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Abstract: We present an inflatable soft robotic arm made of fabric that leverages state-of-the-art
manufacturing techniques, leading to a robust and reliable manipulator. Three bellow-type actuators
are used to control two rotational degrees of freedom, as well as the joint stiffness that is coupled to a
longitudinal elongation of the movable link used to grasp objects. The design is motivated by a safety
analysis based on first principles. It shows that the interaction forces during an unexpected collision
are primarily caused by the attached payload mass, but can be reduced by a lightweight design of the
robot arm. A control allocation strategy is employed that simplifies the modeling and control of the
robot arm and we show that a particular property of the allocation strategy ensures equal usage of
the actuators and valves. The modeling and control approach systematically incorporates the effect
of changing joint stiffness and the presence of a payload mass. An investigation of the valve flow
capacity reveals that a proper timescale separation between the pressure and arm dynamics is only
given for sufficient flow capacity. Otherwise, the applied cascaded control approach can introduce
oscillatory behavior, degrading the overall control performance. A closed form feed forward strategy
is derived that compensates errors induced by the longitudinal elongation of the movable link and
allows the realization of different object manipulation applications. In one of the applications, the
robot arm hands an object over to a human, emphasizing the safety aspect of the soft robotic system.
Thereby, the intrinsic compliance of the robot arm is leveraged to detect the time when the robot
should release the object.

Keywords: soft robotics; fabric bellows; pneumatic actuation; control allocation; linear parameter
varying model; timescale separation; cascaded control; stiffness control; pick and place application

1. Introduction

Soft robotic manipulators combine a number of properties that make them interesting
for close collaboration with humans: They are lightweight and compliant, which reduces
the risk of injury for humans in the case of an unexpected collision. We present an inflatable
robot arm for object manipulation made from fabric and actuated by three bellow-type
actuators (see Figure 1). The system has two rotational degrees of freedom and is able to
adjust the joint stiffness that is coupled to a longitudinal elongation of the movable part,
which proves useful for grasping objects. The modeling approach captures the fundamental
dynamics of the system that are strongly dependent on the adjustable joint stiffness and a
possible payload mass attached to the tip of the system. Both effects are incorporated in
the parametric model and leveraged by the control approach. An important property of
the control allocation strategy is investigated, and its connection to the available valve flow
capacity in turn has strong implications for the timescale separation that forms the basis of
the cascaded control architecture.
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Figure 1. The inflatable soft robotic arm presented in this work shown manipulating an apple. The
system is made of fabric and uses three bellow-type actuators to control its two rotational degrees of
freedom and adjust its joint stiffness.

1.1. Related Work

Ensuring the safety of humans that are in close contact with robotic manipulators has
been actively researched for rigid robots for decades. The problem can be addressed by the
emulation of compliance by the feedback controller, referred to as impedance control [1,2],
or by introducing compliant components into a rigid manipulator [3]. Alternatively, the
whole robot manipulator can be built from compliant materials, resulting in a soft robot [4,5].
The safety of soft robots has already been studied in earlier work [6] and more recently has
been investigated and formalized in [7].

The design space of soft robots is significant and includes numerous materials, actua-
tion principles, and fabrication techniques. A general summary of the field is given in [8]
and an overview of pneumatically actuated soft robots is provided in [9,10]. Air-driven
actuators can be divided into three main groups: The first group of systems contracts upon
pressurization. Examples of this are pneumatic artificial muscles (PAM) [11] or actuators
that expand in one direction, causing a contraction in another direction [12]. The second ac-
tuation principle uses negative pressure (i.e., vacuum) to cause a contraction of the actuator.
The third group of actuators expands upon pressurization, with the bellow-type actuator
being an example (see [13] for an overview), as well as the so-called pouch motors [14].

The fabrication of air-driven soft robots depends on the material employed and is
typically done by either casting [15], 3D printing [16], or a layered manufacturing process
using sewing [17]; thermal bonding by means of a heat press [18], or high frequency
welding [19]. Finite element simulation methods can be used to guide the design process
as reported in [20]. Moving from the actuator level to the system level, different actuator
configurations are possible with antagonistic configurations enabling simultaneous position
and stiffness control (see [21–23]). While certain systems are realized from only soft
materials (e.g., [17]), other robotic systems combine soft and rigid materials to form hybrid
systems [24].

