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Abstract: Chaotic behavior is complicated, sensitive, and has the feature of great variety, which
are the most potential signals to be applied in data encryption, secure communication, medical
information protection, etc. As a consequence, in this paper, we try to propose three different ways to
show our data generating results step by step, which means it can be proved effectively and used in
practice: (1) Chaotic solutions simulated by MATLAB, (2) chaotic motion drawn via electronic circuits
software Multisim, and (3) chaotic signal implemented on real electronic circuits with breadboard.
In advance, following the same design principal, the adaptive chaotic signal is also designed and
presented in the end of this article for further study, which provides a more flexible and variable
chaotic signal to enhance the encryption effectiveness. The experimental results are extremely close to
the two simulation results and can definitely be technically transferred to real encryption application.

Keywords: adaptive control; chaotic signals; implementation

1. Introduction

In the last two decades, research in chaotic dynamic systems has received a great
deal of interest among scientists from various kinds of fields [1–6], which is an interdis-
ciplinary research topic and well-famous for its complicated behaviors and sensitivity
with initial conditions. Therefore, researchers from different fields are all devoted to
discovering the applications and extending the usages of the complex chaotic dynam-
ics, such as engineering applications [7–9], fractional-order analysis [10–12], information
processing [13,14], fault diagnosis [15–17], encryption and secure communication [18–20],
and so forth. Furthermore, some research papers discuss the sinusoidal oscillation gen-
eration in the identification problem [21,22]. Additionally, some control strategies are
applied to avoid oscillation systems, or in some cases, to generate oscillations to be used in
identification problems [23,24].

The signals generated by chaotic systems have statistical properties similar to random-
ness, in spite of being deterministic. As a result, chaotic systems have been used for secure
communication and different encryption systems to hide the important information signal
in current years. This encryption technology has fruitful and high-potential applications in
our technology-mobilized life, especially in commercial message communication, customer
information transmit and protection, or mobile shopping. For example, K. Murali et al.
proposed a chaos-based signal encryption scheme to transmit digital information signals
by using the conventional synchronization of chaos and digital encryption approaches [25],
which is an application of chaos to secure communications. N. Nguyen et al. designed
a low-power circuit to further generate a chaos signal for data encryption [26], which
attempts to hide the personal data by applying chaotic signals. J.J. Chen et al. developed
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a set of memristor-based hyper-chaotic circuits for image encryption, which is a very
useful and interesting research on image protection using chaos circuits [27]. Moreover,
G. Mohamed et al. discussed an improved chaos circuit cryptosystem system for medical
image encryption and decryption [28], developing a four-dimensional chaotic system by
electronic circuits. Additionally, Li et al. presented a chaos-based image data protection
algorithm to further protect images stored in the cloud database [20]. Furthermore, H. T.
Baby and B. R. Sujatha applied a chaos circuit to further realize voice and text encryption
in 2020 [29], etc.

Consequently, generating a signal from chaotic systems in the studies of software as
well as hardware are extremely important in these application fields. In this paper, we
further propose three main ways to show our data generating results, which means it can
be proved effectively and used in practice: (1) chaotic solutions simulated by MATLAB,
(2) chaotic motion drawn via electronic circuits software Multisim, and (3) chaotic signals
implemented on real electronic circuits with breadboard. Furthermore, in order to improve
the usability of encryption via chaotic signals, in this article, we provide a set of adaptive
chaotic signal generation as well, which is implemented through the same design principal
mentioned above. The adaptive chaotic signal generated by electronic circuits actually
provided a more flexible and valuable way to enhance the encryption effectiveness.

The organization of the rest of the paper is as follows. In Section 2, chaotic behavior
expression of the four-dimensional Chen–Lee System is introduced. In Section 3, the
implementation on electronic circuit-software simulation and hardware configuration
are proposed for further comparison. In Section 4, adaptive synchronization of the four-
dimensional Chen–Lee system on electronic circuits is given. In Section 5, conclusions are
given to summarize the main contributions of this paper, which give a small reminder to
our reader to catch the points in this article more easily.

