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Abstract: In this paper, an adaptive Cuckoo search extreme learning machine (ACS-ELM)-based
prognosis method is developed for an electric scooter system with intermittent faults. Firstly, bond-
graph-based fault detection and isolation is carried out to find possible faulty components in the
electric scooter system. Secondly, submodels are decomposed from the global model using structural
model decomposition, followed by adaptive Cuckoo search (ACS)-based distributed fault estimation
with less computational burden. Then, as the intermittent fault gradually deteriorates in magnitude,
and possesses the characteristics of discontinuity and stochasticity, a set of fault features that can
describe the intermittent fault’s evolutionary trend are captured with the aid of tumbling window.
With the obtained dataset, which represents the fault features, the ACS-ELM is developed to model
the intermittent fault degradation trend and predict the remaining useful life of the intermittently
faulty component when the physical degradation model is unavailable. In the ACS-ELM, the ACS is
employed to optimize the input weights and hidden layer biases of an extreme learning machine, to
improve the algorithm performance. Finally, the proposed methodologies are validated by a series of
simulation and experiment results based on the electric scooter system.

Keywords: intermittent fault; distributed fault estimation; adaptive Cuckoo search-extreme learning
machine; remaining useful life prediction

1. Introduction

Mechatronic systems, which involve the synergistic integration of mechanical and
electrical structures, are essential parts of modern industrial systems [1–5]. Recently,
with the increasing requirements for the reliability of mechatronic systems in industrial
applications, fault diagnosis and prognosis, as an important technique to ensure the
operational safety and stability of systems, has been a popular topic for researchers and
practitioners [6,7].

In recent decades, research into fault diagnosis for mechatronic systems has had
many achievements [6–14]. Fault diagnosis can generally be classified into data-driven
methods and model-based methods. The data-driven diagnosis methods do not need
to construct accurate physical models of systems; feature data under normal and faulty
conditions, extracted from sensor measurements, are needed to implement the fault diag-
nosis procedure. However, in some cases, the application of data-driven methods may
be limited, as it is difficult to obtain feature data under faulty conditions. Compared
with data-driven methods, model-based methods can achieve better diagnostic accuracy
due to the employment of physical models. However, system modeling is usually not a
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trivial task. Fortunately, among the various system modeling methods, the bond graph
(BG) is an efficient and graphical modeling tool, which can model complex systems with
multiple energy domains. The BG technique has been widely applied for fault diagnosis
in mechatronic systems, and many significant results have been obtained [13,14]. In [13],
the BG and analytical redundancy relations (ARRs)-based fault diagnosis method for
continuous systems is extended to hybrid systems (including continuous dynamics and
discrete modes) by introducing the concepts of hybrid BG and global ARRs, where both
discrete faults and continuous faults can be detected and isolated. It is noteworthy that
the aforementioned model-based fault diagnosis methods are developed based on the
centralized architecture or global system model, which may lead a heavy computational
burden in the centralized fault estimation with increases in system scale. To address this
problem, the structural-model-decomposition-based distributed fault estimation method
is developed in [14,15], where a set of local submodels are decomposed from the global
model that is suitable for estimation. The computationally independent local estimation
is formed based on these local submodels, resulting in a scalable distributed estimation
approach that allows for the local sub-problems to be solved in parallel, thus decreasing
the computational burden.

Differing from the relatively mature fault diagnosis technology for mechatronic sys-
tems, the research on prognosis is still in the development stage. Some relevant works can
be found in [15–22]. The prognosis methods can be divided into two strategies, i.e., model-
based methods and data-driven methods. The model-based methods typically attempt to
construct mathematical models to describe the degradation process of faulty components.
In [16], the improved Wiener degradation process is proposed for the prognosis of incipient
faults in the hybrid mechatronic system. In [18], an adaptive hybrid differential evolution
algorithm is used to identify the degradation behavior of incipient faults, by which the
remaining useful life (RUL) of faulty components can be predicted. However, in real
systems, it is difficult or even impossible to accurately establish physical degradation
models for faulty components, which limits the applications of the model-based prognostic
method. Unlike the model-based methods, data-driven methods do not need to establish
an accurate mathematical model of the monitoring object. Based on the collected system
historical data, mining the hidden information in the data for prognosis is a more practical
method. At present, neural networks, which can predict the future evolutionary trend
according to historical degradation data when the physical degradation model of the faulty
component is unavailable, have gradually become popular methods in the data-driven
prognosis field [21,22]. Among the various neural networks, the extreme learning machine
(ELM) possesses the merits of good generalization and a fast learning ability [23,24]. There-
fore, ELM has been used to solve many prognosis problems [25–27]. For example, in [26],
an enhanced multi-sensor prognostic model based on Kalman filter-online sequential ELM
and logistic regression model is designed for the RUL prediction of an aircraft engine. It
is notable that the aforementioned works mainly focus on the prognosis for permanent
faults, while intermittent faults, which are also common in mechatronic systems, are not
discussed. Unlike permanent faults, intermittent faults possess discontinuity and stochas-
ticity. If the effective prognosis approach cannot quickly be implemented for the predictive
maintenance purpose in the early stage of intermittent faults, intermittent faults may
evolve into permanent faults. Recently, a method to address the prognosis of the electric
scooter system with intermittent faults was introduced in [28]. However, this work only
solves the problem of RUL prediction under the assumption of the monotonic degradation
of intermittent fault magnitude, and does not concern the stochasticity of intermittent
faults.. Moreover, the RUL prediction research for intermittently faulty components in [28]
does not consider the fact that the degradation model of the faulty component is usually
unknown in real applications.

Based on the above discussions, the prognosis of intermittent faults is still a challeng-
ing issue. Specifically, there are two major problems to be solved. Firstly, considering the
discontinuity of intermittent faults and the randomness of fault appearance and disappear-
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ance, the construction of intermittent fault features based on the fault estimation results is
an essential problem. Secondly, the degradation models of intermittently faulty compo-
nents are usually unknown in practical applications. Thus, without the exact degradation
model, predicting the RUL of the intermittently faulty component based on established
intermittent fault degradation features is challenging.