The modeling of soft robots to derive model-based control strategies is challenging
due to the viscoelastic material properties, as reported in [5]. An approach based on a
linear parameter-varying model dependent on the input pressure for a continuum robot
is presented in [25]. The authors of [26] leverage a reduced order finite element model
and an equivalent rigid robot model to describe the dynamics of a continuum robot is
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presented in [27]. Alternatively, the piecewise constant curvature assumption can be used
for continuum robots, as documented in [28].

An approach based on sliding mode and fuzzy control is applied in [29] for a rotary
actuator with elastic chambers. Model predictive control based on learned nonlinear mod-
els as applied in [30] can also be combined with ideas from adaptive control to compensate
for model deviations, as presented in [31]. The authors of [32] use reinforcement learning
to control a system that is jointly actuated with tendons and pneumatic actuators. Tra-
ditionally, the speed at which soft robots move has been limited. However, the authors
of [33] demonstrate that fast actuation is possible. Learning techniques such as iterative
learning control also show promise to achieve accurate tracking for higher actuation speeds
as documented in [19]. The authors of [34] argue that an iterative learning control approach
resulting in a feed forward signal allows preservation of the desired compliance of soft
robots. On the other hand, applying high gain feedback control to achieve accurate tracking
performance would lead to a stiffening of the robot. A combination of low-gain feedback
control with a learned feed forward control action is used in [35] to deal with unexpected
interactions with the environment and an approach to generalize learned feed forward
signals across different execution velocities is presented in [36].

In terms of pick and place applications, the authors of [37] present a soft planar
manipulator that is used to manipulate objects in the plane, where [38] demonstrates
the grasping of objects with a soft spatial manipulator in a three dimensional space. A
collaborative pick and place application has been realized with Festo’s Bionic Handling
Assistant [16], where an object is either handed over to a human or a second manipulator.
A fabric-based manipulator for supporting humans in daily living tasks is presented in [39].
The authors also discuss the challenge of lifting a payload with the horizontally extended
manipulator under the effect of gravity. A pick and place application with an inflatable
robot arm is presented in [40] in the context of space exploration. Visual servoing is used
in an outer control loop to pick objects of different sizes.

The compliance of soft robots makes them particularly suited to human–robot interac-
tion, as reported in [41]. Examples of such systems are wearable soft robots supporting
humans in a variety of tasks (see e.g., [42–44]) or devices for rehabilitation [45]. A soft
robotic system particularly designed for safe interactions with humans is documented
in [46] and the estimation of external contact events for a soft continuum robot is proposed
in [47]. A combination of model-based disturbance observation and data-driven techniques
is employed to estimate the external forces acting on the robot.

1.2. Contribution

In this work, we present a safety analysis of a soft manipulator during object ma-
nipulation that motivates the design of the inflatable, and hence lightweight, soft robotic
arm. The design of the robot manipulator, including the mechanical, pneumatic, and elec-
tronic aspects, is presented in detail and represents a significant improvement compared
to the predecessor system discussed in [23]. The current system has been employed for
an application in [48], with the design of the system not presented in detail. Leverag-
ing state-of-the-art fabrication techniques, such as high-frequency welding, improves the
robustness and reliability of the system. Introducing an axial degree of freedom and a
suction cup at the tip of the robot enables the grasping of various objects. The usage of
proportional valves with sufficient flow capacity ensures that the actuator pressures can
be controlled sufficiently quickly. This ensures a timescale separation from the slower
arm dynamics that forms the basis for the applied cascaded control architecture that is a
common control strategy for pneumatically actuated soft robots. We present an investi-
gation that reveals that insufficient valve flow capacity prevents a timescale separation
and results in oscillatory closed loop behavior. Since soft robotic systems already tend to
be under-damped as a consequence of the soft materials employed, a degradation of the
overall control performance can result.
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The modeling and control approach is based on the control allocation strategy pre-
sented in [48]. An important property of the control allocation strategy is discussed. It
ensures equal usage of all actuator pressures and consequently leverage of the full valve
flow capacity. While the controller in [23] is based on a numerical pressure to angle relation,
a parametric model originating from [48] is used in this work. The systematic modeling
approach addresses the effects of changing joint stiffness and the presence of a payload
mass on the dynamics. Both influences are relevant due to the lightweight nature of the
robotic arm. Simultaneous position and stiffness control is demonstrated with and without
a payload mass being attached. The repeatability and overall control performance of the
system is clearly improved in comparison to [23], as a consequence of the improved me-
chanical, pneumatic and electronic design, as well as the systematic modeling and control
approach deployed.

