
actuators

Article

Learning-Based Cooperative Adaptive Cruise Control

Jonas Mirwald 1 , Johannes Ultsch 1 , Ricardo de Castro 2 and Jonathan Brembeck 1,*

����������
�������

Citation: Mirwald, J.; Ultsch, J.; de

Castro, R.; Brembeck, J.

Learning-Based Cooperative

Adaptive Cruise Control. Actuators

2021, 10, 286. https://doi.org/

10.3390/act10110286

Academic Editor: Hai Wang

Received: 17 September 2021

Accepted: 21 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of System Dynamics and Control, Robotics and Mechatronics Center, German Aerospace
Center (DLR), Münchener Str. 20, 82234 Wessling, Germany; jonas.mirwald@dlr.de (J.M.);
johannes.ultsch@dlr.de (J.U.)

2 Department of Mechanical Engineering, University of California, Merced, CA 95343, USA;
rpintodecastro@ucmerced.edu

* Correspondence: jonathan.brembeck@dlr.de; Tel.: +49-8153-28-2472

Abstract: Traffic congestion and the occurrence of traffic accidents are problems that can be mitigated
by applying cooperative adaptive cruise control (CACC). In this work, we used deep reinforcement
learning for CACC and assessed its potential to outperform model-based methods. The trade-off
between distance-error minimization and energy consumption minimization whilst still ensuring
operational safety was investigated. Alongside a string stability condition, robustness against burst
errors in communication also was incorporated, and the effect of preview information was assessed.
The controllers were trained using the proximal policy optimization algorithm. A validation by
comparison with a model-based controller was performed. The performance of the trained controllers
was verified with respect to the mean energy consumption and the root mean squared distance
error. In our evaluation scenarios, the learning-based controllers reduced energy consumption in
comparison to the model-based controller by 17.9% on average.

Keywords: cooperative adaptive cruise control; C2C communication; deep reinforcement learning;
Modelica vehicle modeling

1. Introduction

Cooperative adaptive cruise control (CACC) contributes to an efficient, higher-density
traffic flow, especially on highways. Furthermore, since human errors are a major reason for
traffic accidents, removing the driver from the driving task by using CACC in specific cases
improves traffic safety [1]. In addition, the aerodynamic drag is reduced when driving in
a vehicle platoon, therefore CACC-enabled platooning is an effective way to reduce fuel
consumption [2].

CACC is an extension of adaptive cruise control (ACC). The basic cruise control
(CC) enables the driver to define a certain velocity set point, which is then automatically
tracked by the vehicle. ACC extends this approach by detecting obstacles in front of the
vehicle and adjusting the velocity accordingly. CACC is a further extension using car-to-
car (C2C) communication. With the exchange of information between the vehicles, the
motion of the other vehicles can be anticipated. This allows a reduction in distance to the
preceding vehicle, while maintaining driving comfort and safety. For full autonomous
platooning, CACC must be extended by a lateral control that enables lane changing and
lane keeping [3].

To allow safe operation, string stability is one of the most important control require-
ments for CACC [1]. If the platoon is string stable, fast deceleration of a preceding vehicle
and a diminished distance to the following vehicle do not amplify downstream [4]. If this
is not the case, the amplification may cause a following vehicle further downstream to stop
entirely or crash into the preceding vehicle.

In the past years, there have been great advances in the development of artificial
intelligence, especially regarding deep reinforcement learning (deep RL, DRL) [5]. In RL,

Actuators 2021, 10, 286. https://doi.org/10.3390/act10110286 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-4326-6530
https://orcid.org/0000-0001-6483-8468
https://orcid.org/0000-0002-7671-5251
https://doi.org/10.3390/act10110286
https://doi.org/10.3390/act10110286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10110286
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act10110286?type=check_update&version=3

Actuators 2021, 10, 286 2 of 22

an agent is trained by interaction with an environment such that a given goal is achieved. In
DRL, this agent is approximated with a neural network. Many of these recent advances rely
on model-free approaches, in which the agent does not have access to the environment’s
mathematical model.

The application of DRL to highly complex games (Atari [6], Go [7], Dota 2 [8]) has
especially sped up the research, but DRL is also applied to control problems ranging from
lateral and longitudinal path following control [9] to power grid control [10], to active flow
control [11], and to traffic signal control [12].

Classical control methods can already tackle multiple aspects of CACC. Model pre-
dictive control (MPC) was used to create energy-efficient acceleration profiles for platoon
vehicles that also consider the string stability of the platoon [13]. Communication losses
were considered for CACC control by using, e.g., a Kalman filter to estimate the preceding
vehicle’s acceleration during short intervehicle communication outages [14].

However, the incorporation of a string stability condition may lead to higher com-
plexity when tuning the MPC controller [15]. In addition, larger prediction horizons lead
to an increased computational effort, which lowers the usability of MPC controllers for
real-world applications [16].

Compared to classical control methods, the model-free DRL’s robustness may be
difficult to guarantee [17], but there are also multiple advantages, including:

1. There is no need to create a (simplified) mathematical system model, as the DRL agent
can directly learn from a real system or a simulated high-fidelity model [18];

2. All relevant information can be directly fed into the agent’s state vector, and the
system’s constraints are learned by the agent’s neural network [6,19], both without
necessarily creating preprocessing structures, and;

3. The deployment of the trained agent’s neural network is computationally efficient [16].

For CACC, this means that DRL has the potential to outperform classical methods
regarding the sim-to-real-gap, the application complexity for the control engineer, as well
as the required performance of the deployment hardware.

DRL has already been assessed for some aspects of CACC. In [16], the authors inves-
tigated DRL for CC and compared it to MPC regarding predictive velocity tracking. It
was shown to achieve similar performance with a computational effort up to 70-fold lower.
The authors of [20] compared DRL to MPC for ACC and also found it to be comparable
in performance. DRL provided lower costs (combined penalized error, control signal
amplitude, and vehicle jerk) than MPC when facing model uncertainties (in the context of
sim-to-real-gap) due to its generalization capabilities.

Reference [21] applied DRL on the ACC as well as the CACC problem, and studied
the effect of discrete control outputs on a set point distance. However, the discrete control
outputs led to intense oscillations in the velocity and acceleration trajectory. The authors
of [22] augmented the approach by using continuous actions. To cope with possible issues
regarding safety and robustness, they also investigated the possibility to replace a DRL
agent that directly controlled the vehicle with a model-based DRL agent that only controlled
the headway parameter of a model-based controller. They concluded that the model-based
DRL agent was safer and more robust.

In [23], a supervisor network was used to augment a RL agent to increase its perfor-
mance. The combined output of the supervisor and the agent was applied to the CACC
system, which led to a reduced distance error compared to a linear controller.

In addition, a multiagent RL (MARL) can be used to consider the dynamics of a whole
vehicle platoon already during training [24].

The main contribution of this work is the application of DRL to CACC with continuous
action and state space, while also considering

1. Energy minimization;
2. A string stability constraint;
3. Preview information in the communication, and;
4. The effect of burst errors on the communication.

Actuators 2021, 10, 286 3 of 22

Previous research examined some of these aspects (e.g., energy minimization was
considered in [19], preview information in [16], and communication errors in [24]), but
not the combination of all four. To the authors’ best knowledge, this is one of the first
works to apply a string stability constraint in the presented way to DRL-based CACC.
Additionally, a high model-complexity was incorporated: a high-fidelity model was used
to model energy losses in the powertrain, and the platoon leader vehicle’s motion was
modeled according to a real-world dataset. This work was based on one of the author’s
unpublished master’s thesis [25].

The remainder of this work is organized as follows: in Section 2, the CACC problem
and the platoon model are introduced. Section 3 explains the basics of DRL and the
application to the CACC problem. In Section 4, the training of the DRL agents is described,
and the comparison to a model-based controller is carried out. Section 5 summarizes the
findings and gives an outlook.

2. Problem Formulation

The aim of CACC control is to ensure that the vehicles that form a platoon:

1. Stay at a safe distance from each other to prevent collisions, but;
2. Drive close enough to the preceding vehicle such that the air drag is decreased

(thereby decreasing energy consumption) and highway capacity is increased;
3. Consider passenger comfort by reducing vehicle jerk, and;
4. Drive in a string-stable way.

Figure 1 shows the follower vehicle with index i driving behind the preceding vehicle
with index i − 1, separated by the bumper-to-bumper distance di. Both feature their
corresponding position xi, velocity vi, and acceleration ai. The entire platoon is composed
of m vehicles.

Actuators 2021, 10, x FOR PEER REVIEW 3 of 22

3. Preview information in the communication, and;
4. The effect of burst errors on the communication.

Previous research examined some of these aspects (e.g., energy minimization was
considered in [19], preview information in [16], and communication errors in [24]), but
not the combination of all four. To the authors’ best knowledge, this is one of the first
works to apply a string stability constraint in the presented way to DRL-based CACC.
Additionally, a high model-complexity was incorporated: a high-fidelity model was used
to model energy losses in the powertrain, and the platoon leader vehicle’s motion was
modeled according to a real-world dataset. This work was based on one of the author’s
unpublished master’s thesis [25].

The remainder of this work is organized as follows: in Section 2, the CACC problem
and the platoon model are introduced. Section 3 explains the basics of DRL and the appli-
cation to the CACC problem. In Section 4, the training of the DRL agents is described, and
the comparison to a model-based controller is carried out. Section 5 summarizes the find-
ings and gives an outlook.

2. Problem Formulation
The aim of CACC control is to ensure that the vehicles that form a platoon:

1. Stay at a safe distance from each other to prevent collisions, but;
2. Drive close enough to the preceding vehicle such that the air drag is decreased

(thereby decreasing energy consumption) and highway capacity is increased;
3. Consider passenger comfort by reducing vehicle jerk, and;
4. Drive in a string-stable way.

Figure 1 shows the follower vehicle with index i driving behind the preceding vehicle
with index i-1, separated by the bumper-to-bumper distance 𝑑 . Both feature their corre-
sponding position 𝑥 , velocity 𝑣 , and acceleration 𝑎 . The entire platoon is composed of 𝑚 vehicles.

xi-1xi

vi-1,ai-1vi,ai

di

Preceding vehicle i-1Follower vehicle i

atransmit,i
~

Figure 1. Platooning linear model with information flow [26].