2. Chaotic Behavior Expression of the Four-Dimensional Chen–Lee System

Before introducing the four-dimensional Chen–Lee system, let us take a look at the
original Chen–Lee system [30]. Chen and Lee reported a new chaotic system in 2004, which
is now called the Chen–Lee system, the expression of Euler equations for the motion of
a rigid body with principal axes at the center of mass, which can be described by the
following non-linear differential equations with three states:

.
x1 = −x2x3 + ax1.
x2 = x1x3 + bx2.
x3 = x1x2/3 + cx3

(1)

where x1, x2, and x3 are system states, a, b, and c are system parameters. Chaotic behaviors
of the system reveals when parameters set as a = 5, b = −10, c = −3.8. In the article, we
add a feedback control equation to the Chen–Lee system mentioned in Equation (1), and it
becomes a new four-dimensional system. This four-dimensional Chen–Lee system can be
represented as follows: 

.
x1 = −x2x3 + ax1 + bx4.
x2 = x1x3 + cx2.
x3 = x1x2/3 + dx3.
x4 = x2x3 + rx4

(2)

where x1, x2, x3, and x4 are system states, a, b, c, d, and r are system parameters. When the
parameters are chosen as a = 5, b = 0.9, c = −10, d = −3.8, and r = −2, the new system shows
complex and beautiful chaotic trajectory. A set of comprehensive chaotic motions are firstly
developed and exhibited in Figure 1 in a 3-D way. Its three-axis projections express the 2-D
phase portraits of x1 − x2, x1 − x3, x2 − x3, respectively.
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In order to have a better comparison with the chaotic behaviors on electrical circuits
in the following section, complete information of the 2-D phase portraits is provided below
in Figure 2.
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3. Implementation on Electronic Circuit—Software Simulation and Hardware Config-
urations 

In this part, chaotic behaviors of the four-dimensional Chen–Lee system introduced 
in the previous section will be realized on electronic circuits through simulation software 
testing and hardware design; the main electronic components include integrated amplifi-
ers and inverting amplifiers. 

Before implementing on real electronic circuits, electronic circuit software was ap-
plied to simulate and investigate the effectiveness of our design. In this stage, we used the 
software Multisim (the latest version 11 in 2013). All the parameters and initial conditions 
were the same as the previous section. However, here, we have modified the value of 
capacitors to decrease the output voltage within a range from −12.0 to 12.0, and all the 

Figure 2. This 2-D phase portraits of the four-dimensional Chen–Lee system simulated by MATLAB:
(a) x1, x2 plane; (b) x1, x3 plane; (c) x1, x4 plane; (d) x2, x3 plane; (e) x2, x4 plane; (f) x3, x4 plane.
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3. Implementation on Electronic Circuit—Software Simulation and
Hardware Configurations

In this part, chaotic behaviors of the four-dimensional Chen–Lee system introduced
in the previous section will be realized on electronic circuits through simulation software
testing and hardware design; the main electronic components include integrated amplifiers
and inverting amplifiers.

Before implementing on real electronic circuits, electronic circuit software was applied
to simulate and investigate the effectiveness of our design. In this stage, we used the
software Multisim (the latest version 11 in 2013). All the parameters and initial conditions
were the same as the previous section. However, here, we have modified the value of
capacitors to decrease the output voltage within a range from −12.0 to 12.0, and all the
state value reduced tenfold in circuit simulation. The chaotic circuit configuration diagram
is shown in Figure 3, and the governing integral equation of the circuit can be written as
Equation (3), where V refers to the voltage of the corresponding states, R and C indicate
the resistance and capacitance:

Vx1 = −
∫ (Vx1 Vx3

R3C1
+
−R10Vx1
R1R11C1

+
−R14Vx4
R2R15C1

)
dt

Vx2 = −
∫ (−R10Vx1 Vx3

R5R11C2
+
−R12Vx2
R4R13C2

)
dt

Vx3 = −
∫ (−R10Vx1 Vx2

R5R11C3
+

Vx3
R6C3

)
dt

Vx4 = −
∫ (−R12Vx2 Vx3

R9R13C4
+

Vx4
R8C4

)
dt

(3)
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Figure 3. Circuit configuration of the four-dimensional Chen–Lee system designed on Multisim. 