While learning control was indispensable in [48] for reliably picking an object, the
development of a closed form feed forward strategy allows us to pick an object without
using iterative learning control. Two applications are realized where the robot arm picks an
object from a known position and places the object at a fixed target location or hands it over
to a human. In the second case, an intrinsic property of the robotic arm is exploited: The
compliance of the robot arm allows a forced movement by the human that can be detected
autonomously by a deviation from the nominal setpoint angles. Based on this criteria, the
robot arm releases the object to hand it over to the human.

1.3. Outline

The outline of the paper is as follows: The safety analysis motivating the design of
the system is presented in Section 2. The design of the robot arm is discussed in Section 3,
while Section 4 summarizes the control allocation strategy and the modeling of the system.
Section 5 presents the cascaded control strategy deployed and an analysis of the underlying
timescale separation. The realizations of different object manipulation applications are
presented in Section 6 and a final conclusion is drawn in Section 7.

2. Safety Considerations

As a consequence of their intrinsic properties, soft robots have the potential to reduce
the danger of an injury caused to a human in the case of an unintended interaction [7]. The
compliance of the soft materials employed, as well as the potentially reduced weight of the
overall system, are key factors. An investigation of the safety properties of a soft robotic
arm intended for object manipulation is presented and used to derive design requirements.

The most closely related systems to soft robots for which safety requirements exist are
collaborative robots. The ISO norm 15,066 [49] defines four collaboration methods for the
safe deployment of collaborative robots: Either the robot stops when a human enters the
moving area of the robot or the robot is moved manually by a human if the moving speed is
reduced. Otherwise, the distance between the robot and the human is determined and the
speed of the robot is reduced based on this distance criteria. Finally, an interaction between
human and robot is possible if certain thresholds for the applied torque, force, power, and
speed are not exceeded. The last requirement is particularly relevant as it allows for an
interaction with humans under certain circumstances. For soft robots on the other hand,
no guidelines currently exist for safe deployment. While the use of soft materials generally
improves the safety aspect of soft robots according to [7], the authors also identify three
key factors representing a possible source of danger: These are material failure; the so
called whiplash effect; and the energy stored in the system. In the case of our system, the
first point (material failure) is addressed by the use of advanced fabrication techniques
to improve the robustness and reliability of the different components, as discussed in
Section 3.2. The whiplash effect describes an acceleration of the tip section of a continuum
soft robot when colliding with an obstacle. The radius of the moving part of the robot is
reduced and the conservation of angular momentum leads to an acceleration of the tip. A
detailed definition in the context of soft robotics is provided in [7]. However, the whiplash
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effect does not apply to our system as the links cannot deflect sufficiently to facilitate this
kind of behavior. Finally, the energy stored in the system requires a detailed analysis,
where the elastic energy stored in the deformed soft materials and the kinetic energy of
the system are primarily relevant. As the elasticity of the materials used for the links and
actuators is limited (see Section 3.2), we focus the discussion on the kinetic energy of the
system.

Thereby, the interaction forces between the robot manipulator and a human during an
unintended collision are analyzed. The scenario, as illustrated in Figure 2 (left plot), forms
the basis of the analysis.