The target distance 𝑑∗ to the preceding vehicle may be decribed via a constant spac-
ing or constant time-headway [1], with constant time-headway being defined as [26]: 𝑑∗ = 𝑟 , + 𝑡 , 𝑣 . (1)

where 𝑟 , denotes the distance at standstill and 𝑡 , 𝑣 denotes the variable distance, ad-
justed by the time-headway 𝑡 , . The deviation from the target distance is described by
the distance error: 𝑒 = 𝑑 − 𝑑∗. (2)

Analyzing string stability is more difficult in DRL than in a model-based approach,
because the DRL problem is not typically designed in a frequency domain, where string

Figure 1. Platooning linear model with information flow [26].

The target distance d∗i to the preceding vehicle may be decribed via a constant spacing
or constant time-headway [1], with constant time-headway being defined as [26]:

d∗i = rc,i + th,ivi. (1)

where rc,i denotes the distance at standstill and th,ivi denotes the variable distance, adjusted
by the time-headway th,i. The deviation from the target distance is described by the
distance error:

ei = di − d∗i . (2)

Analyzing string stability is more difficult in DRL than in a model-based approach,
because the DRL problem is not typically designed in a frequency domain, where string

Actuators 2021, 10, 286 4 of 22

stability usually is easier to analyze [26,27]. In [28], it was shown that string stability can
be guaranteed as follows:

sup
ω

∣∣∣∣ ai (jω)

ai−1 (jω)

∣∣∣∣ ≤ 1, 2 ≤ i ≤ m, (3)

where a(jω) is the acceleration of the respective vehicle in frequency domain.

2.1. Communication Model

Regarding the platooning C2C information flow, a predecessor-following topology
(cf. [3]) was adopted: in such a topology, information is sent one way from the preceding
vehicle to the following vehicle (cf. Figure 1).

For modeling the communication, an appropriate distance for transmitting data
and a sufficient signal bandwidth was assumed. For a specific prediction horizon Nk, the
preceding vehicle i− 1 transmits its current acceleration and its predicted accelerations over
a Nk-window aT

transmit,i−1,k =
[

ai−1,k, ai−1,k+1, . . . , ai−1,k+(Nk−1)

]
. For Nk = 1, only the

current acceleration is transmitted. The follower vehicle receives the delayed acceleration
ãT

transmit,i,k =
[

ãi,k, ãi,k+1, . . . , ãi,k+(Nk−1)

]
with an assumed delay of ∆i for vehicle i (cf.

Table 1).

Table 1. Vehicle model parameters and general CACC problem parameters.

Parameter Value Parameter Value

∆t 0.1 s Mnom 4 × 160 Nm
∆i 0.1 s TM 0.1 s

ainvalid −10 m/s2 kM 8000
Ubatt 322.4 V Ax 1.232 m2

Rbatt 0.54 Ω cw 0.3
ncells,s 90 cd,1 17.58
Ucell 3.582 V cd,2 34.03
Rcell 0.006 Ω ρair 1.25 Ns2/m4

In this communication, burst errors due to noise may occur, and a sequence of succes-
sive transmissions ãtransmit,i,k is not received. The burst errors are modeled with a Markov
chain according to the Gilbert–Elliot model [29] (cf. [30], Figure 2). The Markov chain
consists of a state r, which can receive transmissions, and a state l, in which transmissions
are unavailable. According to the Markov property, the transition to the next state only de-
pends on the present state. This means that for state r, it remains in state r with probability
p = pr and 0 < pr < 1, or leaves it with p = 1− pr. The same holds true for state l with
p = pl and 0 < pl < pr. The Markov chain was implemented as an automaton, starting in
the receiving state. The probabilities used for the automaton in case of the occurrence of
burst errors were taken from [30]. They parametrized a low communication quality, and
can be found in Table 2. A parametrization for perfect communication quality is also given.

Actuators 2021, 10, x FOR PEER REVIEW 6 of 22

Range, Rate and
String Stability Limits

𝑘𝑀 1/4
Vehicle

And
Drivetrain

Model

𝑢

Environment 𝑢

±𝑀nom

11 + 𝑇𝑀 ⋅ 𝑗𝜔 𝑀∗

𝒔

𝑎

−

Figure 2. Block diagram of the environment.

The block diagram in Figure 2 gives an overview of the used vehicle model with re-
spect to the RL framework discussed in Section 3 (cf. Section 3.2 for more information on
action 𝑢 , denormalized neural network output 𝑢, and the respective range, rate and
string stability limits; cf. Section 3.3 for more information on feedback state 𝒔).

2.3. Leader Vehicle Motion Model
For modeling the platoon’s leader vehicle motion, trajectory data from the Next Gen-

eration Simulation (NGSIM) dataset was used [41]. In this dataset, positions of vehicles
were measured with multiple synchronized cameras at different locations in the USA
(Emeryville’s Interstate 80; Los Angeles’ Route 101; and Lankershim Boulevard, Atlanta’s
Peachtree Street) at two to three specific times of the day. In doing so, it was aimed at
portraying different amounts of traffic and thereby different vehicle trajectories during
the buildup of congestion, during transition between congested and uncongested traffic,
as well as during full congestion.

The NGSIM data must be postprocessed due to measurement errors [42] to create
consistency between velocity and acceleration signals. In this work, this was done in a
multistep approach by:
1. Removing acceleration outliers (𝑎 > |30 m/s |) by applying a natural cubic spline in-

terpolation on the velocity profile;
2. Reducing the velocity profile noise by applying a first-order low-pass Butterworth

filter (cutoff frequency of 0.5 Hz); and
3. Removing implausible accelerations (𝑎 > 5 m/s or 𝑎 < −8 m/s) also by applying

a natural cubic spline interpolation on the velocity profile.
Finally, if implausible accelerations were still present or if velocities higher than

ROMO’s nominal velocity limit 𝑣 = 27.4 𝑚/𝑠 occurred, the trajectory was removed
from the set of valid trajectories. After doing so, the resulting set consisted of 312 trajecto-
ries. It was permutated and then split into training (70%) and validation (30%) sets.

3. Reinforcement-Learning-Based Cooperative Adaptive Cruise Control
In this work, we used reinforcement learning to solve the control problem. A Markov

decision process (MDP) described the probabilistic basis of RL, and was used to derive
the algorithms to find the optimal action in each time step. An MDP consists of an agent
and the environment, as shown in Figure 3. In each discrete time step 𝑘, the agent per-
ceives the current state 𝒔 ∈ 𝒮 (𝒮 being the set of all valid states) of the environment and
performs the corresponding action 𝒖 ∈ 𝒜 (𝒜 being the set of all valid actions) [5]. If a
reward 𝑅 ∈ ℛ ⊂ ℝ is assigned according to the action 𝒖 and the resulting state 𝒔 ,
the MDP can be called a Markov reward process (MRP) [43]. The MRP is defined to begin
with state 𝒔 and action 𝒖 , but without an initial reward. The first reward 𝑅 is as-
signed after the transition to the state 𝒔 . From a control theory’s perspective, the agent
can be seen as controller, the environment as plant, and the action as control signal.

A sequence beginning with 𝒔 , 𝒖 , 𝑅 , 𝒔 , 𝒖 , 𝑅 , 𝒔 , 𝒖 , … and ending with a terminal
state 𝒔 is called an episode 𝜏 [5]. After reaching 𝒔 , no further action can be taken and

Figure 2. Block diagram of the environment.

Actuators 2021, 10, 286 5 of 22

Table 2. Communication parametrization regarding the communication quality and the probability
of burst errors.

Communication Quality pr pl

Perfect 1 0
Low 0.8 0.75

Reference [30] suggested the use of a buffer when a sequence of prediction values
is transmitted. The buffer is referred to as ãbuffer,i,k. For each time step k, the received
transmitted acceleration ãtransmit,i,k is saved in the buffer: ãbuffer,i,k = ãtransmit,i,k. If a
burst error occurs, no ãtransmit,i,k is received. In this case, the first element of the buffer
no longer contains valid information and the resulting gap in the buffer is filled with a
placeholder ainvalid (cf. Table 1). ainvalid is an invalid acceleration value that was chosen to
be large enough not to be attainable in our scenario, such that it could not occur in regular
communication, and was interpretable as a communication error by the DRL agent.

2.2. Vehicle Model

The single vehicle was created as a two-track model in Modelica [31] using Dymola [32]
and the planar mechanics library [33]. Modelica is an object-oriented open source modeling
language for multiphysical (e.g., mechanical and electrical) systems. The vehicle model
represented the properties of the ROboMObil (ROMO) [34], which is the robotic full x-
by-wire research vehicle of the German Aerospace Center (cf. Figure 1 for two ROMOs
forming a platoon). The center of gravity (used to calculate the vehicle’s position xi; cf.
Figure 1) was assumed to be at the geometric center of the rectangle spanned by the track
width and the wheelbase.

As wheel models, four dry-friction slip-based wheels of the planar mechanics li-
brary [33] were used and connected to fixed translation elements. The slip-based wheels
limited the amount of propulsion force dependent on the normal force and the friction
coefficient.

The energy consumption of the single vehicle mainly depended on the variable air
drag and the electric powertrain.

ROMO’s surface front Ax, air drag coefficient cw, and the air density ρair were chosen
according to [35] (cf. Table 1). Reference [36] stated that the air drag coefficient is dependent
on the distance d = di to the preceding vehicle: When driving close to the preceding
vehicle, the air drag coefficient is reduced. This reduced air drag leads to less power being
necessary for driving. To model the variable air drag, a nonlinear approximation was used,
as suggested by [37]:

cd(d) = cw ·
(

1−
cd,1

cd,2 + d

)
, (4)

where cd,1 and cd,2 are variable air drag function coefficients. The parameters were obtained
by performing a linear regression on the experimental data given in [38]. The variable air
drag force can then be calculated as:

Faer(d, v) =
1
2
· cd(d) · ρair · Ax · v2. (5)

The battery of one single vehicle [39] consist of ncells,s cells connected in series (cf.
Table 1). The total pack voltage Ubatt and total pack resistance Rbatt were assumed to
be constant during experiments (at 100% state-of-charge). To account for battery losses,
we considered Ohmic heat losses in each cell (each cell with respective voltage Ucell and
resistance Rcell).

Actuators 2021, 10, 286 6 of 22

Each of the four wheels was powered by an in-wheel motor, which was modeled as
an open-loop controlled permanent magnet synchronous machine [35,39,40]. This allowed
us to calculate the vehicle’s power consumption P = Pi as:

P = Pmech + Plosses. (6)

where Pmech is the summed mechanical power of all electric motors. For each j-th motor
(j ∈ {1, 2, 3, 4}), Pmech,j = Mj ·ωm,j, with motor torque Mj and mechanical rotor angular
velocity ωm,j. P also considered the powertrain losses Plosses, which consisted of the Ohmic
heat losses in the battery and the losses in the electric motors (i.e., inverter losses, copper
losses, iron losses, and mechanical friction losses).