An electric scooter is an essential vehicular transportation mode for people with dif-
ferent mobility difficulties when travelling. Note that various electrical and mechanical
components in the electric scooter may suffer from intermittent faults due to aging and
frequent usage. It is easy to neglect the influence of intermittent faults on the system’s
normal operation at the early stage. If an effective diagnosis and prognosis scheme is not
predesigned for intermittent faults in the electric scooter, and with the continuous degra-
dation of intermittently faulty components due to frequent usage, intermittent faults may
eventually evolve into permanent faults, which will lead to system failure, and disastrous
consequences. Therefore, it is necessary to develop a prognosis method for an electric
scooter with intermittent faults. Therefore, an adaptive Cuckoo search extreme learning
machine (ACS-ELM)-based prognosis method for an electric scooter with intermittent
faults is proposed in this paper. The main contributions of this work are twofold:

(1) An integrated condition-monitoring framework combining distributed model-
based diagnosis and data-driven prognosis (which contains the merits of both methods)
is developed. On the one hand, the BG-based structural model decomposition is used
to build submodels from the global model, based on which the distributed intermittent
fault estimation can be implemented with less computational burden. On the other hand,
considering the fact that the physical degradation models are usually unknown in practice,
the data-driven prognosis method is developed to predict the RULs of intermittently
faulty components.

(2) As intermittent faults gradually deteriorate, and possesses discontinuity and
stochasticity, the intermittent fault features are captured with the aid of tumbling window
(TW). Then, the ACS-ELM is proposed to model the intermittent fault feature evolutionary
trend, as well as the RUL prediction of the intermittently faulty component, where ACS-
ELM is developed by introducing adaptive Cuckoo search (ACS) into the ELM to optimize
input weights and hidden layer biases.

This paper is organized as follows. Section 2 presents the FDI framework under
intermittent fault for an electric scooter based on a diagnostic bond graph (DBG) model.
Section 3 discusses the distributed intermittent fault estimation based on structural model
decomposition. Section 4 proposes the prognosis method for intermittently faulty compo-
nents using ACS-ELM. Section 5 analyzes the simulation and presents the experimental
results. Finally, Section 6 concludes this paper.

2. DBG Based FDI for Electric Scooter
2.1. DBG Model of Electric Scooter

The structure diagram of the electric scooter is given in Figure 1, based on which its
DBG model can be built, as shown in Figure 2. The DBG model of the electric scooter
contains five parts, i.e., DC motor driver, DC motor, rear wheels, body, and front wheels.
Descriptions of the main parameters of the model are summarized in Table 1. In the DBG
model of the electric scooter system, the mechanical friction Rm of the DC motor consists
of a viscous friction coefficient Rmv and Coulomb friction torque Rmc. Similarly, the rear
wheel friction Rr contains a viscous friction coefficient Rrv and Coulomb friction torque Rrc.
The front wheel friction R f also contains a viscous friction coefficient R f v and Coulomb
friction torque R f c. Additionally, there are three flow sensors in the BG model: D f1 : θ̇r

and D f3 : θ̇ f are used to measure the angular velocities of rear wheels and front wheels,
respectively, and D f2 : ṡ is adopted to measure the line velocity of the electric scooter body.
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Table 1. Nomenclatures.

Parameter Description

Uin Input signal
N1 Voltage-to-current ratio
N2 Current-to-torque constant
N3 Reduction ratio
N4 Wheel radius

K1,K2 Transmission axes rigidity
m Scooter mass
Re Electrical resistance

Rmv Motor viscous friction coefficient
Rmc Motor Coulomb friction torque
Jm Motor inertia

Rrv Rear wheel viscous friction coefficient
Rrc Rear wheel Coulomb friction torque
Jr Rear wheel inertia

R f v Front wheel viscous friction coefficient
R f c Front wheel Coulomb friction torque
J f Front wheel inertia

Figure 1. Structure diagram of electric scooter.

Figure 2. DBG model of electric scooter.
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2.2. FDI Method

Based on the DBG model in Figure 2, three modified analytical redundancy relations
(MARRs) can be derived: (1)–(3). Differing from the traditional ARRs, MARRs is derived
by introducing the efficiency factors to model the multiplicative faults of non-parametric
components (including actuators and sensors).

MARR1 =
N1 · N2

N3
· βUin ·Uin −

Rmv

N2
3
· d

dt

(
θr

βθr

)
− Rmc

N3
· sign

[
d
dt

(
θr

βθr

)]
− Jm

N2
3
· d2

dt2

(
θr

βθr

)
− Rrv ·

d
dt

(
θr

βθr

)
− Rrc · sign

[
d
dt

(
θr

βθr

)]
− Jr ·

d2

dt2

(
θr

βθr

)
− K1 ·

(
θr

βθr
− N4 ·

s
βs

)
(1)

MARR2 = K1 · N4 ·
(

θr

βθr

− N4 ·
s

βs

)
−m · d2

dt2

(
s

βs

)
− K2 · N4 ·

(
N4 ·

s
βs
−

θ f

βθ f

)
(2)

MARR3 = K2 ·
(

N4 ·
s

βs
−

θ f

βθ f

)
− R f v ·

d
dt

(
θ f

βθ f

)
− J f ·

d2

dt2

(
θ f

βθ f

)

− R f c · sign

[
d
dt

(
θ f

βθ f

)]
(3)

where βUin , βθr , βs, and βθ f denote the efficiency factors of non-parametric components
(i.e., Uin, θr, s, and θ f ).

If the residuals (numerical evaluations of MARRs) exceed the preset thresholds, the in-
termittent faults can be detected. The fault detection results can be represented by a binary
coherence vector CV = [cv1 cv2 cv3], cvi ∈ {0, 1}, i = 1, . . . , 3, which indicates the consis-
tency of residuals (zero for consistent and nonzero for inconsistent). To investigate the fault
isolability, the fault signature matrix (FSM), which represents the cause–effect relationships
between component faults and residuals, is given in Table 2. If a nonzero CV is obtained
from the fault detection process, the fault isolation procedure can be implemented by
comparing the CV with the FSM. Then, a set of possible faults (SPF) can be determined.