ϕ
Fext

lR0

m

M

O

Figure 2. (Left) The scenario considered for investigating the safety aspect is a one degree of freedom
manipulator of mass M, with a payload of mass m attached to its tip. The mass of the link is assumed
to be concentrated as a point mass at the middle of the link. The radius of the link (measured from
pivot point O to the tip) is R0. The robot collides with a human at a distance l from the pivot point,
causing a resulting external force Fext acting on the movable link and similarly acting on the human.
The influence of gravity is not considered in this example. (Right) The momentum J (time integral
over external force) as a function of the robot arm mass, M, and the payload mass, m. The black
dot indicates the mass of the robot arm presented in this work (M = 0.2 kg) and a payload mass of
m = 0.16 kg as used in the applications presented in the last part of this work. The distance from
pivot point to collision point, l, is assumed to be two-thirds of the link radius. The initial angular
velocity of the robot arm is 1.8 rad/s corresponding to the highest angular velocity considered in this
article. The momentum grows with the robot link mass and the payload mass. If we want to keep
the momentum constant (moving on a colored line) and the mass of the robot arm is increased by a
factor of two, the payload mass would need to be reduced by one third.

A one degree of freedom robotic manipulator with a payload mass attached to its tip
collides with a human, causing an external force, Fext, acting on the robot and similarly on
the human. We assume that the robot arm moves with an initial angular velocity ϕ̇− and
comes to a complete standstill after the collision with the human (ϕ̇+ = 0). Furthermore,
the actuation torque driving the robot arm is assumed to be decoupled from the movable
link during the interaction due to a sufficiently compliant joint. Applying the laws of
impact (see [50]) leads to the following equivalence,

Θ̄0(ϕ̇+ − ϕ̇−) = −l · J with J :=
∫ t+

t−
Fext · dt

⇒ J =
ϕ̇−Θ̄0

l
⇔ J =

ϕ̇−R2
0(m + M/4)

l
,

(1)

where t− and t+ denote the instants of time before and after the impulse and Θ̄0 is the
combined moment of inertia of the robot link and the payload mass wrt. the pivot point
O. The resulting momentum J for different robot link and payload masses is shown in
Figure 2 (right plot). As the length of the robot link and the payload mass are defined
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by the application and the interference point with the human is unknown, we conclude
that the only variables to limit the momentum are the initial angular velocity, ϕ̇−, or the
mass of the robot link, M. Moving at low speeds (as similarly defined in [49]) can easily
be implemented, but might also impose restrictive constraints for the application at hand.
Hence, the reduction of the robot link mass is identified as the prime design requirement
and investigated in detail in Section 3. Note that more complicated interaction scenarios
exist, as outlined in [51], are not investigated here. Furthermore, the effect of a compliant
link that distributes the interaction force over a larger surface and consequently leads to a
reduction of the peak pressure is neglected.

3. Design
3.1. Design Considerations

The system presented in this work was used in [48] for the realization of an application
and originates from [23]. The same actuator configuration is employed, where three
actuators allow us to control two rotational degrees of freedom and to simultaneously
adjust the joint stiffness. The motivation for the system presented in [23] was to rely on
simple fabrication techniques that are commonly available, which means compromising
on the robustness of the system. Alternatively, the motivation for the system presented in
this work is to design and realize a reliable, robust, and capable system that allows us to
realize a pick and place application while addressing the design requirements outlined
in Section 2. Therefore, different materials and manufacturing methods are applied that
lead to the following improvements compared to the system presented in [23]: The burst
pressure of the new bellow-type actuators is increased from 1.5 bar to 6 bar and the angular
actuation range from 45° to 75°. The usage of a soft joint enables an additional translational
degree of freedom in the longitudinal direction of the movable link. The tubing is routed
internally, and an end effector (suction cup) is integrated to manipulate objects of up to
0.6 kg. The modularity of the overall system is increased and allows us for example to use
different suction cups depending on the object being manipulated, or to switch to different
actuators with an integrated sensing capability (see [52]). Using proportional valves with
sufficient flow capacity improves control authority and ensures a timescale separation
between the pressure and arm dynamics (a detailed discussion is presented in Section 5.2).
The use of embedded hardware to execute the low level controller and data acquisition
improves signal to noise ratio, reduces communication delays in the pressure control loops,
and ensures real-time execution of the control approach.