A proportional controller was used as the low-level acceleration control (with a high
gain kM), which controlled the torque set point M∗ for the electric motors. The torque
was limited to ±Mnom (nominal torque, cf. Table 1), so that the physical constraints of the
system were not violated. Additionally, a first-order low pass filter was applied to the
acceleration control’s output with a time constant TM to achieve an actuator lag.

The block diagram in Figure 2 gives an overview of the used vehicle model with
respect to the RL framework discussed in Section 3 (cf. Section 3.2 for more information on
action u, denormalized neural network output ũ, and the respective range, rate and string
stability limits; cf. Section 3.3 for more information on feedback state s).

2.3. Leader Vehicle Motion Model

For modeling the platoon’s leader vehicle motion, trajectory data from the Next
Generation Simulation (NGSIM) dataset was used [41]. In this dataset, positions of vehicles
were measured with multiple synchronized cameras at different locations in the USA
(Emeryville’s Interstate 80; Los Angeles’ Route 101; and Lankershim Boulevard, Atlanta’s
Peachtree Street) at two to three specific times of the day. In doing so, it was aimed at
portraying different amounts of traffic and thereby different vehicle trajectories during the
buildup of congestion, during transition between congested and uncongested traffic, as
well as during full congestion.

The NGSIM data must be postprocessed due to measurement errors [42] to create
consistency between velocity and acceleration signals. In this work, this was done in a
multistep approach by:

1. Removing acceleration outliers (a >
∣∣30 m/s2

∣∣) by applying a natural cubic spline
interpolation on the velocity profile;

2. Reducing the velocity profile noise by applying a first-order low-pass Butterworth
filter (cutoff frequency of 0.5 Hz); and

3. Removing implausible accelerations (a > 5 m/s2 or a < −8 m/s2) also by applying a
natural cubic spline interpolation on the velocity profile.

Finally, if implausible accelerations were still present or if velocities higher than
ROMO’s nominal velocity limit vnom = 27.4 m/s occurred, the trajectory was removed
from the set of valid trajectories. After doing so, the resulting set consisted of 312 trajectories.
It was permutated and then split into training (70%) and validation (30%) sets.

3. Reinforcement-Learning-Based Cooperative Adaptive Cruise Control

In this work, we used reinforcement learning to solve the control problem. A Markov
decision process (MDP) described the probabilistic basis of RL, and was used to derive the
algorithms to find the optimal action in each time step. An MDP consists of an agent and
the environment, as shown in Figure 3. In each discrete time step k, the agent perceives the
current state sk ∈ S (S being the set of all valid states) of the environment and performs
the corresponding action uk ∈ A (A being the set of all valid actions) [5]. If a reward
Rk+1 ∈ R ⊂ R is assigned according to the action uk and the resulting state sk+1, the MDP
can be called a Markov reward process (MRP) [43]. The MRP is defined to begin with state
s0 and action u0, but without an initial reward. The first reward R1 is assigned after the

Actuators 2021, 10, 286 7 of 22

transition to the state s1. From a control theory’s perspective, the agent can be seen as
controller, the environment as plant, and the action as control signal.

Actuators 2021, 10, x FOR PEER REVIEW 7 of 22

a reset to a starting state occurs. In this work, a fixed interval between action and new
state Δ𝑡 = Δ (cf. Table 1) was assumed, yielding the time 𝑡 = 𝑘 ⋅ Δ𝑡 with 𝑘 ∈ ℕ .

For the MDP, the Markov property also held true (cf. Section 2.1).

3.1. Policy Optimization
The policy 𝜋 describes which action an agent takes given a certain state. This can be

described with a stochastic policy 𝜋: 𝒜 × 𝒮 → [0, 1] as in [43]: 𝒖 ~ 𝜋(⋅ | 𝒔). (7)

The agent tries to maximize the discounted return 𝐺 , which is the sum of rewards
that are received until the terminal state is reached, each multiplied by a discount factor 𝛾 ∈ [0, 1] [5]: 𝐺 ≔ 𝑅 + 𝛾𝑅 + 𝛾 𝑅 + ⋯ + 𝛾 𝑅 . (8)

Reinforcement
Learning Agent Environment

action 𝒖

state 𝒔

reward 𝑅

Figure 3. Agent-environment interaction in a Markov decision process [5].

In the case of 𝛾 = 1, the discounted return was just referred to as return in this work.
The state-value function is defined as the expected discounted return for a state 𝑠 when
a given policy 𝜋 is applied: 𝑉 (𝒔) ≔ 𝔼 [𝐺 | 𝒔 = 𝒔], for all 𝒔 ∈ 𝒮. (9)

The goal of RL is to find the optimal policy 𝜋∗ that optimizes the expected dis-
counted return for a specific episode 𝜏 (with the actions of 𝜏 being taken according to 𝜋): 𝜋∗ = arg max 𝔼~ [𝐺(𝜏)]. (10)

Regarding DRL, this work used the proximal policy optimization (PPO) algorithm
with clipping [44,45] to calculate neural-network-based approximations of 𝜋∗ and 𝑉 .
The weights of the neural network [46] 𝜋 are referred to as 𝜽, 𝒔 ∈ 𝒮 ⊂ ℝ and 𝒖 ∈𝒜 ⊂ ℝ .

PPO uses gradient ascent to optimize 𝜽, such that the obtained discounted returns
following a state-action tuple (𝒔, 𝒖) are more probable. These obtained discounted returns
are described with the estimated advantage 𝐴 ,𝜽 = 𝐺 − 𝑉 (𝒔) [5,44,47]. PPO does not
directly optimize the policy, but it uses an objective function 𝐿 𝒔, 𝒖, 𝜽 , 𝜽, 𝐴𝜽 [44]: 𝜽 = arg max𝜽 𝔼𝒔,𝒖~ 𝐿 𝒔, 𝒖, 𝜽 , 𝜽, 𝐴𝜽 , (11)

with: 𝐿 𝒔, 𝒖, 𝜽 , 𝜽, 𝐴𝜽 = min 𝑟 (𝜽)𝐴𝜽 , 𝑔(𝑟 (𝜽), 𝜖)𝐴𝜽 , (12)

where 𝑟 (𝜽) is the probability ratio 𝑟 (𝜽) = 𝒖 𝒔, 𝜽𝒖 𝒔, 𝜽 and 𝑔 is the clipping function.

The clipping function limits the changes of 𝑟 (𝜽) to [1 − 𝜖, 1 + 𝜖]. Thereby, the objective

Figure 3. Agent-environment interaction in a Markov decision process [5].

A sequence beginning with s0, u0, R1, s1, u1, R2, s2, u2, . . . and ending with a terminal
state sT is called an episode τ [5]. After reaching sT, no further action can be taken and a
reset to a starting state occurs. In this work, a fixed interval between action and new state
∆t = ∆i (cf. Table 1) was assumed, yielding the time t = k · ∆t with k ∈ N+.

For the MDP, the Markov property also held true (cf. Section 2.1).

3.1. Policy Optimization

The policy π describes which action an agent takes given a certain state. This can be
described with a stochastic policy π : A× S → [0, 1] as in [43]:

uk ∼ π(· | sk). (7)

The agent tries to maximize the discounted return Gk, which is the sum of rewards
that are received until the terminal state is reached, each multiplied by a discount factor
γ ∈ [0, 1] [5]:

GkRk+1 + γRk+2 + γ2Rk+3 + · · ·+ γT−k−1RT . (8)

In the case of γ = 1, the discounted return was just referred to as return in this work.
The state-value function is defined as the expected discounted return for a state s when a
given policy π is applied:

Vπ(s)Eπ [Gk | sk = s], for all s ∈ S . (9)

The goal of RL is to find the optimal policy π∗ that optimizes the expected discounted
return for a specific episode τ (with the actions of τ being taken according to π):

π∗ = arg max
π

E
τ∼π

[G(τ)]. (10)

Regarding DRL, this work used the proximal policy optimization (PPO) algorithm
with clipping [44,45] to calculate neural-network-based approximations of π∗ and Vπ . The
weights of the neural network [46] π are referred to as θ, sk ∈ S ⊂ Rn and uk ∈ A ⊂ Rm.

PPO uses gradient ascent to optimize θ, such that the obtained discounted returns
following a state-action tuple (s, u) are more probable. These obtained discounted returns
are described with the estimated advantage Âk,θ = Gk − Vπ(sk) [5,44,47]. PPO does not
directly optimize the policy, but it uses an objective function L

(
s, u, θi, θ, Âθi

)
[44]:

θi+1 = arg max
θ

E
s,u∼π

[
L
(
s, u, θi, θ, Âθi

)]
, (11)

with:
L
(
s, u, θi, θ, Âθi

)
= min

(
ro(θ)Âθi , g(ro(θ), ε)Âθi

)
, (12)

where ro(θ) is the probability ratio ro(θ) = π(u|s,θ)
π(u|s,θi)

and g is the clipping function. The
clipping function limits the changes of ro(θ) to [1− ε, 1 + ε]. Thereby, the objective func-

Actuators 2021, 10, 286 8 of 22

tion L creates an incentive for only small changes of θ, which increases training stability
compared to a basic DRL algorithm (in this work, training stability meant a monotonic
increase of the obtained average returns during training).

The basic principle of operation of PPO is shown in Algorithm 1. As for the policy,
the update of the value function Vπ (step 11) can be performed via gradient descent, such
that the objective function L is optimized. Policy and value function updates are repeated
in multiple passes until the trained policy’s behavior converges, which means until the
obtained returns can approximately no longer be increased.

Algorithm 1. Basic PPO principle of operation [44,45,47].

1: Input: initial policy parameters θ, initial state-value parameters
2: repeat:
3: for each process P i with i = 1, . . . , nP :
4: Generate TP transitions {sk, uk, Rk+1} with π(·|·)
5: for each transition k with k = 1, . . . , TP :
6: Compute Gk
7: Âk,θ = Gk −Vπ(sk)

1

8: end for
9: end for
10: Update the policy by maximizing the objective function L

in ne training epochs, sampling a minibatch (with
nP ·TP/nmini transitions) in each epoch

11: Update the value function
12: until convergence
13: Output: trained policy π, trained state-value function Vπ

1 Different advantage term calculations are possible.

The computational time of the training is decreased by using multiprocessing with nP
processes. For this, each process P i is used to generate TP transitions {sk, uk, Rk+1} with a
shared policy π(·|·) .