Table 2. FSM of electric scooter.

r1 r2 r3 Db Ib

Uin 1 0 0 1 0
Rrv 1 0 0 1 0
βθr 1 1 0 1 0
βs 1 1 1 1 0
βθ f 0 1 1 1 0
R f c 0 0 1 1 0
R f v 0 0 1 1 0

3. Distributed Intermittent Fault Estimation
3.1. Parameterization of Intermittently Faulty Component

The intermittent fault estimation aims to identify the intermittent fault magnitude,
with appearing and disappearing instants for possible faulty components in SPF. Thus,
the value change in θ (θ represents the parameter or efficiency factor in Table 2) under
intermittent faults in the time interval t ∈ [ts, te] can be described by the following function:

θ(t, Fθ , λθ , µθ) = Fnom,θ · ε(t)−
(

Fnom,θ − F1
θ

)
· ε
(

t− λ1
θ

)
+
(

Fnom,θ − F1
θ

)
· ε
(

t− µ1
θ

)
− · · · −

(
Fnom,θ − Fp

θ

)
· ε
(

t− λ
p
θ

)
+
(

Fnom,θ − Fp
θ

)
· ε
(

t− µ
p
θ

)
(4)
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where ε(∗) is the unit step function, Fnom,θ is the nominal value of θ, Fθ = [F1
θ F2

θ ... Fp
θ ]

is the fault magnitude vector, λθ = [λ1
θ λ2

θ ... λ
p
θ ] is the fault appearing instant vector,

µθ = [µ1
θ µ2

θ ... µ
p
θ ] is thefaultdisappearinginstantvector, ts ≤ λ1

θ < µ1
θ < λ2

θ < ... < λ
p
θ < µ

p
θ ≤ te.

Thus, θ(∗) is the parameterized function of the faulty component with three sets of vari-
ables (i.e., Fθ , λθ , and µθ) to be identified. Based on (4), the value changes in all possible
faulty components in SPF can be described by parameterization functions.

3.2. Construction of Submodels by Structural Model Decomposition

Since a large number of unknown variables need to be identified under the multiple
intermittent faults condition (i.e., one has to identify the fault magnitude vector, fault-
appearing instant vector and fault-disappearing instant vector for each fault candidate in
SPF), there is a heavy computational burden if the centralized fault estimation method,
based on the global model, is used. Therefore, the use of a distributed fault estimation
technique is recommended to achieve better computational efficiency. The distributed fault
estimation is accomplished based on the submodels that were decomposed from the global
model using structural model decomposition [14,15]. For illustration, the global model and
the submodel can be defined as follows.

Definition I: (Global model) A global model is represented by G = (U, Y, Θ), where U
and Y are the sets of inputs and outputs of the global model, respectively, Θ is the set of
parameters and efficiency factors.

Definition II: (Submodel) The ith submodel is represented by Si = (Ui, Yi, Θi), where
Ui ⊂ (U ∪ Y) and Yi are the sets of local inputs and local output of the ith submodel,
respectively, Θi ⊂ Θ is the set of parameters and efficiency factors in the ith submodel.

Theoretically, the number of submodels is determined by the number of sensors in the
global model. Therefore, three submodels, as shown in Figure 3, are built from the global
DBG model of the electric scooter system. Based on Figure 3, the submodel MARRs can be
derived as follows.

MARRS1 =
N1 · N2

N3
· βUin · (Uin)U1

− Rmv

N2
3
· d

dt

[
(θr)Y1

βθr

]
− Rmc

N3
· sign

{
d
dt

[
(θr)Y1

βθr

]}

− Jm

N2
3
· d2

dt2

[
(θr)Y1

βθr

]
− Rrc · sign

{
d
dt

[
(θr)Y1

βθr

]}
− Rrv ·

d
dt

[
(θr)Y1

βθr

]

− Jr ·
d2

dt2

[
(θr)Y1

βθr

]
+ K1 ·

[
N4 ·

(s)U1

βs
−

(θr)Y1

βθr

]
(5)

MARRS2 = K1 · N4 ·
[
(θr)U2

βθr

− N4 ·
(s)Y2

βs

]
−m · d2

dt2

[
(s)Y2

βs

]

+ K2 · N4 ·
[(

θ f
)

U2

βθ f

− N4 ·
(s)Y2

βs

]
(6)

MARRS3 = K2 ·
[

N4 ·
(s)U3

βs
−
(
θ f
)

Y3

βθ

]
− R f c · sign

{
d
dt

[(
θ f
)

Y3

βθ f

]}

− R f v ·
d
dt

[(
θ f
)

Y3

βθ f

]
− J f ·

d2

dt2

[(
θ f
)

Y3

βθ f

]
(7)
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(a) Submodel S1.

(b) Submodel S2.

(c) Submodel S3.

Figure 3. Submodels of electric scooter.

In Figure 3 and (5)–(7), (∗)Ui and (∗)Yi denote that ∗ is treated as the local input and
output of the submodel Si, i = 1, . . . , 3, respectively. Note that the output (i.e., sensor
measurement) in the global model may be treated as a local input or local output in
different submodels. However, for the faulty sensor, regardless of the function it plays in
the submodel (i.e., local input or local output), the efficiency factor should remain the same
to ensure consistent detection results from different submodels.

In the electric scooter system, multiple intermittent faults are considered. Two typical
cases are discussed in detail as follows.

Case I: Intermittent faults occur in βUin and R f c, CV = [1 0 1] and SPF =
{

βUin , Rrv, R f v, R f c
}

can be obtained by implementing the FDI procedure. Based on the SPF, βUin and Rrv are
located at submodel S1, while R f v and R f c are located at submodel S3. Therefore, the S1-
based local estimator and the S3-based local estimator can be implemented in parallel to
identify βUin , Rrv and R f v, R f c, respectively.