While the use of soft materials can improve dexterity and safety, it can also introduce
unwanted effects, such as uncontrollable degrees of freedom, or non-repeatable behav-
ior complicating the control task or even limiting the general capability of the system.
Therefore, we consider a systematic design and manufacturing process essential to fully
exploit the potential of soft materials, while avoiding potential limitations. The mechanical,
pneumatic, and electronic subsystems of the robotic arm are discussed in detail in the
following sections.

3.2. Mechanical System

In this section, the mechanical part of the inflatable robotic arm is discussed. In
order to meet the safety considerations discussed in Section 2, the robotic arm needs to
be lightweight. This is addressed by using two inflatable links that are referred to as
the static link and the movable link. They are connected by a soft joint that is flexible in
both rotational degrees of freedom, and also slightly in the longitudinal direction. Three
actuators are arranged symmetrically around the joint and the static link is fixed to a wall
by means of a base plate. A suction cup at the tip of the movable link forms the end effector.
A rendering of the inflatable robotic arm is shown in Figure 3.

The links consist of a double shell design, where the inner airtight bladder is formed
from a polyurethane film (4201 AU 250 µm from Platilon). High frequency welding is used
to join two layers of the material by clamping them between two electrodes and applying
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a high frequency alternating electromagnetic field. The heating of the material over the
full seam thickness eventually causes the two layers to bond together (for a detailed
discussion, see [53]). The outer shell is made from ballistic nylon (polyurethane-coated
500 den Cordura fabric from extremtextil), providing high tear resistance. The Sheet Metal
tool from SolidWorks is used to project the three-dimensional surfaces of the outer shell to
the two-dimensional fabric plane. The pieces are prepared with a laser cutter and processed
by sewing. The outer shell transfers the mechanical load acting on the links, where the
bending stiffness is significantly increased by the inflatable inner bladder that increases
the thickness of the links and consequently the area moment of inertia. An illustration of
the materials and components discussed in this section is provided in Figure 4. So-called
support cones (3D printed from Formlabs Flexible Resin FLFLGR02) are glued to the conic
ends of the links. They connect the links with the soft joint and are used to fix the actuators.
An additional support cone is placed at the upper end of the movable link and houses
a threaded socket where various suction cups can be mounted. The movable link has a
total mass of only 0.2 kg as a consequence of the inflatable design and the lightweight
materials employed.

Figure 3. Explosion view of the inflatable robotic arm: The base plate (1) mounts the outer shell of
the static link (2) and features tubing connectors that allow to route the tubing internally. The conic
support (3) is glued to the interior of the static link and supports the soft joint (4). The three bellow
actuators (5) are arranged symmetrically around the soft joint. Tubing is connected through elbow
connectors that fit into circular openings in the static and movable links. Additionally, the actuators
are fixed by strings attached to the conic supports and Velcro straps on the outer shells of the links.
A second conic support (6) connects to the soft joint and is glued to the movable link (7). A third
conic support (8) is mounted on the top end of the movable link and houses the suction cup and the
markers for the motion capture system. The tubing, the inner bladders, the strings for mounting the
actuators, and the screws are not shown for better visibility.

The soft joint is designed to enable a high angular range of the movable link and
provide some flexibility in the longitudinal direction to enable the additional translational
degree of freedom. Soft silicone elastomer is used (M 4641 from Wacker Elastosil) that
features low bending stiffness and intermediate elongation stiffness. The soft joint fits
tightly into a recess in the support cones. Tubing to pressurize the movable link and provide
a vacuum for the suction cup is routed through a channel in the middle of the soft joint.
The diameter of the joint reduces in the middle in order to reduce the bending stiffness and
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the occurring bending stress. The outer diameter is constrained by the minimum diameter
of the internal channel, which is 6.5 mm for routing the tubing.

Figure 4. (Top left) The inner bladder of the movable link, the fabric for the outer shell, a support
cone with the recess in the middle into which the soft joint fits, and an actuator with the tubing
connected. (Top right) The actuators arranged around the soft joint (white cylindrical part) and
connected to both links. (Bottom left) The deformed soft joint when the movable link is deflected.
The actuators are attached to the support cones with strings. (Bottom right) The tip of the movable
link allows us to attach different suction cups to grasp different objects, such as an apple. Markers
for the motion capture system are attached for sensory feedback. The markers and the suction cup
are mounted to the support cone that is glued to the interior side of the movable link tip.