The policy is updated in ne passes (called training epochs) for each pass of the PPO
algorithm. For each update of θ in an epoch, a minibatch consisting of multiple transitions
is sampled. The minibatch is a subset of the batch of nP ·TP transitions that is available in
each pass of the PPO algorithm. The size of the minibatch is defined by dividing the size of
the batch by the minibatch scaling factor nmini. The number of passes until the algorithm
converges is estimated by defining a fixed training length, which means the total number
of generated transitions after which the training is ended.

3.2. Actions

The agent controls a follower vehicle (i.e., it acts with the environment) by setting a
target acceleration ui,k. To improve passenger comfort, a jerk limit is introduced to enforce
action smoothness: ∣∣∆ui,k

∣∣ ≤ ∆ulim, (13)

with ∆ulim = 0.5 m/s2 and ∆ui,k = ũi,k − ui,k−1. The action ũi,k is the denormalized output
of the policy πi. Furthermore, only accelerations that are within the physical limits of the
car are allowed to be set:

− 8 m/s2 ≤ ui,k ≤ 5 m/s2. (14)

In this work, the following two assumptions were made:

1. ai,k ≈ ui,k,
2. ai−1,k ≈ ãi,k.

To satisfy assumption 1, the low-level acceleration controller was assumed to provide
an accurate tracking performance. To satisfy assumption 2, the acceleration of the preceding
vehicle ai−1,k was assumed to be approximately equal to the delayed acceleration ãi,k that

Actuators 2021, 10, 286 9 of 22

was received by the follower vehicle (cf. Section 2.1). When we transferred the string
stability concept of (3) to time domain with:∣∣ai,k

∣∣ < γ · max
kss∈[k−Nss, k]

{∣∣ai−1,kss

∣∣}, (15)

this allowed us to represent the string stability condition as:

∣∣ui,k
∣∣ < γ ·max

{
ulim,min, max

kss∈[k−Nss, k]

{∣∣ai−1,kss

∣∣}}
< γ · uss,i,k.

(16)

In (15), the acceleration of the follower vehicle ai must be smaller than γ ∈ (0, 1)
times the maximum acceleration of the preceding vehicle within a string stability time
window Nss for every time step k. Thus, the follower vehicle is assumed to mimic the
driving behavior of the preceding vehicle. If it does so and the accelerations are mostly
attenuated downstream, string stability is guaranteed to a given extent. The transfer of the
string stability concept (3) to time domain (15) was proposed in a similar way in [28].

Equation (16) makes the implementation of a string-stability condition easier, as it
is not necessary to abort the episode due to a state constraint violation: only an addi-
tional control limit must be added. The resulting maximum from (16) is referred to as
string-stability limit uss,i,k. Furthermore, only valid values of ãtransmit,i,k are taken into
consideration, and uss,i,k cannot be below ulim,min = 0.1 m/s2. ulim,min gives the agent the
possibility to counteract slight perturbations.

In this work, Nss = 20 and γ = 0.999 were chosen. With the fixed time interval ∆t (cf.
Table 1) between two steps k and k− 1, this meant that the current acceleration and the
received accelerations from the past two seconds were taken into consideration.

3.3. Feedback State

The design of the CACC DRL environment considers a two-vehicle platoon. The
motion of the first vehicle—the leader—followed a reference trajectory obtained from the
NGSIM dataset (cf. Section 2.3). The motion of the second vehicle—the follower—was
controlled by the DRL agent. The follower vehicle was referred to with index i = 2, the
leader vehicle with index i = 1. The agent state vector s2,k of the follower vehicle for time
step k was chosen as

s2,k = [v2,k, a2,k, d2,k, ∆v2,k, e2,k, P2,k, u2,k−1, u2,k−2, ãbuffer,2,k, uss,2,k]
T. (17)

The states were partially chosen with respect to (1), with v2,k being the velocity
of the vehicle and a2,k being the acceleration of the vehicle. d2,k is the distance to the
preceding vehicle:

d2,k = x1,k − x2,k −
l1
2
− l2

2
, (18)

with xi,k being the position of the respective vehicle and li its respective vehicle length.

∆v2,k = v1,k − v2,k is the discrete approximation of the distance dynamics
.
d2 at time

t = k · ∆t. e2,k is the distance error (cf. (2)) and P2,k the power consumption at time step
k (cf. (6)). Even though we did not investigate if this state selection fulfilled the Markov
property, assembling the feedback state this way provided the agent with rich information
about the environment.

The state si,k was augmented with the history of past control values (as suggested
by [48]) for learning a smooth control action. For this purpose, the actions from the prior
two time steps u2,k−1 and u2,k−2 were provided.

The state s2,k was normalized before it was fed into the policy π2 to ensure the agent
considered each state component equally.

Actuators 2021, 10, 286 10 of 22

3.4. Reward Function

The control goal of string stability is targeted by the action limit (16), while the jerk
limit (13) ensures at least a certain degree of passenger comfort. The control objective
of maintaining a safe distance while reducing air drag is incorporated into the CACC
environment through the reward function.

To enhance the passenger comfort besides the already constrained change in control
value ∆ui,k (cf. (13)), ∆ui,k was also penalized in the reward function.

The reward function was defined in such a way that it was always negative:

r(si,k, ũi,k) =

{
Rabort, if episode is aborted

−
(
weke

∣∣ei,k
∣∣+ wPkP

∣∣Pi,k
∣∣+ w∆uk∆u

∣∣∆ui,k
∣∣), else

. (19)

If the episode was not aborted, the weighted (w) and normalized (k) error ei,k, power
consumption Pi,k and action change ∆ui,k created the achieved reward. The normalized
state components and actions were used.

Several conditions led to a premature end of an episode and were related to safety
and error constraints. To not crash into the preceding vehicle, the distance must always be
larger than 0 m. Additionally, we chose an upper distance limit of 50 m:

0 m < di,k < 50 m. (20)

At the same time, this limited the maximum platoon length, thereby increasing the road
capacity. To increase safety, the relative velocity also was limited:

− 5 m/s < vi−1,k − vi,k < 5 m/s. (21)

If the episode was aborted, a negative reward Rabort was assigned. The trained state-value
function Vπ contained the information on whether specific states most likely were going
to lead to a premature end of an episode (leading to a low return). Via the estimated
advantage Âk,θ, this was learned by the agent during training (cf. (11)). This meant that for
example the agent already attempted to avoid distances di,k larger yet close to 0 m.

Maximizing the reward function yielded the desired behavior: error minimization,
minimization of the power consumption, and an enhanced ride comfort by providing
a smooth target acceleration signal. Two different sets of reward weights were heuris-
tically determined and are listed in Table 3. The error-minimizing weight set (EM-RL)
focused on minimizing the error ei,k, while the power-minimizing weight set (PM-RL)
also explicitly considered the minimization of the absolute power consumption

∣∣Pi,k
∣∣. The

minimization of
∣∣Pi,k

∣∣ aimed at reducing the consumed energy Ei at the end of the episode
τi: Ei =

∫ T
0 Pi(t)dt. Even though recuperation was possible, every acceleration and de-

celeration led to additional losses. Therefore, the less acceleration and deceleration was
performed, the less powertrain losses occurred (smaller

∣∣Pi,k
∣∣), which yielded a smaller

energy consumption Ei.

Table 3. Reward function parametrizations: the error-minimizing reward parametrization (EM-RL)
and power-minimizing reward parametrization (PM-RL).

we wP w∆u Rabort

EM-RL 1.0 0 0.1 −1000
PM-RL 0.5 6.0 0.1 −100,000

In case of PM-RL, the weight we for the error penalization was reduced to enable the
agent to focus less on the error ei,k, and thereby to deliberately deviate from the set point
distance d∗i,k to reduce Ei. In the case of EM-RL, the weight wP was set to zero, which was
why the power was not explicitly considered.

Actuators 2021, 10, 286 11 of 22

4. Simulative Assessment

PPO was deployed with a policy network of two hidden layers with 64 neurons,
each with the tan h(·) activation function and using the Adam optimizer [49]. The default
hyperparameters [45] were used, and nP = 4 parallel processes P were utilized to achieve a
lower computational time of the training. The minibatch scaling factor was increased from
the default value nmini = 4 to nmini = 16 to create smaller minibatches and thereby further
reduce the computational time (cf. Algorithm 1 and its description in Section 3.1). Since
the default hyperparameters provided good training results, no further effort to optimize
the hyperparameters was spent.

Training with the EM-RL reward function was performed with a batch size of 4·128
steps (TP = 128 steps per process were used as defined as default in [45]) and a training
length of 2 × 106 time steps. Training with the PM-RL reward function was more compli-
cated due to the added control goal of power minimization. This is why the batch size is
increased to 4·256 steps (TP = 256) to stabilize the training. On the one hand, this led to
a lowered sample efficiency, as more samples needed to be assessed before the policy is
updated. On the other hand, the information from more samples was averaged before an
update, leading to the policy being less prone to converge to local optima. As this also
slowed the training process, the training length was increased to 4 × 106 time steps. See
Appendix C for information on average run times.

The training outcome changed based on the initial random seeds (i.e., numbers used
to initialize pseudorandom number generators), which affected the randomly assigned
initial neural network weights, as well as the environment initialization. A reproducible
training setup is a known issue in DRL [50]; to this end, several seeds should be used
in each training. The authors of [50] suggested the use of at least five seeds; in this
work, nine differently seeded runs were performed for each reward parametrization and
communication parametrization. For analyzing the training, the mean return and the
standard error were calculated in bins of 50,000 time steps for all training runs.

The DRL environment was created in the Python-based DRL framework OpenAI
Gym [51], which provided standardized interfaces to connect DRL environments with DRL
algorithms. The Modelica model of the vehicle was exported as a functional-mock-up unit
(FMU) [52]. The software package PySimulator [53,54] was used to connect to the FMU
and to create a Python-based interface, which could then be directly addressed by the DRL
environment. This toolchain was first applied by our group in [9].

4.1. Training

Each CACC environment was initialized with a processed NGSIM velocity and accel-
eration trajectory. The trajectories were sampled from the NGSIM training set. A training
episode had a length of tT (cf. Table 4), if it was not aborted earlier.

Table 4. Training setup and initialization.

Description Parameter Value or Sampling Interval

Episode length tT 120 s
Distance at standstill rc,2 2.0 m

Time headway th,2 0.74 s
Initial acceleration a2,0 0 m/s2

Initial velocity deviation ∆vrand [−2.5 m/s, 2.5 m/s)
Initial leader vehicle position x2,0 0 m

Initial distance deviation to leader vehicle ∆drand [−10 m, 10 m)
Actions from prior two time steps u2,−1, u2,−2 0 m/s2

The initial velocity of the follower vehicle was selected as

v2,0 = v1,0 + ∆vrand, (22)

where v2,0 was limited to be not below 0 m/s.