Case II: The intermittent fault occurs in βθr , CV = [1 1 0] and SPF =
{

βUin , Rrv, βθr

}
are obtained. βUin and Rrv are located at submodel S1, while βθr exists in both submodels,
S1 and S2. Since the submodel S1 contains all possible faulty components in SPF, the S1-
based local estimator can be used to identify βUin , Rrv, and βθr .

3.3. Distributed Fault Estimation via ACS Algorithm

Since the MARRSi of the submodel Si is the function of θ, and θ can be represented as
the function of the unknown variables to be identified based on (4). The distributed fault
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estimation problem for submodel Si can be considered as the optimization problem using
the following fitness function:

Ff it = 1/(
R

∑
r=1
|MARRSi ,r|+ ρ) (8)

where R is the number of samples. The possible faults in an MARRSi need to be represented
by (4), such that the corresponding unknown variables can be obtained by the optimization
algorithm, and ρ is a small constant to avoid zero division.

After the fitness function of each submodel is obtained, the submodel-based local
estimators that are affected by faults can be activated. ACS is utilized for fault parameter
identification in the local estimators, while ACS is developed by introducing the adaptive
step-size scaling factor into the standard Cuckoo search (CS). The CS, as a natural heuristic
algorithm, is proposed to be inspired by brood parasitism and Levy flight (LF) foraging
behaviors of cuckoos [29]. Suppose that zl+1

d and zl
d denote the positions of the lth and the

(l + 1)th generations of the cuckoo d, respectively. Then, the LF-based position updating
formulation is expressed as

zl+1
d = zl

d + α⊗ Levy(s, γ) (9)

where α is the step-size scaling factor, ⊗ denotes the entry-wise multiplication, Levy(s, γ)
represents the LF random search path, and the random step-size obeys the Levy distribution
as follows:

Levy ∼ u = t−γ, 1 < γ ≤ 3 (10)

The Mantegna algorithm, which can achieve a symmetric Levy stable distribution, is
usually an effective means of generating a random step-size that obeys the Levy distribution.
Specifically, the step-size s is calculated via two variables with Gaussian distribution,
as follows:

s =
A
|B|1/γ

, A ∼ N(0, σ2), B ∼ N(0, 1) (11)

where

σ =

[
Γ(1 + γ)

γΓ((1 + γ)/2)
· sin(πγ/2)

2(γ−1)/2

]1/γ

(12)

The Levy index γ = 1.5 and the step-size scaling factor α = 1 are default setups for
the standard CS. However, the standard CS lacks the dynamical adaptability of search
step-size, which may cause difficulties in algorithm convergence and lower estimation
accuracy [30]. Therefore, the ACS is proposed to alleviate this problem, where the dynamic
adaptive strategy of the step-size scaling factor based on (13) is introduced to the original
CS. Using (13), the dynamic adaptive strategy is expressed by a nonlinear piece-wise
function, where the larger α at the early searching stage helps the algorithm to converge to
near the optimal solution quickly, while the smaller α at a later stage can achieve fine-tuning
near the optimal solution.

αl =


αmax

[
1− 2e

e2−1 sinh( l
lmax

)2
]
, l < 1

3 lmax

αmin +
[
1− 2e

e2−1 sinh( l
lmax

)
1
2

]
, 1

3 lmax ≤ l < 2
3 lmax

αmin, l ≥ 2
3 lmax

(13)

where αmax, αmin, and αl represent the maximum, the minimum and the lth generation
step-size scaling factor of the algorithm, respectively. l is the current iteration number,
and lmax is the maximum number of iterations.
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4. ACS-ELM Based Prognosis under Intermittent Fault
4.1. ELM Theory

When the value changes in intermittently faulty components are identified by ACS-
based distributed fault estimation, the prognosis module can be activated to predict the
RULs of intermittently faulty components. If the degradation model is predefined, the RUL
of the faulty component can be successfully predicted using identification results, while
the actual physical degradation model is usually unknown for most industrial applications.
Therefore, neural networks, which can predict future behaviors based on historical data,
have gradually become an important means of implementing RUL prediction. Among the
various neural networks, ELM is a kind of single hidden-layer feedforward neural network,
which possesses the advantages of fewer training parameters, a faster learning speed,
and a stronger generalization ability [23–27]. When applying ELM to the prognosis of
intermittently faulty components, the basic principle of ELM is introduced as follows.

Suppose that an arbitrary distinct sample set is (Xi, Yi), where Xi = [xi1, xi2, . . . , xin]
T ∈ Rn

and Yi = [yi1, yi2, . . . , yim]
T ∈ Rm. The single hidden layer neural network with L hidden

layer nodes can be expressed as

L

∑
i=1

βig(Wi · Xj + bi) = oj, j = 1, . . . , N (14)

where g(∗) is the activation function, Wi = [wi1, wi2, . . . , win]
T and βi = [βi1, βi2, . . . , βim]

T

denote input weight vector and output weight vector, respectively, bi is the bias of the ith
hidden node, Wi · Xj represents the inner product of Wi and Xj. The learning goal of a
single hidden-layer neural network is to minimize the output error, i.e., ∑N

j=1 ||oj −Yj|| = 0.
Thus, βi, Wi, and bi exist, such that

L

∑
i=1

βig(Wi · Xj + bi) = Yj, j = 1, . . . , N (15)

where input weight matrix, hidden layer bias vector, and input matrix can be expressed as
W = [W1 W2 . . . WL], b = [b1 b2 . . . bL], and X = [X1 X2 . . . XN ], respectively. Thus, (15)
can also be represented by matrix form, as follows:

H(W, b, X)β = Y (16)

where

H =

 g(W1 · X1 + b1) · · · g(WL · X1 + bL)
... · · ·

...
g(W1 · XN + b1) · · · g(WL · XN + bL)


N×L

β =
[

βT
1 · · · βT

L

]T

L×m
, Y =

[
YT

1 · · · YT
L
]T

N×m

(17)

Since the input weight matrix W and hidden layer bias matrix b are randomly gener-
ated, the hidden layer output matrix H can be directly calculated based on (16). Therefore,
the ELM aims to find the solution of a linear system Hβ = Y, and the output weight β̂ can
be calculated as

||Hβ̂− Y|| = min ||Hβ− Y||, β ∈ RL×m

β̂ = H†Y
(18)

where H† is the Moore–Penrose generalized inverse of H.