The actuators aim to convert pressurized air into an angular deflection that is used to
actuate the movable link. Each actuator consists of multiple cushions that are connected
by an inner seam. Placing the seam off-center allows the actuator to deform in an angular
direction. The form of the inflated actuator in free space, i.e., when not mounted to the
system, should match the constrained form when mounted to the system as closely as
possible. Any difference between the constrained and unconstrained deformation leads
to stress imposed on the mounting structure of the actuator. For the deformation of the
actuator, the off-center distance of the inner opening, µ and the height of the actuator,
ρ are important (see Figure 5). These parameters are determined through an iterative
design process, where an in-house manufacturing technique based on a thermal heat
press is applied. For a detailed discussion of the in-house manufacturing technique, the
reader is referred to [23]. The in-house fabrication process is inexpensive and allows rapid
prototyping, while the final design iteration is realized with high frequency welding to
provide robust and reliable actuators. The material for the final design iteration is nylon
fabric coated with thermoplastic polyurethane (Riverseal 842 from Rivertex). The material
and manufacturing process is also used in [19], with different properties improved, such
as the expansion behavior and the tear resistance. For the actuators, the welding machine
operates at a frequency of 27 MHz and outputs a power of 1700 W. The applied normal
force is 1600 N for the outer seam with a welding time of 5 s followed by a cool down
time of 5 s where the electrode is left closed. The electrode for welding the outer seam is
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slightly higher at the inner circumference (0.1 mm) to form a weld bead for improving tear
resistance. Two right angle tubing flanges (90° small tubing flange from Halkey Roberts)
are connected to the bottom side of the actuator. One flange is used to connect the valve
and a second tube is used to connect the pressure sensor. An additional tubing flange is
welded to the top side of the actuator for precise positioning with respect to the movable
link. Circular openings in the outer shell of both links allow the routing of tubing flanges
through the shells. The tubing for the air supply and the pressure sensor is routed between
the inner bladder and the outer shell of the static link to the base plate. The actuator is
fixed with strings to the support cones and with Velcro straps to both links.

ψ

µ

ρ

^ 210◦

Figure 5. The left figure shows the top view of a single actuator layer. The deformation behavior
mainly depends on the actuator height ρ and the off-center distance µ. Choosing the angle ψ > 0
increases the footprint of the actuator and therefore the lateral stability during inflation such that
the actuator does not bend sideways. The following parameter values are used for the final design:
ρ = 89 mm, µ = 13.6 mm, and ψ = 45°. The figure on the right shows the side view of an inflated
actuator. The nine cushions result in a total angle of approximately 210°. The outer arc length of the
actuator when fully inflated is approximately 340 mm, compared to a thickness of 18 mm when the
actuator is fully collapsed.

The base plate is made from rigid materials (3D printed from PA12) as it is neither
moving nor sticking out from the table on which it is mounted. The outer shell of the static
link is sandwiched between the inner part of the base plate and an outer ring that can be
fastened to the base. Weld-in sleeves are placed on the top and on the side of the base plate
to connect all required peripherals.

3.3. Pneumatic System

In this section, the pneumatic subsystem of the robotic arm is discussed. The require-
ments for the pneumatic system include control of the air pressure in the three actuators, to
inflate both links to a static air pressure and to provide sensory feedback of the actuator
and source pressures. Furthermore, since pressurized air is already in use for actuating the
system, a vacuum suction cup is used for grasping objects. Different safety features are
included to ensure that no maximum pressure level for any of the components is exceeded.
The detailed pneumatic diagram is shown in Figure 6.