Actuators 2021, 10, 286 12 of 22

With v2,0, d∗2,0 can be calculated according to (1). The initial distance d2,0 is defined to
be equal to d∗2,0 plus a value ∆drand:

d2,0 = d∗2,0 + ∆drand. (23)

d2,0 was limited to be not below rc,2. The initial values, as well as the sampling
intervals (sampling performed with continuous uniform distribution) of ∆vrand and ∆drand
can be found in Table 4.

The random initialization of v2,0 and d2,0 as well as the random sampling of a leader
vehicle trajectory, aimed at forcing the agent to cope with a wide variety of initial states
and the avoidance of overfitting. Randomly initializing the environment helped the agent
to explore the state space, which was inherently considered by the algorithm by using a
stochastic policy during training.

The training results for different prediction horizons Nk, training communication
qualities, and reward functions are shown in Figure 4.

Actuators 2021, 10, x FOR PEER REVIEW 13 of 22

Figure 4. Average return and standard error for multiple runs of the EM-RL (a) and PM-RL (b) reward function para-
metrization.

The general occurrence of training instability of PM-RL compared to EM-RL might
have been created by including both the power consumption 𝑃 , and the change in con-
trol value Δ𝑢 , in the reward function: The penalized power consumption |𝑃 , | could
also reward control value smoothness, even though this was not its actual aim. Therefore,
this created an ambiguous goal for the optimization.

When comparing the PM-RL curves for perfect training communication quality with
prediction horizons 𝑁 = 1, 𝑁 = 2, and 𝑁 = 20, one can see that there was an increase
in sample efficiency after 0.7×106 time steps for 𝑁 = 2 and 𝑁 = 20. This showed that the
additional information acquired through the prediction horizon increased the training
performance.

4.2. Test Set Evaluation
For validating the performance of the EM-RL and the PM-RL agents, they were com-

pared to a model-based proportional-derivative (PD) controller, extended with a feedfor-
ward (FF) element to incorporate transmitted acceleration information [26] (cf. Appendix
A for more information). This controller was referred to as a model-based PDFF (mb-
PDFF) controller, and was applied to the test set with both reward function parametriza-
tions. It was also implemented in Modelica/Dymola, like the vehicle model.

Because the design of the mb-PDFF from [26] did not consider any preview; i.e., only
the present acceleration was transmitted, the mb-PDFF was exclusively compared with
DRL results with a prediction horizon of 𝑁 = 1.

For evaluating the performance of the trained policies, they were deterministically
applied on the test set. For this, the random initialization was turned off; i.e., Δ𝑣 = 0
and Δ𝑑 = 0 (cf. (22) and (23)).

It was necessary to select a specific agent out of the set of trained agents to make a
direct comparison, as only a single agent could be used as controller in the follower vehi-
cle. The policies with the least amount of crashes in the test set were selected. For training

Figure 4. Average return and standard error for multiple runs of the EM-RL (a) and PM-RL (b) reward function parametrization.

The training evolution with the EM-RL reward function is depicted in Figure 4a. One
can see a stable training behavior, with a low standard error for all trainings. The average
return converged at approximately 0.5 × 106 time steps. Initially, the average return was
below Rabort = −1000, because the agents explored different policies, and many lead to
an episode being aborted. Comparing the curves for perfect communication quality with
prediction horizons Nk = 1, 2 and 20, one can see that there was a slight increase in sample
efficiency (i.e., convergence speed w.r.t. time steps) for higher prediction horizons, and all
prediction horizons showed good training stability. This suggested that the agent could
make use of the additional information provided by an increased preview.

The training with low communication quality showed a drop in average return, and
the training performance was worse regarding the achieved final average return. Since the

Actuators 2021, 10, 286 13 of 22

agent only had access to less reliable information, the achievable performance was reduced.
This could also be observed for PM-RL.

The PM-RL weight set led to higher absolute rewards due to the nonzero weight wP
compared to the EM-RL weight set, as can be seen in Figure 4b. Additionally, it showed a
less stable training behavior. Therefore, Rabort was increased (cf. Table 3) to ensure that the
agent focused on the safety and error constraint (cf. (20) and (21)).

The average return rose during the first 0.2 × 106 to 0.5 × 106 time steps. After
reaching a peak, the return dropped and rose again shortly after until convergence. This
can be explained by the opponent reward terms regarding the error ei,k and the power
consumption Pi,k: by following the leader vehicle but accelerating with lower absolute
amplitude than it, the agent could easily decrease Pi,k. However, at the same time, this
increased ei,k. Only by exploration and considering the possible air drag reduction could a
policy be found that reduced both Pi,k and ei,k.

The general occurrence of training instability of PM-RL compared to EM-RL might
have been created by including both the power consumption Pi,k and the change in control
value ∆ui,k in the reward function: The penalized power consumption

∣∣Pi,k
∣∣ could also

reward control value smoothness, even though this was not its actual aim. Therefore, this
created an ambiguous goal for the optimization.

When comparing the PM-RL curves for perfect training communication quality with
prediction horizons Nk = 1, Nk = 2, and Nk = 20, one can see that there was an increase
in sample efficiency after 0.7 × 106 time steps for Nk = 2 and Nk = 20. This showed that
the additional information acquired through the prediction horizon increased the training
performance.

4.2. Test Set Evaluation

For validating the performance of the EM-RL and the PM-RL agents, they were
compared to a model-based proportional-derivative (PD) controller, extended with a
feedforward (FF) element to incorporate transmitted acceleration information [26] (cf.
Appendix A for more information). This controller was referred to as a model-based
PDFF (mb-PDFF) controller, and was applied to the test set with both reward function
parametrizations. It was also implemented in Modelica/Dymola, like the vehicle model.

Because the design of the mb-PDFF from [26] did not consider any preview; i.e., only
the present acceleration was transmitted, the mb-PDFF was exclusively compared with
DRL results with a prediction horizon of Nk = 1.

For evaluating the performance of the trained policies, they were deterministically
applied on the test set. For this, the random initialization was turned off; i.e., ∆vrand = 0
and ∆drand = 0 (cf. (22) and (23)).

It was necessary to select a specific agent out of the set of trained agents to make a
direct comparison, as only a single agent could be used as controller in the follower vehicle.
The policies with the least amount of crashes in the test set were selected. For training
with perfect communication quality, only the test set results with perfect communication
quality were considered. For training with low communication quality, the test set results
with both perfect and low communication were considered, because the trained agent
was expected to perform well in both situations. In case of the same number of crashes,
the agent with a higher mean return in the test set Gtest was selected. Gtest is defined

as Gtest = 1/Nτ,valid

Nτ,valid

∑
k=1

Gk, with Nτ, valid being the number of episodes that were not

aborted in the evaluation of the test.
Table 5 shows the policies corresponding to the best performing runs for each of

the reward function parametrizations and communication qualities. The shown DRL

Actuators 2021, 10, 286 14 of 22

evaluation results were obtained with perfect communication quality. In addition to the
number of test set aborts, the mean energy consumption:

Etest = 1/Nτ,valid

Nτ,valid

∑
k=1

Ek (24)

and the root mean squared error:

RMSEtest =

(
1/Ns,valid

Ns,valid

∑
k=1

e2
2,k

)0.5

(25)

were evaluated. The RMSEtest was calculated with respect to the episode steps Ns,valid that
corresponded to Nτ,valid.

Table 5. mb-PDFF and RL-agent-based CACC performance on test set. Perfect communication
quality is available during evaluation and the RL agents use a prediction horizon of Nk = 1. The test
set consists of 93 trajectories.

mb-PDFF
Perfect Comm. Quality

during Training
Low Comm. Quality

during Training

P-EM-RL P-PM-RL L-EM-RL L-PM-RL

RMSEtest
(m) 0.2055 0.04383 0.7497 0.05160 0.5424

Etest
(Wh)

34.05 30.69 27.95 31.12 29.51

Aborts 0 1 1 1 1

First, mb-PDFF was compared with EM-RL and PM-RL, each trained with perfect
communication quality (P-EM-RL, P-PM-RL).

The P-EM-RL agent showed the best performance with respect to the minimization
of e. The P-EM-RL showed a much smaller RMSEtest than mb-PDFF (−78.7%). This
can be explained by model uncertainties being considered in the design of the mb-PDFF,
which made the mb-PDFF less aggressive in order to be capable of adjusting to parameter
deviations. Additionally, the P-EM-RL had a lower Etest (−9.9%) than mb-PDFF, because
the P-EM-RL was trained to minimize the change in control value.

P-PM-RL was able to reduce Etest by 17.9% compared to mb-PDFF and 8.9% compared
to P-EM-RL. One can see that the deliberate deviation from the set point distance d∗2,k was
used to decrease the power consumption, and thereby decrease the energy consumption.
This also led to a significant increase in the distance error: P-PM-RL’s RMSEtest was 3.6-fold
larger than mb-PDFF’s, and 17.1-fold larger than P-EM-RL’s.

Subsequently, EM-RL and PM-RL trained with low communication quality (L-EM-RL,
L-PM-RL) were considered. Both L-EM-RL and L-PM-RL performed similarly to their
counterparts P-EM-RL and P-PM-RL, but slightly worse (L-PM-RL had a lower RMSEtest
than P-PM-RL, but a higher Etest). This can be explained by the occurrences of burst
errors during training, which made the agents rely less on the transmitted acceleration
information.

This led to L-EM-RL being less capable of reaching the set point distance d∗2,k than
P-EM-RL, while simultaneously having an increased Etest. Similarly, this led to L-PM-RL
being more careful with deliberately deviating from d∗2,k than P-PM-RL, and therefore also
having an increased Etest.

For all DRL agents, one test set abort occurred out of the 93 tested trajectories. This
was related to the strict string-stability implementation of the DRL agents (as opposed
to only considering string stability during the tuning of the mb-PDFF’s parameters, cf.
Appendix A) even in emergency breaking situations.

Actuators 2021, 10, 286 15 of 22

The evaluation results for higher prediction horizons (Nk = 2 and Nk = 20) are
summarized in Appendix B (cf. Table 2; the DRL results in Table 5 are an extract from
Table 2).

Larger prediction horizons only partially yielded a better performance of the agents.
Only Nk = 2 yielded a lower RMSEtest for P-EM-RL, while neither Nk = 2 nor
Nk = 20 improved L-EM-RL’s performance. This can be explained by the set point
distance d∗2,k tracking problem to be sufficiently solvable with Nk = 2. At the same time, an
increased prediction horizon meant for the agent to identify the superfluous information,
and therefore increased the difficulty. This was especially true for low communication
quality, for which correct acceleration information was partially not available.