The components of the chaotic circuit are chosen to be: R1 = R3 = R4 = R5 = R8 = R9 = 
R10 = R11 = R12 = R13 = R14 = R15 = 100 k, R2 = 204 k, R6 = 267 k, R7 = 330 k and C1 = C2 
= C3 = C4 = 0.471 uF. The voltage output signals of the chaotic circuit simulated in Multi-
sim are shown in Figure 4, which can be compared with the phase portraits simulated via 
MATLAB in Figure 2. It is clear that the chaotic behaviors revealed in MATLAB and Mul-
tisim are very close. 

Figure 3. Circuit configuration of the four-dimensional Chen–Lee system designed on Multisim.

The components of the chaotic circuit are chosen to be: R1 = R3 = R4 = R5 = R8 = R9
= R10 = R11 = R12 = R13 = R14 = R15 = 100 k, R2 = 204 k, R6 = 267 k, R7 = 330 k and C1
= C2 = C3 = C4 = 0.471 uF. The voltage output signals of the chaotic circuit simulated in
Multisim are shown in Figure 4, which can be compared with the phase portraits simulated
via MATLAB in Figure 2. It is clear that the chaotic behaviors revealed in MATLAB and
Multisim are very close.
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In the second-stage hardware implementation, the real circuit of the four-dimen-
sional Chen–Lee system is going to be constructed on a breadboard; the main electrical 
components comprise a DC power supply, oscilloscope, OP-amplifier, multiplier, capaci-
tor, etc. The apparatus and the components used in the circuit are listed in Table 1. 

  

Figure 4. 2-D phase portraits of the four-dimensional Chen–Lee system simulated by electronic
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(e) x2, x4 plane; (f) x3, x4 plane.

In the second-stage hardware implementation, the real circuit of the four-dimensional
Chen–Lee system is going to be constructed on a breadboard; the main electrical compo-
nents comprise a DC power supply, oscilloscope, OP-amplifier, multiplier, capacitor, etc.
The apparatus and the components used in the circuit are listed in Table 1.
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Table 1. List of apparatus and components in the circuit experiment.

Apparatus/Components Model Quantity
DC Power Supply GPS-3303 1

Oscilloscope TDS2014C 1
OP-Amplifier LF412CN 4

Multiplier AD633 4
Capacitor 417 uF 4

Resister

100 KΩ
204 KΩ
267 KΩ

Variable resistor 50 K Ω

11
1
1
2

In addition, the complete experimental setup is clearly shown in Figure 5 and the
whole hardware configurations are also given in Figure 6; the experimental results are
shown in Figure 7. Obviously, in comparison with the experiment results and the simu-
lation results provided via MATLAB and Multisim, the chaotic behaviors shown in our
experiment are extremely close to the original chaotic solutions solved by MATLAB; i.e.,
the chaotic signal generated from our electronic circuits retain original information and
can be used to further applications in our daily life, such as secure communication, data
encryption, medical information protection, etc.
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4. Adaptive Synchronization of the Four-Dimensional Chen–Lee System on
Electronic Circuits

In this section, we further accomplish the adaptive synchronization of the four-
dimensional Chen–Lee system through electronic circuits implementation. In the first
step, we choose the circuit Equation (4) as the master Chen–Lee system with four states:

.
x1 = −x2x3 + ax1 + bx4.
x2 = x1x3 + cx2.
x3 = 1

3 x1x2 + dx3.
x4 = x2x3 + rx4

(4)
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where x1, x2, x3, and x4 are system states, a = 5, b = 0.9, c = −10, d = −3.8, and r = −2. The
initial conditions are: x1(0) = 1.2 V, x2 (0) = 1.2 V, x3(0) = 1.2 V, and x4(0) = 1.2 V.