4.2. RUL Prediction for Intermittently Faulty Components Using ACS-ELM

Based on the ELM theory, the main steps of RUL prediction for intermittently faulty
components using ACS-ELM approach can be described as follows.

Step 1: Construct an intermittent fault feature dataset.



Actuators 2021, 10, 283 10 of 22

To activate the ACS-ELM based prognoser, the intermittent fault features, which are
used to build the training/test dataset, need to be constructed from the identification results.
However, if the training/test set is determined via simply recording each intermittent fault
magnitude as a fault feature, the intermittent fault features cannot be obtained at equal
time intervals due to the discontinuity of intermittent faults and the randomness of fault
appearance and disappearance, meaning that the one-step-ahead prediction of ELM cannot
be properly implemented. To address this problem, the TW with a fixed length LTW is
defined as the sampling length of the intermittent fault feature construction process, while
the maximum fault magnitude in TW is treated as the intermittent fault feature. Therefore,
the intermittent fault feature dataset can be expressed as follows:

f θ =
{

f 1
θ , . . . , f k

θ , . . . , f Q
θ

}
, k = 1, . . . , Q, Q ∈ N+ (19)

f k
θ =Fnom,θ ±max

{
|Fk,m

θ − Fnom,θ |
}

, m = 1, . . . , M (20)

where Q is the number of intermittent fault features in the time interval t ∈ [td,θ , td,θ + Q ·
LTW ]; td,θ is the instant at which the intermittent fault first occurs; f k

θ represents the fault
feature of θ in the kth TW; Fk,m

θ denotes the magnitude of the mth fault appearance in the
kth TW for θ; the sign “±” is determined by the relation between Fk,m

θ and Fnom,θ ; the sign
is “+” when Fk,m

θ > Fnom,θ and “−” otherwise; M is the number of fault appearances in the
kth TW.

To obtain enough intermittent fault features to establish the ELM prediction model,
the evolutionary trend of intermittent faults over a long period must be acknowledged.
Therefore, the corresponding local estimators containing SPF are activated once every LTW
after the first intermittent fault is detected. Then, the intermittent fault feature in this TW
can be obtained according to (20). After that, the above process is repeated with LTW as the
period until the intermittent fault feature dataset f θ is determined, as shown in (19).

Step 2: Determine the input/output matrix and choose a training/test set.
When the intermittent fault feature dataset f θ is obtained, as the ELM uses the one-

step-ahead prediction strategy to implement RUL estimation, the first U data in f θ are
taken as the inputs and the following are treated as the output. Thus, the input matrix x
and the output matrix y can be expressed as:

x =


f 1
θ f 2

θ · · · f U
θ

f 2
θ f 3

θ · · · f U+1
θ

...
...

. . .
...

f Q−U
θ f Q−U+1

θ · · · f Q−1
θ


(Q−U)×U

, y =


f U+1
θ

f U+2
θ

...
f Q
θ


(Q−U)×1

(21)

To train the ELM model for RUL prediction, the first V rows and the remaining
Q − U − V rows of x and y are treated as the training set {xtrain, ytrain} and test set
{xtest, ytest}, which can be represented as:

xtrain =


f 1
θ f 2

θ · · · f U
θ

f 2
θ f 3

θ · · · f U+1
θ

...
...

. . .
...

f V
θ f V+1

θ · · · f U+V−1
θ


V×U

, ytrain =


f U+1
θ

f U+2
θ

...
f U+V
θ


V×1

(22)

xtest =


f V+1
θ f V+2

θ · · · f V+U
θ

f V+2
θ f V+3

θ · · · f V+U+1
θ

...
...

. . .
...

f Q−U
θ f Q−U+1

θ · · · f Q−1
θ


(Q−U−V)×U

, ytest =


f V+U+1
θ

f V+U+2
θ

...
f Q
θ


(Q−U−V)×1

(23)
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Step 3: Optimize the input weights and hidden layer biases using ACS.
To establish the canonical ELM model, the input weight matrix W and the hidden layer

bias vector b are randomly selected. However, the random selection of W and b may lead
to reductions in the generalization ability and prediction accuracy of the canonical ELM.
To address the above problems, the ACS algorithm developed in Section 3.3 is adopted to
optimize the input weights and hidden layer biases of ELM so that an optimal ELM model
can be selected, i.e., ACS-ELM.

For ACS-ELM, a host nest zd (each host nest represents a feasible solution) in the
population is composed of input weights and hidden layer biases. The fitness function is
formulated by the mean square error of the ELM model output and the real output ytest,
which can be expressed as

G f it =
1

Q−U −V
·

Q−U−V

∑
j=1

( f̃ j
θ − f j

θ)
2 (24)

where f̃ j
θ is the actual output after xtest is substituted into the trained ELM model; f j

θ is the
desired output in the test set (i.e., ytest). By minimizing the fitness function, the optimal
solutions, including input weight matrix, hidden layer bias vector, and output weight
matrix, can be determined, after which the ACS-ELM is obtained.

Step 4: Predict the RUL of intermittently faulty components.
When the ACS-ELM prediction model is determined, taking ytest as the initial input of

the ACS-ELM prediction model, the one-step-ahead prediction procedure is implemented
to predict the next intermittent fault feature until the predicted feature value f̃ k

θ exceeds the

predefined threshold, i.e., f f ail
θ . However, the RUL of the intermittently faulty component is

predicted based on TW sampling, and the ACS-ELM-model-based prediction result refers
to the k f ail

θ th TW, in which the failure threshold f f ail
θ is exceeded. Therefore, the end-of-life

(EOL) and RUL of the intermittently faulty component can be calculated as:

teol,θ ∈
(

td,θ + (k f ail
θ − 1) · LTW , td,θ + k f ail

θ · LTW

]
(25)

trul,θ = teol,θ − td,θ −Q · LTW =⇒

trul,θ ∈
(
(k f ail

θ − 1−Q) · LTW , (k f ail
θ −Q) · LTW

] (26)

Note that θ did not reach f f ail
θ at time td,θ + (k f ail

θ − 1) · LTW , and exceeded f f ail
θ at

time td,θ + k f ail
θ · LTW , while the exact intermittent fault condition cannot be determined in

the time interval t ∈ (td,θ + (k f ail
θ − 1) · LTW , td,θ + k f ail

θ · LTW ] due to the stochasticity of
intermittent faults. Therefore, the EOL and RUL of the intermittently faulty component are
depicted by time intervals, as shown in (25) and (26), in which the magnitude of at least
one fault will exceed the failure threshold rather than all faults.