For P-PM-RL, a prediction horizon increase from Nk = 1 to Nk = 2 led to a lower
RMSEtest, while Etest stayed approximately the same. A further horizon increase from
Nk = 1 to Nk = 20 led to a lower Etest and RMSEtest (w.r.t. perfect communication quality
during evaluation). For L-PM-RL, an increased prediction horizon led to a lower Etest,
but a higher RMSEtest. This showed that even for low communication quality, the energy
minimization objective benefited from a larger prediction horizon.

Overall, training with low communication quality resulted in a policy that was more
robust regarding Etest and RMSEtest during low communication quality. However, the
agents trained with low communication quality also showed multiple test set aborts during
evaluation with low communication quality.

4.3. Controller Analysis

In the following section, the mb-PDFF, P-EM-RL, and P-PM-RL (the latter two with a
prediction horizon of Nk = 1) are analyzed in time domain with one trajectory chosen for
the leader vehicle.

Figure 5a shows the velocity of the leader vehicle, as well as the velocity of the follower
vehicle, as it was created by the mb-PDFF, the P-EM-RL agent, and the P-PM-RL agent.
The good performance regarding the distance error minimization of P-EM-RL is clearly
visible in Figure 5b.

Actuators 2021, 10, x FOR PEER REVIEW 16 of 22

Figure 5. Velocity 𝑣 of the leader vehicle, as well as the follower vehicle (a). The velocity of the
latter was created by mb-PDFF, P-EM-RL, and P-PM-RL; the respective distance errors 𝑒 = 𝑒 , are
shown in (b).

It can be seen in Figure 5a that the follower vehicle mimicked the driving behavior
of the leader vehicle. P-PM-RL showed undershoots after longer periods of deceleration
(e.g., at 105 s), which resulted from deliberately deviating from the target distance 𝑑 ,∗
(cf. Figure 5b). Before the undershoot, P-PM-RL drove faster than the leader vehicle. At
the end of the deceleration phase, the follower vehicle drove closer to the preceding vehi-
cle to benefit from the reduced air drag. Afterwards, the reduced distance was compen-
sated by driving slower than the leader vehicle, which meant by performing an under-
shoot. It should be noted that these undershoots resulted in negative velocity in the case
of the preceding vehicle’s velocity approaching 0 m/s (e.g., Figure 5a at 50 s). This behavior
was possible during training and driving cycle set evaluation, but was forbidden here in
the time domain analysis.

Figure 6 shows the control value 𝑢 = 𝑢 , for mb-PDFF, P-EM-RL, and P-PM-RL for
the time interval of 60 s to 80 s of the episode (the time interval was well suited to show
the characteristic controllers’ behavior and the effect of the string-stability limit). It can be
seen that the amplitude of P-EM-RL was lower than that of the mb-PDFF, which most
likely was caused by the penalization of the change in control value Δ𝑢 , in its reward
function. This showed that the P-EM-RL was less aggressive in general than the mb-PDFF
(leading to a lower energy consumption), while having a better error-minimizing perfor-
mance (cf. Table 5 and Figure 5b).

Figure 5. Velocity v of the leader vehicle, as well as the follower vehicle (a). The velocity of the latter
was created by mb-PDFF, P-EM-RL, and P-PM-RL; the respective distance errors e = e2,k are shown
in (b).

Actuators 2021, 10, 286 16 of 22

It can be seen in Figure 5a that the follower vehicle mimicked the driving behavior
of the leader vehicle. P-PM-RL showed undershoots after longer periods of deceleration
(e.g., at 105 s), which resulted from deliberately deviating from the target distance d∗2,k (cf.
Figure 5b). Before the undershoot, P-PM-RL drove faster than the leader vehicle. At the
end of the deceleration phase, the follower vehicle drove closer to the preceding vehicle
to benefit from the reduced air drag. Afterwards, the reduced distance was compensated
by driving slower than the leader vehicle, which meant by performing an undershoot. It
should be noted that these undershoots resulted in negative velocity in the case of the
preceding vehicle’s velocity approaching 0 m/s (e.g., Figure 5a at 50 s). This behavior was
possible during training and driving cycle set evaluation, but was forbidden here in the
time domain analysis.

Figure 6 shows the control value u = u2,k for mb-PDFF, P-EM-RL, and P-PM-RL for
the time interval of 60 s to 80 s of the episode (the time interval was well suited to show the
characteristic controllers’ behavior and the effect of the string-stability limit). It can be seen
that the amplitude of P-EM-RL was lower than that of the mb-PDFF, which most likely
was caused by the penalization of the change in control value ∆ui,k in its reward function.
This showed that the P-EM-RL was less aggressive in general than the mb-PDFF (leading
to a lower energy consumption), while having a better error-minimizing performance (cf.
Table 5 and Figure 5b).

Actuators 2021, 10, x FOR PEER REVIEW 17 of 22

Figure 6. Control value 𝑢 = 𝑢 , with respective string-stability limit, created by mb-PDFF, P-EM-
RL, and P-PM-RL. The time interval from 60 s to 80 s of the simulation with a total length of 120 s is
shown.

Regarding the constraints, the figure shows that the control value of the mb-PDFF
and both agents remained within a modest range (cf. (14)), that the DRL agents respected
the string stability limit, and that, usually, the mb-PDFF also was compatible with the
DRL agents’ string-stability limit.

The P-PM-RL agent still shows a nonsmooth signal due to the ambiguity created by
penalizing both the power consumption and the change in control value. During periods
of acceleration and braking, it showed lower maximum absolute accelerations, but higher
absolute accelerations at the end of the periods than mb-PDFF and P-EM-RL. This allowed
it to deviate from the target distance 𝑑 ,∗ .

For analyzing the trained agents’ string-stability property, a platoon with three P-
EM-RL-controlled follower vehicles was simulated (Figure 7a,b) and three P-PM-RL-con-
trolled follower vehicles (Figure 7c,d) (P-EM-RL and P-PM-RL both with prediction hori-
zon of 𝑁 = 1).

Figure 6. Control value u = u2,k with respective string-stability limit, created by mb-PDFF, P-EM-RL,
and P-PM-RL. The time interval from 60 s to 80 s of the simulation with a total length of 120 s
is shown.

Regarding the constraints, the figure shows that the control value of the mb-PDFF and
both agents remained within a modest range (cf. (14)), that the DRL agents respected the
string stability limit, and that, usually, the mb-PDFF also was compatible with the DRL
agents’ string-stability limit.

The P-PM-RL agent still shows a nonsmooth signal due to the ambiguity created by
penalizing both the power consumption and the change in control value. During periods
of acceleration and braking, it showed lower maximum absolute accelerations, but higher
absolute accelerations at the end of the periods than mb-PDFF and P-EM-RL. This allowed
it to deviate from the target distance d∗2,k.

For analyzing the trained agents’ string-stability property, a platoon with three P-EM-
RL-controlled follower vehicles was simulated (Figure 7a,b) and three P-PM-RL-controlled
follower vehicles (Figure 7c,d) (P-EM-RL and P-PM-RL both with prediction horizon of
Nk = 1).

Actuators 2021, 10, 286 17 of 22

Actuators 2021, 10, x FOR PEER REVIEW 17 of 22

Figure 6. Control value 𝑢 = 𝑢 , with respective string-stability limit, created by mb-PDFF, P-EM-
RL, and P-PM-RL. The time interval from 60 s to 80 s of the simulation with a total length of 120 s is
shown.

Regarding the constraints, the figure shows that the control value of the mb-PDFF
and both agents remained within a modest range (cf. (14)), that the DRL agents respected
the string stability limit, and that, usually, the mb-PDFF also was compatible with the
DRL agents’ string-stability limit.

The P-PM-RL agent still shows a nonsmooth signal due to the ambiguity created by
penalizing both the power consumption and the change in control value. During periods
of acceleration and braking, it showed lower maximum absolute accelerations, but higher
absolute accelerations at the end of the periods than mb-PDFF and P-EM-RL. This allowed
it to deviate from the target distance 𝑑 ,∗ .

For analyzing the trained agents’ string-stability property, a platoon with three P-
EM-RL-controlled follower vehicles was simulated (Figure 7a,b) and three P-PM-RL-con-
trolled follower vehicles (Figure 7c,d) (P-EM-RL and P-PM-RL both with prediction hori-
zon of 𝑁 = 1).

Figure 7. Platoon consisting of three agent-controlled vehicles and a leader vehicle. (a,b) show the velocities v and the
respective distance errors e in case the follower vehicles were P-EM-RL-controlled; (c,d) show v and e in case the follower
vehicles were P-PM-RL-controlled.

The P-EM-RL-controlled follower vehicles behaved as string stable: each follower
vehicle followed the preceding vehicle without an acceleration amplification downstream.
This also led to a reduction of the maximum absolute distance error values, as can be seen
in Figure 7b at 50 s, 70 s, and 105 s.

The P-PM-RL-controlled vehicles mostly behaved as string stable, but also showed
instabilities. The velocity over- and undershoots with respect to the preceding vehicle
were amplified downstream at 90 s and 105 s, such that the absolute distance error also
was amplified. For negative distance errors, this may lead to a crash. This was not
fully prevented by the string stability limit (cf. (16)), because it only referred to the
maximum absolute acceleration value of the preceding vehicle within the string stability
time window Nss, but not the duration of this maximum acceleration. Thus, in future work,
the string-stability limit also needs to restrict the acceleration duration of the follower
vehicle. Additionally, this reduction of possible acceleration amplitude would increase the
passenger comfort.

The string stability behavior of the P-EM-RL-controlled vehicles also suggested the
assessment of P-EM-RL-controllers in platoons with more than three agent-controlled
vehicles, whereas the P-PM-RL-controllers first required a stricter string-stability limit.

5. Discussion and Outlook

This work assessed the use of deep reinforcement learning for CACC.
A buffer was used in the C2C communication to store the predicted acceleration

information. This enabled the use of a prediction horizon of multiple future time steps.
The occurrence of burst errors was modeled with a Markov chain, and burst errors were
marked as invalid information in the buffer. Furthermore, a string-stability condition was
incorporated by limiting the acceleration set point of the follower vehicle with respect to
future accelerations of the preceding vehicle. Thereby, accelerations could not be amplified
downstream in the platoon without limit.