The slave four-dimensional Chen–Lee system is:
.
y1 = −y2y3 + ây1 + b̂y4.
y2 = y1y3 + ĉy2.
y3 = 1

3 y1y2 + d̂y3.
y4 = y2y3 + r̂y4

(5)

where x1, x2, x3, and x4 are system states, and the initial conditions are: x1(0) = −1 V,
x2(0) = −1 V, x3(0) = −1 V, and x4(0) = −1 V. In order to lead y1, y2, y3, and y4, into x1, x2,
x3, and x4, we add nonlinear controllers, u1, u2, u3, and u4, to each equation in Equation (5),
respectively. Then we have:

.
y1 = −y2y3 + ây1 + b̂y4 + u1.
y2 = y1y3 + ĉy2 + u2.
y3 = 1

3 y1y2 + d̂y3 + u3.
y4 = y2y3 + r̂y4 + u4

(6)

where â, b̂, ĉ, d̂, and r̂ are estimates of uncertain parameters a, b, c, d, and r, respectively.
These controllers make the two systems achieve synchronization when t→ ∞ , and the
limit of the error function approaches zero, where the error function can be defined as: ei =
xi-yi, (i = 1,2,3,4). From the error function, we obtain the error dynamics:

.
e1 = −x2x3 + y2y3 + âe1 + b̂e4 + ãx1 + b̃x4 − u1.
e2 = x1x3 − y1y3 + ĉe2 + c̃x2 − u2
.
e3 = 1

3 (x1x2 − y1y2) + d̂e3 + d̃x3 − u3.
e4 = x2x3 − y2y3 + r̂e4 + r̃x4 − u4

(7)

where ã = a− â, b̃ = b− b̂, c̃ = c− ĉ, d̃ = d− d̂, and r̃ = r − r̂. We choose a Lyapunov
function in the form of a positive definite function:

V
(

e1, e2, e3, e4, ã,b̃, c̃, d̃, r̃
)
=

1
2

(
e2

1 + e2
2 + e2

3 + e2
4 + ã2 + b̃2 + c̃2 + d̃2 + r̃2

)
(8)

and its time derivative is:

.
V = e1

.
e1 + e2

.
e2 + e3

.
e3 + e4

.
e4 + ã

.
ã + b̃

.

b̃ + c̃
.
c̃ + d̃

.

d̃ + r̃
.
r̃ (9)

We choose the update law for uncertain parameters as:

.
ã = −

.
â = −e1x1 − ã

.

b̃ = −
.
b̂ = −e1x4 − b̃

.
c̃ = −

.
ĉ = −e2x2 − c̃

.

d̃ = −
.
d̂ = −e3x3 − d̃

.
r̃ = −

.
r̂ = −e4x4 − r̃

(10)

The initial values of estimates for uncertain parameters are â(0) = 0, b̂(0) = 0,
ĉ(0) = 0, d̂(0) = 0 and r̂(0) = 0. Through Equation (9) and Equation (10), the appropriate
controllers can be designed as:

u1 = −x2x3 + y2y3 + âe1 + b̂e4 + ke1
u2 = x1x3 − y1y3 + ĉe2 + ke2
u3 = 1

3 (x1x2 − y1y2) + d̂e3 + ke3
u4 = x2x3 − y2y3 + r̂e4 + ke4

(11)
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where k is a positive constant and we choose k = 3.12.
Substituting Equations (10) and (11) into Equation (9), we obtain:

.
V = −ke2

1 − ke2
2 − ke2

3 − ke2
4 − ã2 − b̃2 − c̃2 − d̃2 − r̃2 ≤ 0 (12)

which is a negative-definite function of e1, e2, e3, e4, ã, b̃, c̃, d̃, r̃. Following up the designing
logic of electronic circuits mentioned in those previous sections, the complete configuration
of the adaptive circuit is presented in Figure 8, where the detailed circuit configuration of
the master system and slave system are given in Figures 9 and 10, and the corresponding
parameters update law is clearly provided in Figure 11.
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where k is a positive constant and we choose k = 3.12. 
Substituting Equations (10) and (11) into Equation (9), we obtain: 𝑽ሶ =  − 𝒌𝒆𝟏𝟐  −  𝒌𝒆𝟐𝟐  −  𝒌𝒆𝟑𝟐  −  𝒌𝒆𝟒𝟐  − 𝒂෥𝟐  − 𝒃෩𝟐  − 𝒄෤𝟐  − 𝒅෩𝟐  − 𝒓෤𝟐 ≤ 𝟎 (12)

which is a negative-definite function of 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒, 𝒂෥, 𝒃෩, 𝒄෤, 𝒅෩, 𝒓෤. Following up the design-
ing logic of electronic circuits mentioned in those previous sections, the complete config-
uration of the adaptive circuit is presented in Figure 8, where the detailed circuit config-
uration of the master system and slave system are given in Figures 9 and 10, and the cor-
responding parameters update law is clearly provided in Figure 11. 
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Furthermore, according to the designed controllers u1, u2, u3, and u4 derived in
Equation (11), the circuit configuration of the proposed controllers u1, u2, u3, and u4 are
further listed below in Figure 12, where:

Actuators 2021, 10, 284 12 of 16 
 

 

 
Figure 11. Circuit configuration of the parameters update law. 

Furthermore, according to the designed controllers u1, u2, u3, and u4 derived in Equa-
tion (11), the circuit configuration of the proposed controllers u1, u2, u3, and u4 are further 
listed below in Figure 12, where: 

 
(a) 

Actuators 2021, 10, 284 13 of 16 
 

 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Circuit configuration of the controllers u1, u2, u3, and u4: (a) controller u1; (b) controller u2; (c) controller u3; (d) 
controller u4. 

The results of the adaptive synchronization of the two four-order Chen–Lee systems 
are provided in Figures 13 and 14, where the error states are approaching the original 
points within 15–20 sec shown in Figure 13 and the estimated parameters are going to 
achieve the goal value within 15 s given in Figure 14. Consequently, the slave four-dimen-
sional Chen–Lee system has been successfully adaptive control to the master system with 
both errors states and estimated parameters following our adaptive control law and hard-
ware design on the real electronic circuits. 

Figure 12. Circuit configuration of the controllers u1, u2, u3, and u4: (a) controller u1; (b) controller u2; (c) controller u3;
(d) controller u4.



Actuators 2021, 10, 284 12 of 14

The results of the adaptive synchronization of the two four-order Chen–Lee systems
are provided in Figures 13 and 14, where the error states are approaching the original points
within 15–20 sec shown in Figure 13 and the estimated parameters are going to achieve
the goal value within 15 s given in Figure 14. Consequently, the slave four-dimensional
Chen–Lee system has been successfully adaptive control to the master system with both
errors states and estimated parameters following our adaptive control law and hardware
design on the real electronic circuits.
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5. Conclusions

In this paper, we generated chaotic signals and made comparisons between the m
step by step through the following three different approaches on two aspects—(1) software:
numerical simulation via MATLAB and implementation on electronic circuit software
through Multisim; (2) hardware: realization on breadboard with a DC power supply,
oscilloscope, OP-amplifier, multiplier, and capacitor. We provided a set of complete and
hieratical investigating flowcharts of the realization process; the simulation and experimen-
tal results showed that the proposed process is effective. Furthermore, following the same
realization rules, the adaptive chaotic signal was also designed and presented in the end of
this article for further study. All those experimental results show that our design is mature
and can be applied to technical transferring of real encryption application in the next
research step. Moreover, the signals generated by chaotic circuits proposed in this article
can be applied to various kinds of secure applications, such as image and text encryption,
secure communication, data hiding, and so forth; as a result, the real applications in the
cryptography field will be considered and implemented in the near future.
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