Based on the above descriptions, the RUL prediction procedure for the intermittently
faulty component using ACS-ELM is summarized in Figure 4.
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Figure 4. The framework of ACS-ELM based prognosis under intermittent fault.

5. Simulation and Experiment Results

To verify the effectiveness of the ACS-based distributed intermittent fault estimation
method and the ACS-ELM-based intermittently faulty component prognosis method,
a series of simulation and experiment analyses are carried out based on the electric scooter
system in this section. The nominal values of the electric scooter system parameter are
given in Table 3 [28]. The sampling times are set as 0.02 s in both the simulation and
experiment studies, and the intermittent fault feature sampling length (i.e., LTW) is 10 s.
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Table 3. Nominal values of electric scooter parameter.

Nominal Parameter Values

N1 0.2 A/V N2 1 Nm/A
N4 1/0.105 m N3 1/18
K1 10 Nm/rad K2 10 Nm/rad

Rmv 1.72× 10−3 Nms/rad Rmc 5.63× 10−2 Nm
Rrv 3.55× 10−3 Nms/rad Rrc 6.05× 10−2 Nm
R f v 1× 10−3 Nms/rad R f c 1.86× 10−3 Nm
Jm 5.03× 10−4 kgm2 Jr 4.87× 10−3 kgm2

J f 6.97× 10−3 kgm2 Re 1
m 20.7 kg

5.1. Simulation Study

In the simulation study, the fault scenario described in the Case I of Section 3.2
is considered, where intermittent faults occur in βUin and R f c. The simulation proce-
dure is implemented in the MATLAB/Simulink environment, where the BG model of
the electric scooter system is shown in Figure 2. The runtime of the electric scooter
model in the simulation is 1100s; when the simulation runs to 100s, intermittent faults
occur in βUin and R f c simultaneously. The designed degradation processes of intermit-
tent fault features of βUin and R f c in TW are expressed as fβUin

= 1− 0.03 · k0.6088 and

fR f c = 0.0167 · k0.7221 + 1.86 × 10−3. Note that the intermittent faults of βUin and R f c
are both designed for the situation where the intermittent fault gradually deteriorates in
magnitude, and possesses stochasticity in fault appearance and disappearance.

Firstly, the residual responses are shown in Figure 5, where dashed lines are thresholds
and solid lines are residuals. The thresholds in the simulation process were chosen by
observing the residual responses under normal simulation model conditions (i.e., 0.04
for |MARR1|, 0.6 for |MARR2|, and 0.04 for |MARR3|). Only the residual responses
of t ∈ [0, 200]s are demonstrated in Figure 5 for easy observation, while the detection
processes of the later 900s were similar to t ∈ [0, 200]s, and were no longer on display.
From Figure 6, it can be observed that MARR1 and MARR3 intermittently exceed their
thresholds; accordingly, a CV can be determined as CV = [1 0 1], and the SPF was obtained
by comparing CV with FSM, i.e., SPF =

{
βUin , Rrv, R f v, R f c

}
.

M
A
R
R

M
A
R
R

M
A
R
R

Figure 5. Residual responses under βUin and R f c faults.
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Then, based on the descriptions of Case I of Section 3.2,
{

βUin , Rrv
}

and
{

R f v, R f c
}

can be estimated in parallel by a S1-based local estimator and S3-based local estimator.
According to the construction method of the intermittent fault feature dataset, the S1-based
local estimator and the S3-based local estimator are activated once every LTW = 10s to
identify the magnitude and appearing and disappearing instants of each intermittent fault
in the corresponding TW after the first intermittent fault is detected; then, the intermittent
fault feature in each TW can be determined by (20). To obtain enough intermittent fault
features to build the ACS-ELM prediction model, monitoring of the intermittent fault
degradation process in the simulation lasts for 1000s (from 100s to 1100s), i.e., Q = 100.
Therefore, the distributed fault estimators need to be sequentially implemented 100 times
to capture 100 intermittent fault features. From the estimation results, the actual values
of Rrv and R f v are consistent with their nominal values. Therefore, Rrv and R f v can be
excluded from the SPF, and it can be concluded that βUin and R f c suffer from intermittent
faults. To demonstrate the effectiveness and accuracy of the ACS-based distributed fault
estimation approach, the identification results of the first two TWs are taken as examples for
illustration. With these in mind, the distributed fault estimation results of βUin and Rrv of
the first two TWs are shown in Table 4. Table 4 shows the fault estimation results (including
magnitude, appearing and disappearing instants of each intermittent fault in two TWs)
versus the designed values. Thus, based on (20), f 1

βUin
= 0.9705, f 2

βUin
= 0.9509 and

f 1
R f c

= 1.806× 10−2, f 2
R f c

= 2.911× 10−2 are determined. When the ACS-based distributed
fault estimation process is terminated, all intermittent fault features are determined to form
the intermittent fault feature dataset.

Table 4. Comparison of designed values and estimated values.