If the training and application of deep reinforcement learning is not properly designed,
robustness and overfitting problems might occur; i.e., the learning-based algorithm is

Actuators 2021, 10, 286 18 of 22

highly optimized for the data synthetically generated during simulation, failing to cope
with data generated by the real system. This is particularly worrisome when transferring
the algorithm from a simulation environment to the real world, leading to potential loss of
performance (best scenario) and safety (worst case). To mitigate these issues in our work,
model randomization techniques were incorporated into the learning process. The key
idea was to inject parameter variability in the simulation model, exposing the agent to
model inaccuracies during the learning phase, yielding robust control policies. In our work,
particular attention was dedicated to exposing the control algorithm to different levels of
communication delays and errors, one of the main sources of uncertainty in the platooning
applications.

Multiple agents were trained and evaluated on an extra test set that was not used for
training. The best performing agents were validated by comparison with a model-based
PD controller with feedforward. Here, the distance error minimizing CACC agent was able
to outperform the model-based controller by reducing the RMSEtest by up to 78.7% on the
test set.

In comparison with the model-based controller, the energy minimizing CACC agent
reduced the mean energy consumption by 17.9% on the test set. For the error-minimizing
agents, it was shown that only small increases of the prediction horizon length yielded a
better error minimization, whereas the energy consumption could also be improved by
large increases of the prediction horizon length. Moreover, it was shown that considering
burst errors during training created an agent that was robust against them and performed
well regarding distance errors and energy minimization.

All in all, it was possible to train agents that could: (1) minimize their energy con-
sumption; (2) provide string stability to a given extent; (3) exploit preview information
available in the communication; and (4) minimize the effect of burst errors.

However, to guarantee string stability more generally, the string stability limit should
be able to change depending on the driving situation. Most of the time, it should be stricter,
and also should consider the acceleration duration of the preceding vehicle instead of only
the maximum acceleration. During test set evaluation of the DRL agents, some test set
aborts occurred due to the string-stability limit in emergency breaking situations. Thus,
the string-stability limit should also be less restrictive when the distance to the preceding
vehicle is very low.

The experienced predisposition of DRL towards unsmooth control signals is a disad-
vantage, and must be considered when transferring the controller to real-world applications.
Unsmooth acceleration control signals lead to high jerks and reduce driving comfort. In
addition, they increase energy consumption.

In the future, we plan to validate the obtained results with experiments on real-word
vehicles.

Author Contributions: Conceptualization, R.d.C., J.M., J.U. and J.B.; methodology, J.M., R.d.C. and
J.U.; software, J.M., J.U., R.d.C. and J.B.; RL and FMI framework, J.U. and J.M.; validation, J.M. and
R.d.C.; writing—original draft preparation, J.M.; writing—review and editing, J.M., R.d.C., J.U. and
J.B.; visualization, J.M., J.U. and R.d.C.; supervision, R.d.C. and J.B. All authors have read and agreed
to the published version of the manuscript.

Funding: The work of J.M., J.B. and J.U was funded by the DLR internal project NGC-KoFiF &
Intelligent Mobility. These projects also funded R.d.C. during his employment at DLR.

Data Availability Statement: Not applicable.

Acknowledgments: The authors’ thanks go to Christina Schreppel for her valuable support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Model-Based PD Controller with Feedforward

The mb-PDFF was fast due to the proportional element, and featured a derivative
component to increase the controller’s stability. Because of fast-changing set points in

Actuators 2021, 10, 286 19 of 22

trajectory following, there was no need for an integral element. The control signal ui for
platoon vehicle i was composed partially of a feedback signal uPD,i and a feedforward
signal u f f ,i:

ui = uPD,i + u f f ,i. (A1)

uPD,i is calculated as:

uPD,i(jω) = kp,i · ei(jω) + jω · kd,i · ei(jω), (A2)

where ei again is the distance error (cf. (2)). The feedforward signal u f f ,i consists of a filter
block and a block that models the communication delay ∆i (w.r.t. the transmitted present
acceleration of the preceding vehicle). The filter was selected such that the disturbance
effect of the preceding vehicle’s position xi−1(t) was reduced, using a specific value for the
time headway th,i (cf. [26] and Table 4).

According to [26], the controller’s parameters th,i, kp,i, and kd,i were determined with
respect to specifications of pole placement, string stability, and nonparametric variations.
The parameters were calculated with the parameter space method [55], and can be found
in Table A1.

Table A1. Model-based PDFF controller parametrization.

Parameter Value

kp,i 0.49
kd,i 0.70

Both the DRL-based CACCs and the mb-PDFF used the same distance at standstill
rc,2, the same time headway th,2, and the same delay ∆2 (cf. Tables 1 and 4).

Appendix B. Full Test Set Evaluation Results for Agents

Table 2 summarizes the driving cycle test set evaluation results for the EM-RL and
PM-RL agents for prediction horizons Nk = 1, 2 and 20, as well as for perfect and low
communication quality during training.

Table 2. Results of trained agents for the driving cycle test set during both perfect and low communication quality. The test
set consisted of 93 trajectories.

Perfect Communication Quality
during Training

Low Communication Quality
during Training

P-EM-RL P-PM-RL L-EM-RL L-PM-RL

Nk = 1 Nk = 2 Nk = 20 Nk = 1 Nk = 2 Nk = 20 Nk = 1 Nk = 2 Nk = 20 Nk = 1 Nk = 2 Nk = 20

Perfect Comm.
Quality during

Evaluation

RMSEtest
(m) 0.0438 0.0403 0.158 0.750 0.370 0.624 0.0516 0.127 0.100 0.542 0.733 0.803

Etest
(Wh) 30.7 30.0 28.9 28.0 28.2 24.6 31.1 29.9 28.4 29.5 28.4 23.9

Aborts 1 1 0 1 0 2 1 0 1 1 1 0

Low Comm.
Quality during

Evaluation

RMSEtest
(m) 0.731 0.487 0.593 3.10 1.49 4.91 0.269 0.317 0.392 0.535 0.680 0.874

Etest
(Wh) 37.5 36.5 34.0 35.9 36.2 35.7 31.4 30.5 30.7 30.0 29.3 25.3

Aborts 8 9 5 6 6 30 9 7 8 9 11 4

Appendix C. Required Computational Time and Hardware Setup

In this work, an Intel Xeon W-2135 processor was used (3.7 GHz, 6 cores, 12 threads)
together with 32 GB RAM and Tensorflow 1.12.0. Table A3 gives an overview of the
required average run times for the different prediction horizons Nk of the EM-RL training
with 2 × 106 time steps and the PM-RL training with 4 × 106 time steps, each with perfect
communication quality. For low communication quality, the average run times were similar.

Actuators 2021, 10, 286 20 of 22

Table A3. Average run times of EM-RL and PM-RL training runs with perfect communication quality.

Reward Function Parametrization Prediction Horizon Nk Average Run Time (s)

EM-RL
1 7390
2 7960
20 11,600

PM-RL
1 12,800
2 14,100
20 25,000

References
1. Jia, D.; Lu, K.; Wang, J.; Zhang, X.; Shen, X. A Survey on Platoon-Based Vehicular Cyber-Physical Systems. IEEE Commun. Surv.

Tutor. 2016, 18, 263–284. [CrossRef]
2. Turri, V.; Besselink, B.; Martensson, J.; Johansson, K. Fuel-Efficient Heavy-Duty Vehicle Platooning by Look-Ahead Control. In

Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014.
3. Guanetti, J.; Kim, Y.; Borrelli, F. Control of Connected and Automated Vehicles: State of the Art and Future Challenges. Annu. Rev.

Control 2018, 45, 18–40. [CrossRef]
4. Seiler, P.; Pant, A.; Hedrick, K. Disturbance Propagation in Vehicle Strings. IEEE Trans. Autom. Control 2004, 49, 1835–1842.

[CrossRef]
5. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA; London, UK, 2018.
6. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. Available online: https://arxiv.org/abs/1312.5602 (accessed on 19 December 2013).
7. Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;

Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489. [CrossRef]
8. OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; et al. Dota 2

with Large Scale Deep Reinforcement Learning. arXiv 2019, arXiv:1912.06680. Available online: https://arxiv.org/abs/1912.06680
(accessed on 13 December 2019).

9. Ultsch, J.; Brembeck, J.; de Castro, R. Learning-Based Path Following Control for an Over-Actuated Robotic Vehicle. In Proceedings
of the AUTOREG 2019, Mannheim, Germany, 2–3 July 2019.

10. Duan, J.; Shi, D.; Diao, R.; Li, H.; Wang, Z.; Zhang, B.; Bian, D.; Yi, Z. Deep-Reinforcement-Learning-Based Autonomous Voltage
Control for Power Grid Operations. IEEE Trans. Power Syst. 2019, 35, 814–817. [CrossRef]

11. Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N. Artificial Neural Networks Trained through Deep Reinforcement
Learning Discover Control Strategies for Active Flow Control. J. Fluid Mech. 2019, 865, 281–302. [CrossRef]

12. Chu, T.; Wang, J.; Codecà, L.; Li, Z. Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control. IEEE Trans.
Intell. Transp. Syst. 2020, 21, 1086–1095. [CrossRef]

13. de Castro, R.; Schaub, A.; Satzger, C.; Brembeck, J. A Vehicle Following Controller for Highly-Actuated Vehicles. In Proceedings
of the 13th International Symposium on Advanced Vehicle Control, Munich, Germany, 13–16 September 2016.

14. Wu, C.; Lin, Y.; Eskandarian, A. Cooperative Adaptive Cruise Control With Adaptive Kalman Filter Subject to Temporary
Communication Loss. IEEE Access 2019, 7, 93558–93568. [CrossRef]

15. Dunbar, W.; Caveney, D. Distributed Receding Horizon Control of Vehicle Platoons: Stability and String Stability. IEEE Trans.
Autom. Control 2012, 57, 620–633. [CrossRef]

16. Buechel, M.; Knoll, A. Deep Reinforcement Learning for Predictive Longitudinal Control of Automated Vehicles. In Proceedings
of the 21st International Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018.

17. Everett, M.; Lütjens, B.; How, J. Certifiable Robustness to Adversarial State Uncertainty in Deep Reinforcement Learning. IEEE
Trans. Neural Netw. Learn. Syst. (Early Access) 2021, 1–15. [CrossRef]

18. Ultsch, J.; Mirwald, J.; Brembeck, J.; de Castro, R. Reinforcement Learning-based Path Following Control for a Vehicle with
Variable Delay in the Drivetrain. In Proceedings of the IEEE Intelligent Vehicles Symposium, Las Vegas, NV, USA, 19 October–13
November 2020.