Different types of valves are available to control the air pressures in the bellow actu-
ators. Binary switching valves were used to operate the system presented in [23]. These
are directional valves that are either fully open or fully closed. Applying a pulse width
modulation strategy allows us to continuously adjust the air flow. Proportional directional
valves on the other hand can continuously adjust the spool position and therefore the air
flow. A second important property of the valve is its air flow capacity. It determines the
maximum possible air flow through the valve and consequently the bandwidth of the
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pressure dynamics in the actuator. For the system presented in this work, proportional
directional control valves (MPYE-5-1/4-010-B from Festo) with a standard nominal flow
rate of 1400 L/min at reference conditions (defined by DIN 1343 as entry pressure to the
valve of 6 bar and exit pressure of 5 bar) are used. The flow capacity is more than four
times larger compared to the system presented in [23], and therefore enables fast control
of the actuator pressures. Implications of the valve flow capacity on the control perfor-
mance will be investigated in detail in Section 5.2. In addition to the valve flow capacity,
the available source pressure and the actuator volume also affect the bandwidth of the
pressure dynamics. The inflation of the actuators can be accelerated by using a higher
source pressure, while the deflation is limited by the ambient air pressure. The actuator
volume is given by the design presented in Section 3.2, where a small actuator volume is a
secondary design objective.

M

(1) (2) (3)

(4)(5)

(6) (7) (8)

(9)(10)

(11)

(12)

(13)

(14)

Figure 6. The pneumatic diagram of the soft robotic arm: A compressor (1) provides pressurized
air at 9 bar that is fed to an air receiver (2). The pressure level is reduced to 7.5 bar by means of a
manual pressure regulator (3) to the level used by the vacuum generating unit (4) to operate the
suction cup (5). A second manual pressure regulator (6) decreases the pressure level to 3.5 bar, which
is the pressure level used to operate the proportional valves controlling the actuator pressures. A
manual shut off valve (7) allows us to either supply air to the additional receiver (8) or to exhaust
the air of the subsequent system (as shown in the current valve position). The receiver (8) allows
us to mitigate air flow delays induced by the preceding components. The pressure in receiver (8)
is measured by means of a pressure sensor and referred to as the source pressure. Two additional
manual pressure regulators (9) allow us to adjust the air pressure in the static and movable links
(10) (approximately 0.25 bar). An additional shut off valve (11) can be used to cut off the air supply
from the actuators, while maintaining pressurization of the links. A safety valve (12) ensures that the
actuators are exhausted in the case of an emergency. The valve is normally closed, meaning that it
has to be actively opened by its solenoid (configuration shown) to supply air to the actuators. Three
proportional directional valves (13) are used to control the air pressure in the three actuators (14),
where each pressure is measured for feedback control. Note that only three of the five ports of each
proportional valve are in use.
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For operation of the suction cup, a vacuum generation device is required. A vacuum
generator based on the Venturi effect is employed (OVEM-14-L-B-QO-CE-N from Festo).
The unit includes two independent solenoid valves. The primary valve operates the Venturi
nozzle to generate a vacuum and the secondary valve operates an ejector pulse to quickly
release the vacuum in the suction cup. The two control inputs are typically operated in the
following way: for the duration of the object being grasped, the primary valve is opened to
generate a vacuum. As soon as the object should be released, the primary valve is closed
and the secondary valve is opened for a short time duration to rapidly release the vacuum
in the suction cup. For safety reasons, an additional binary directional valve with high flow
capacity is placed before the proportional valves operating the actuators. It is normally
closed and needs to be actively opened by a solenoid. If the power is shut off when using
the emergency button, the valve automatically closes and exhausts the air supply to the
proportional valves. Simply switching off the power to the proportional valves only brings
them to their neutral position. However, due to leakage of the valves, the actuator pressure
could still increase, presenting a possible risk.

3.4. Electronic System

An embedded hardware and an additional laptop computer are used to operate the
inflatable robotic arm. An embedded system (STM32 Nucleo-144 development board with
STM32F413ZH MCU from STMicroelectronics) with a custom interface board meets the
sensing, communication and low level computation requirements. The pressure sensors are
interfaced over analog-to-digital converters sampled at 200 kHz. This allows us to average
the raw analog-to-digital readings and provide pressure measurements at 1000 Hz with
a high signal to noise ratio. The proportional valves are interfaced over analog outputs,
realized by low-pass filtering pulse width modulated signals. The vacuum unit is interfaced
over two digital outputs switching the two solenoid valves. The low level controllers for
operating the pressure controllers are executed on the embedded hardware at 1000 Hz.
Communication between the embedded hardware and the laptop computer is realized by
means of serial communication.

