17),

v̇1

ωe2
= −ζ1v1 + v2

v̇2

ωe2
= −ζ2v1 +

ẋe2

ωe2
.

The tracking error of the observer is defined as:

ωe2v̇ = C̄v + ωe2D̄ẋe2, (A11)

where:

C̄ =

[
−ζ1 1
−ζ3 0

]
, D̄ =

[
0
1

]
. (A12)

The secular equation of matrix C̄ is:

∣∣λI − C̄
∣∣ = [λ + ζ1 −1

ζ2 λ

]
= 0. (A13)

From this equation, we obtain:

λ2 + ζ1λ + ζ2 = 0. (A14)
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The matrix C̄ can satisfy the Hurwitz condition by choosing ζi(i = 1, 2). For any
positive-definite symmetric matrix Q1, there exists a positive-definite symmetric matrix P1
satisfying the following Lyapunov candidate function:

C̄T P1 + P1C̄ + Q1 = 0. (A15)

We define the observer’s Lyapunov candidate function as follows:

V =
vT P1v

ωe2
. (A16)

By Assumption 1 and by differentiating Equation (A16), with respect to time, we have:

V̇ =
v̇T P1v

ωe2
+

vT P1v̇

ωe2

=(C̄v +
1

ωe2
D̄ẋe2)

T P1v + vT P1(C̄v +
1

ωe2
D̄ẋe2)

=vTC̄T P1v +
1

ωe2
(D̄ẋe2)

T P1v + vT P1C̄v +
1

ωe2
vT P1D̄ẋe2

=vT(C̄T P1 + P1C̄)v +
2vT P1D̄ẋe2

ωe2

≤−vTQ1v + 2
1

ωe2
‖P1D̄‖ · ‖v‖‖ẋe2‖,

and:

V̇ ≤ −λmin(Q1)‖v‖2 +
2H2‖P1D̄‖‖v‖

ωe2
,

where λmin(Q1) are the minimum eigenvalues of Q1, and the condition to guarantee V̇ ≤ 0
is:

‖v‖ ≥ 2H2‖P1D̄‖
ωe2λmin(Q1)

. (A17)

As mentioned earlier in this section, it can be concluded that the upper bound of v is
bounded by a region Ω1:

‖v‖ ≤ Ω1 ,
2H2‖P1D̄‖

ωe2λmin(Q1)
, (A18)

We can obtain that the estimation error gradually converges to the region close to zero
with the decrease of ωe2.

Appendix B

Let ω(t) , V̇ + αV − f and ω ≤ 0, so:

V̇ = −αV + f + ω, (A19)

where the solution is:

V(t) = e−α(t−t0)V(t0) +
∫ t

t0

e−α(t−τ) f (τ)dτ +
∫ t

t0

e−α(t−τ)ω(τ)dτ, (A20)

Noting that ω < 0, ∀t ≥ t0 ≥ 0:

V(t) ≤ e−α(t−t0)V(t0) +
∫ t

t0

e−α(t−τ) f (τ)dτ, (A21)



Actuators 2021, 10, 282 26 of 28

If f = 0, the solution of V̇ ≤ −α is:

V(t) ≤ e−α(t−t0)V(t0), (A22)

Through the above analysis, it can be found that if α is a positive real number, V(t)
converges to zero exponentially.

Appendix C

According to Equation (46), we can upper bound it as:

V̇o ≤−
1
2

µ2(ωe1 − 1)
∥∥X̃12

∥∥− 1
2

µ2
∥∥X̃12

∥∥
− 1

2
µ3(ωe2 − 1)

∥∥X̃3
∥∥− 1

2
µ3
∥∥X̃3

∥∥
+ µ2

∥∥X̃12
∥∥‖P1θ1‖|h1(t)|max

ω2
e1

+ µ3
∥∥X̃3

∥∥‖P2θ4‖|h2(t)|max
ω2

e2

≤ −X̃TΛX̃ + ϑ

,

where X̃ = [X̃T
12, X̃T

3 ]
T .

Due to Λ being a positive-definite matrix, the inequality satisfies:

V̇o ≤− λmin(Λ)(
∥∥X̃12

∥∥2
+
∥∥X̃3

∥∥2
) + ϑ

≤− λmin(Λ)[
1

µ2λmax(P1)
µ2X̃T

12P1X̃12 +
1

µ3λmax(P2)
µ3X̃T

3 P1X̃3] + ϑ

≤− λ2Vo + ϑ

,

which leads to Equation (53) according to Lemma 3.
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