19. Wei, Z.; Jiang, Y.; Liao, X.; Qi, X.; Wang, Z.; Wu, G.; Hao, P.; Barth, M. End-to-End Vision-Based Adaptive Cruise Control (ACC)
Using Deep Reinforcement Learning. arXiv 2001, arXiv:2001.09181. Available online: https://arxiv.org/abs/2001.09181 (accessed
on 24 January 2020).

20. Lin, Y.; McPhee, J.; Azad, N. Comparison of Deep Reinforcement Learning and Model Predictive Control for Adaptive Cruise
Control. IEEE Trans. Intell. Veh. 2021, 6, 221–231. [CrossRef]

21. Desjardins, C.; Chaib-draa, B. Cooperative Adaptive Cruise Control: A Reinforcement Learning Approach. IEEE Trans. Intell.
Transp. Syst. 2011, 12, 1248–1260. [CrossRef]

22. Chu, T.; Kalabić, U. Model-based Deep Reinforcement Learning for CACC in Mixed-Autonomy Vehicle Platoon. In Proceedings
of the IEEE 58th Conference on Decision and Control, Nice, France, 11–13 December 2019.

http://doi.org/10.1109/COMST.2015.2410831
http://doi.org/10.1016/j.arcontrol.2018.04.011
http://doi.org/10.1109/TAC.2004.835586
https://arxiv.org/abs/1312.5602
http://doi.org/10.1038/nature16961
https://arxiv.org/abs/1912.06680
http://doi.org/10.1109/TPWRS.2019.2941134
http://doi.org/10.1017/jfm.2019.62
http://doi.org/10.1109/TITS.2019.2901791
http://doi.org/10.1109/ACCESS.2019.2928004
http://doi.org/10.1109/TAC.2011.2159651
http://doi.org/10.1109/TNNLS.2021.3056046
https://arxiv.org/abs/2001.09181
http://doi.org/10.1109/TIV.2020.3012947
http://doi.org/10.1109/TITS.2011.2157145

Actuators 2021, 10, 286 21 of 22

23. Wei, S.; Zou, Y.; Zhang, T.; Zhang, X.; Wang, W. Design and Experimental Validation of a Cooperative Adaptive Cruise Control
System Based on Supervised Reinforcement Learning. Appl. Sci. 2018, 8, 1014. [CrossRef]

24. Peake, A.; McCalmon, J.; Raiford, B.; Liu, T.; Alqahtani, S. Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise
Control. In Proceedings of the IEEE 32nd International Conference on Tools with Artificial Intelligence, Baltimore, MD, USA,
9–11 November 2020.

25. Mirwald, J. Platooning Control with Deep Reinforcement Learning. Master’s Thesis, Technical University of Munich, Munich,
Germany, 2019.

26. de Castro, R.; Brembeck, J. A Command Governor Approach for Platooning Applications. In Proceedings of the IEEE Intelligent
Vehicles Symposium, Los Angeles, NV, USA, 11–14 June 2017.

27. Ploeg, J. Analysis Design of Controllers for Cooperative Automated Driving. Ph.D. Thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2014.

28. Kianfar, R.; Augusto, B.; Ebadighajari, A.; Hakeem, U.; Nilsson, J.; Raza, A.; Tabar, R.; Irukulapati, N.; Englund, C.; Falcone, P.;
et al. Design and Experimental Validation of a Cooperative Driving System in the Grand Cooperative Driving Challenge. IEEE
Trans. Intell. Transp. Syst. 2012, 13, 994–1007. [CrossRef]

29. Elliott, E. Estimates of Error Rates for Codes on Burst-Noise Channels. Bell Syst. Tech. J. 1963, 42, 1977–1997. [CrossRef]
30. Patel, R.; Haerri, J.; Bonnet, C. Centralized Model Predictive CACC Control Robust to Burst Communication Errors. In Proceedings

of the IEEE 88th Vehicular Technology Conference, Chicago, IL, USA, 27–30 August 2018.
31. Modelica Association 61 Ideell Förening: Modelica. Available online: https://modelica.org/ (accessed on 15 September 2021).
32. Dassault Systèmes, S.E. Dymola. Available online: https://www.3ds.com/products-services/catia/products/dymola (accessed

on 15 September 2021).
33. Zimmer, D.; van der Linden, F.; Qu, Z. Planar Mechanics 1.4.0. In a Free Modelica Library for Planar Mechanical MULTI-body

Systems. Available online: https://github.com/dzimmer/PlanarMechanics/releases/tag/v1.4.0 (accessed on 12 January 2017).
34. Brembeck, J.; Ho, L.; Schaub, A.; Satzger, C.; Tobolar, J.; Bals, J.; Hirzinger, G. ROMO—The Robotic Electric Vehicle. In Proceedings

of the IAVSD International Symposium on Dynamics of Vehicle on Roads and Tracks, Manchester, UK, 11–14 August 2011.
35. Brembeck, J. Model Based Energy Management State Estimation for the Robotic Electric Vehicle ROboMObil. Ph.D. Thesis,

Technical University of Munich, Munich, Germany, 2018.
36. Bertoni, L.; Guanetti, J.; Basso, M.; Masoero, M.; Cetinkunt, S.; Borrelli, F. An Adaptive Cruise Control for Connected Energy-

Saving Electric Vehicles. IFAC-Pap. 2017, 50, 2359–2364. [CrossRef]
37. Turri, V.; Besselink, B.; Johansson, K. Cooperative Look-Ahead Control for Fuel-Efficient and Safe Heavy-Duty Vehicle Platooning.

IEEE Trans. Control. Syst. Technol. 2017, 25, 12–28. [CrossRef]
38. Ahmed, S.; Bayer, B.; Deußen, N.; Emmelmann, H.-J.; Flegl, H.; Gilhaus, A.; Götz, H.; Großmann, H.; Hoffmann, R.; Hucho, W.-H.;

et al. Aerodynamik des Automobils, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1999.
39. Tobolar, J.; Otter, M.; Bünte, T. Modelling of Vehicle Powertrains with the Modelica PowerTrain Library. In Proceedings of the

Systemanalyse in der Kfz-Antriebstechnik IV, Augsburg, Germany, 6–7 March 2007.
40. Schröder, D. Elektrische Antriebe—Regelung von Antriebssystemen, 3rd ed.; Springer: Berlin, Germany, 2009.
41. United States Department of Transportation. Next Generation Simulation (NGSIM). Available online: https://ops.fhwa.dot.gov/

trafficanalysistools/ngsim.htm (accessed on 31 December 2006).
42. Montanino, M.; Punzo, V. Making NGSIM Data Usable for Studies on Traffic Flow Theory: Multistep Method for Vehicle

Trajectory Reconstruction. Transp. Res. Rec. J. Transp. Res. Board 2013, 2390, 99–111. [CrossRef]
43. Szepesvári, C. Algorithms for Reinforcement Learning. In Synthesis Lectures on Artificial Intelligence and Machine Learning; Morgan

& Claypool: San Rafael, CA, USA, 2010.
44. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347v2. Available online: https://arxiv.org/abs/1707.06347v2 (accessed on 28 August 2017).
45. Hill, A.; Raffin, A.; Ernestus, M.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert, M.; Radford, A.; et al. Stable

Baselines—PPO2. Available online: https://github.com/hill-a/stable-baselines; https://stable-baselines.readthedocs.io/en/
v2.4.0/modules/ppo2.html (accessed on 17 January 2019).

46. Bishop, C. Pattern Recognition and Machine Learning, 8th ed.; Springer: New York, NY, USA, 2009.
47. Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.; et al. Emergence of

Locomotion Behaviours in Rich Environments. arXiv 2017, arXiv:1707.02286. Available online: https://arxiv.org/abs/1707.02286
(accessed on 7 July 2017).

48. Raffin, A.; Sokolkov, R. Learning to Drive Smoothly in Minutes. Available online: https://github.com/araffin/learning-to-drive-
in-5-minutes/ (accessed on 31 January 2019).

49. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https://arxiv.org/
abs/1412.6980 (accessed on 22 December 2014).

50. Islam, R.; Henderson, P.; Gomrokchi, M.; Precup, D. Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for
Continuous Control. arXiv 2017, arXiv:1708.04133.

51. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540. Available online: https://arxiv.org/abs/1606.01540 (accessed on 5 June 2016).

http://doi.org/10.3390/app8071014
http://doi.org/10.1109/TITS.2012.2186513
http://doi.org/10.1002/j.1538-7305.1963.tb00955.x
https://modelica.org/
https://www.3ds.com/products-services/catia/products/dymola
https://github.com/dzimmer/PlanarMechanics/releases/tag/v1.4.0
http://doi.org/10.1016/j.ifacol.2017.08.425
http://doi.org/10.1109/TCST.2016.2542044
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
http://doi.org/10.3141/2390-11
https://arxiv.org/abs/1707.06347v2
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/v2.4.0/modules/ppo2.html
https://stable-baselines.readthedocs.io/en/v2.4.0/modules/ppo2.html
https://arxiv.org/abs/1707.02286
https://github.com/araffin/learning-to-drive-in-5-minutes/
https://github.com/araffin/learning-to-drive-in-5-minutes/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1606.01540

Actuators 2021, 10, 286 22 of 22

52. Modelica Association 61 Ideell Förening: FMI Version 2.0. Available online: https://fmi-standard.org/downloads/ (accessed on
15 September 2021).

53. Ganeson, A.; Fritzson, P.; Rogovchenko, O.; Asghar, A.; Sjölund, M.; Pfeiffer, A. An OpenModelica Python Interface and its use in
PySimulator. In Proceedings of the 9th International Modelica Conference, Munich, Germany, 3–5 September 2012.

54. Pfeiffer, A.; Hellerer, M.; Hartweg, S.; Otter, M.; Reiner, M. PySimulator—A Simulation and Analysis Environment in Python
with Plugin Infrastructure. In Proceedings of the 9th International Modelica Conference, Munich, Germany, 3–5 September 2012.

55. Ackermann, J. Robust Control: The Parameter Space Approach, 2nd ed.; Springer: London, UK, 2002.

https://fmi-standard.org/downloads/

	Introduction
	Problem Formulation
	Communication Model
	Vehicle Model
	Leader Vehicle Motion Model

	Reinforcement-Learning-Based Cooperative Adaptive Cruise Control
	Policy Optimization
	Actions
	Feedback State
	Reward Function

	Simulative Assessment
	Training
	Test Set Evaluation
	Controller Analysis

	Discussion and Outlook
	Model-Based PD Controller with Feedforward
	Full Test Set Evaluation Results for Agents
	Required Computational Time and Hardware Setup
	References