(a) βUin

TW1 TW2

βUin λ1
βUin

(s) µ1
βUin

(s) F1
βUin

λ2
βUin

(s) µ2
βUin

(s) F2
βUin

Designed value 100 101 0.97 115 117 0.95
Estimated value 100.0032 101.0023 0.9705 114.9978 117.0019 0.9509

(b) R f c

TW1 TW2

R f c(Nm) λ1
R f c

(s) µ1
R f c

(s) F1
R f c

λ2
R f c

(s) µ2
R f c

(s) F2
R f c

Designed value 100 102 1.8 × 10−2 113 115 2.9 × 10−2

Estimated value 100.0024 102.1015 1.806 × 10−2 113.0012 114.9985 2.911 × 10−2

After that, the intermittent fault feature datasets of βUin and R f c, i.e., f βUin
and f R f c

,

are depicted in Figures 6a and 7a, respectively, where f βUin
=
{

f 1
βUin

, f 2
βUin

, . . . , f 100
βUin

}
and

f R f c
=
{

f 1
R f c

, f 2
R f c

, . . . , f 100
R f c

}
are both illustrated by 100 discrete points. With f βUin

and f R f c
,

the ACS-ELM-based prognosis module introduced in Section 4.2 can be activated to predict
the RULs of βUin and R f c. The ACS-ELM parameters are set as Q = 100, U = 15, L = 15,

V = 50, and g(∗) = 1
1+exp(∗) . The failure thresholds of βUin and R f c are preset as f f ail

βUin
= 0.3

and f f ail
R f c

= 0.7 Nm. The prediction results of βUin and R f c using the ACS-ELM approach
are illustrated in Figures 6b and 7b. From Figure 6b, βUin exceeds its failure threshold

in the 175th TW, i.e., k f ail
βUin

= 175, thus the ranges of RUL of βUin can be calculated as

trul,βUin
∈ ((k f ail

βUin
− 1−Q) · LTW , (k f ail

βUin
−Q) · LTW ] = (740, 750]s based on (26). Similarly,

it is clear that the prediction results of R f c are k f ail
R f c

= 180 and trul,R f c
∈ (790, 800]s from

Figure 7b.
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(a) Intermittent fault features of βUin .
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(b) RUL prediction of βUin .

Figure 6. Estimation and prediction results of βUin .
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(a) Intermittent fault features of R f c.
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(N
m
)

Training

Test

(TW)

(b) RUL prediction of R f c.

Figure 7. Estimation and prediction results of R f c.

5.2. Experiment Study

To further investigate the performance of the proposed prognosis method under the
experimental environment, the fault scenario described in the Case II of Section 3.2 was
considered, where θr (i.e., βθr ) suffers from intermittent faults. The designed degradation
process of intermittent fault features of βθr in TW was expressed as fβθr

= 1− 0.02 · k0.7268.
A diagram of the experimental platform workflow is given in Figure 8. The lead–acid
batteries (model: 12 V 20 AH lead–acid batteries) supplied power to the DC motor driver.
The control signal to the DC motor driver (model: CRRTIS 1212-2201, nominal voltage
24 V, drive current 45 Amps, peak boost current 55 Amps, maximum boost duration
10 s) was provided by the USB data acquisition card (model: Advantech USB-4711A,
USB 2.0 interface, 16 analog input channels, 12 bit resolution, sampling rate 150 kS/s),
powered by the onboard laptop. The velocities of the electric scooter were measured by
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three incremental encoders (model: Omron E6B2-CWZ3E, resolution ratio 1000P/R, rated
voltage 24 V). The onboard laptop provided voltage to the data acquisition card and sent
an input signal to the motor driver. The FDI procedure of the electric scooter system was
accomplished by the LabVIEW module, while distributed fault estimation and ACS-ELM
based prognosis were conducted by introducing MATLAB script node into LabVIEW,
based on which the co-simulation between MATLAB and LabVIEW could be implemented.
The proposed methods were implemented in MATLAB R2015a and LabVIEW 2014 using an
onboard laptop with an Intel Core i7-6500 2.6 GHz CPU with 8 GB memory and Microsoft
Windows 7 Enterprise SP1 64-bit operating system.

LabVIEW

&

 MATLAB

Electric scooter system

BatteriesDC motor driver

USB-4711A

Incremental encoders

Onboard laptop

Control signal

Control signal 

& power supply

Power supply

Velocities

Measurement 

signals

Figure 8. Diagram of experimental platform workflow.

Firstly, the fault detection results shown in Figure 9 indicate that the CV = [1 1 0] and
SPF =

{
βUin , Rrv, βθr

}
. Note that a low-pass filter 5

s+5 was used to deal with the measure-
ment noises in the experiment and the thresholds of experiment had to be determined
according to observations of the filtered residual responses of the actual system under
healthy conditions (i.e., 0.2 for |MARR1|, 3 for |MARR2|, and 0.2 for |MARR3|). Due to
the description of Case II of Section 3.2, the submodel S1 contained all possible faulty com-
ponents in SPF, such that the S1-based local estimator could be used to identify βUin , Rrv,
and βθr . Then, the ACS-based intermittent fault estimation for submodel S1 was imple-
mented; similar to the first fault scenario, the fault estimation results show that intermittent
fault occured in βθr , while βUin and Rrv were fault-free. The intermittent fault feature
dataset of βθr was obtained according to (19) and (20), i.e., f βθr

=
{

f 1
βθr

, f 2
βθr

, . . . , f 100
βθr

}
,

as illustrated in Figure 10a. Then, the parameters of ACS-ELM were set as Q = 100, U = 15,
L = 15, V = 50, and g(∗) = 1

1+exp(∗) . The obtained intermittent fault feature dataset f βθr
was used to construct the ACS-ELM model, by which the RUL of βθr could be predicted
(the failure threshold of βθr was preset as f f ail

βθr
= 0.2). Finally, the RUL prediction process

is demonstrated in Figure 10b, and the prediction results were obtained as k f ail
βθr

= 162 and
trul,βθr

∈ (610, 620]s.

5.3. Analysis and Comparison

To evaluate the RUL prediction accuracy of ACS-ELM approach, three metrics, in-
cluding mean absolute error (MAE), root means square error (RMSE), and mean absolute
percentage error (MAPE), are adopted, which can be computed as

MAE =
1

k f ail
θ −Q

·
k f ail

θ

∑
k=Q+1

∣∣ f̂ k
θ − f k,a

θ

∣∣ (27)
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RMSE =

√√√√√ 1

k f ail
θ −Q

·
k f ail

θ

∑
k=Q+1

∣∣ f̂ k
θ − f k,a

θ

∣∣2 (28)

MAPE =
100%

k f ail
θ −Q

·
k f ail

θ

∑
k=Q+1

∣∣∣∣ f̂ k
θ − f k,a

θ

f k,a
θ

∣∣∣∣ (29)

where f̂ k
θ denotes the predicted intermittent fault feature in the kth TW for θ; f k,a

θ repre-
sents the designed intermittent fault feature in the kth TW according to the pre-designed
degradation process of intermittent fault features for θ.

M
A
R
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M
A
R
R

M
A
R
R

Figure 9. Residual responses under βθr fault.

(TW)

(a) Intermittent fault features of βθr .

Figure 10. Cont.
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PredictionTraining

Test

(TW)

(b) RUL prediction of βθr .

Figure 10. Estimation and prediction results of βθr .

According to the designed intermittent fault feature degradation processes of βUin , R f c,
and βθr, i.e., fβUin

= 1 − 0.03 · k0.6088, fR f c = 0.0167 · k0.7221 + 1.86 × 10−3,

and fβθr
= 1− 0.02 · k0.7268, the designed fault degradation trends of βUin , R f c and βθr are

depicted in Figures 6b, 7b and 10b, respectively. The evaluation metrics of the ACS-ELM-
based RUL prediction results of the simulation and experiment are summarized in Table 5.
Table 5 shows that the ACS-ELM-based prognosis for intermittently faulty components is
accurate for both simulations and experiments.

Finally, a comparison study was conducted with traditional ELM and PSO-ELM [27]
to validate the superiority of the proposed ACS-ELM-based prognosis method. To make a
fair comparison, all approaches were tested on the same simulation or experiment data.
Additionally, the population size, maximum iterations and search spaces of parameters for
three algorithms were the same. Each approach used 30 independent tests (i.e., simulation
for βUin and R f c, experiment for βθr ). The mean value of MAE (i.e., MAE), obtained from
30 tests, was taken as the comparison index of algorithm performance, as were the mean
values of RMSE and MAPE (i.e., RMSE and MAPE). The comparison results of ELM,
PSO-ELM, and ACS-ELM are summarized in Table 6. Meanwhile, the comparison results
of the RUL prediction performance for different algorithms are depicted in Figure 11,
where the cube roots of MAE, RMSE, and MAPE (i.e., MAEC, RMSEC, and MAPEC) are
calculated and illustrated in Figure 11 for observation. According to Table 6, compared with
the standard ELM and PSO-ELM, the average prediction evaluation indexes (i.e., MAE,
RMSE, and MAPE, respectively) in 30 trials of ACS-ELM were reduced by 83.95%, 81.50%,
83.51% (ELM compared to ACS-ELM) and 39.53%, 36.70%, 54.98% (PSO-ELM compared to
ACS-ELM) for βUin , 86.67%, 87.82%, 89.45% and 29.17%, 41.54%, 42.52% for R f c, 85.27%,
84.84%, 81.78% and 38.04%, 32.71%, 45.69% for βθr . It can be concluded that ACS-ELM
performs better than traditional ELM and PSO-ELM in terms of RUL prediction under
intermittent faults.
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Table 5. RUL prediction result evaluation of ACS-ELM.

MAE RMSE MAPE(%)

βUin 0.0071 0.0076 1.8773
R f c 0.0022 0.0031 0.3630
βθr 0.0074 0.0084 2.6825

Table 6. Comparison of RUL prediction performance.

Algorithm MAE RMSE MAPE(%)

βUin

ELM 0.0324 0.0373 8.1226
PSO-ELM 0.0086 0.0109 2.9753
ACS-ELM 0.0052 0.0069 1.3394

R f c

ELM 0.0255 0.0312 6.7490
PSO-ELM 0.0048 0.0065 1.2562
ACS-ELM 0.0034 0.0038 0.7221

βθr

ELM 0.0387 0.0475 8.9917
PSO-ELM 0.0092 0.0107 3.0169
ACS-ELM 0.0057 0.0072 1.6385

inU fcR r

C
M
A
E

0

0.25

0.5

ELM PSO-ELM ACS-ELM

(a) MAEC.

inU fcR r

C
R
M
S
E
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0.5

ELM PSO-ELM ACS-ELM

(b) RMSEC.

inU fcR r
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M
A
P
E
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ELM PSO-ELM ACS-ELM
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Figure 11. Histogram of RUL prediction performance.

6. Conclusions

In this paper, an ACS-ELM-based prognosis method is developed for an electric
scooter system with intermittent faults. The FDI framework helps to find possible faulty
components. Based on the model’s structural decomposition and ACS algorithm, dis-
tributed fault estimation was implemented to identify the magnitude and the appearing
and disappearing instants of each intermittent fault for faulty components. For the progno-
sis of intermittently faulty components, ACS-ELM was proposed to model the degradation
process of intermittent fault features and predict the RUL of intermittently faulty com-
ponents. A series of simulation and experiment results verified the effectiveness of the
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proposed methods. Through experiment and comparison studies, it is concluded that the
ACS-ELM-based RUL prediction results of intermittently faulty components are accurate,
and the ACS-ELM performs better than traditional ELM and PSO-ELM for prognosis under
intermittent faults.

This work provides an effective method for the RUL prediction of intermittently faulty
components under the condition of unavailable degradation models. Several challenging
issues still need to be addressed. Future research directions will focus on the following two
aspects. First, this work only considers the RUL prediction method of the intermittent fault
magnitude degradation process based on ACS-ELM, while intermittent fault degradation
can also be reflected in terms of duration. It is necessary to apply the proposed method to
RUL predictions of the intermittent fault duration degradation process. Secondly, as the
system working conditions (road conditions, system input, system mode, etc.) often change
in practice, RUL predictions of intermittent faults under variations in system working
conditions should be considered in future work.
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