In comparison to the setup employed in [23], using embedded hardware has the
advantage that communication delays in the pressure control loop can be reduced. The
sensing of the actuator pressures, filtering, execution of the low level controller, and
outputting the commands to the valves is all deployed on a single piece of hardware. The
schematics (see Supplementary Materials S2) of the custom interface board are provided in
the Supplementary Materials.

The laptop computer is connected to an infrared motion capture system (from Vicon)
running at 200 Hz and providing positional data with sub-millimeter accuracy. High level
tasks, including a graphical user interface, are executed on the computer. More details
about the control architecture are provided in Section 5.2.

4. Modeling

In this section, the kinematic and dynamic description of the soft robotic arm is pre-
sented. First, the end effector parametrization is introduced. Then, the control allocation
strategy is outlined, where different possible strategies are compared. The control allo-
cation strategy forms the basis for the dynamical modeling approach and permits us to
consider the two angular degrees of freedom as decoupled. Subsequently, limitations in the
modeling of the arm dynamics related to viscoelastic material properties are highlighted
and the section is concluded with an analysis of how an elongation in the longitudinal
direction affects the rotational degrees of freedom.

4.1. End Effector Parametrization

The robotic arm has three actuators and the pressure in each actuator can be controlled
independently, forming the three control inputs. The end effector can move on a spherical
cap described by two degrees of freedom. As presented in [23], the additional control input

https://www.mdpi.com/article/10.3390/act10110299/s1
https://www.mdpi.com/article/10.3390/act10110299/s1
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allows us to adjust the joint stiffness as well as the control of the two rotational degrees of
freedom (see Figure 7). Differently, to the system presented in [23], a soft joint is used in
this work. As a consequence, increasing the joint stiffness by inflating all three actuators
simultaneously results in a longitudinal elongation of the soft joint, as shown in [48]. This
effect can be used for grasping an object. However, it is important to mention that the joint
stiffness and the longitudinal elongation can not be controlled independently.

~ey

~ex

β
α

δ

~ex

~ey

120◦

120◦120◦ A

B
C

pA

pBpC

~ex

~ey

∆pAB

∆pBC∆pα

∆pβ

Figure 7. (Left) The spherical robot arm when mounted horizontally to a wall. The soft joint is
indicated by the black circle and the gravitational vector points in the negative ~ex direction. The
end effector point is parameterized by two extrinsic Euler angles α, β, both describing rotations
with respect to the inertial frame, and the variable δ describing a longitudinal elongation. (Middle)
The symmetric actuator configuration with the three actuators A, B, and C in the corresponding
coordinate system. (Right) The variables used by the control allocation strategy. Note that an increase
in the actuator pressure A acts in the negative x-direction.

4.2. Control Allocation

For the given actuator configuration, it was shown in [23] that adjusting the lower
pressure level allows us to control the joint stiffness, which was experimentally validated
for discrete joint stiffness levels. A continuous mapping for the joint stiffness that decouples
the rotational degrees of freedom from the joint stiffness was presented in [48] and proven
in [54]. We refer to this strategy as the control allocation as it maps the three original actuator
pressures (pA, pB, pC) to three virtual control inputs (∆pα, ∆pβ, p̄), where ∆pα only affects
the α-direction, ∆pβ only affects the β-direction and p̄ := min{pA, pB, pC} denotes the
lower actuator pressure level affecting joint stiffness (or longitudinal elongation). In the
following, the key equations of the control allocation strategy are summarized. Then,
we compare different choices of virtual control input variables that reveals an important
property motivating the above choice. A more detailed derivation (see Supplementary
Materials S3) of the control allocation strategy, including a visualization to provide more
intuition, can be found in the Supplementary Materials.

From the actuator configuration shown in Figure 7, we can see that the two rotational
degrees of freedom, α and β, are affected by the actuator pressures in the following way,

α ∼
√

3
2

pB −
√

3
2

pC =

√
3

2
(pB − pC)

β ∼ −pA +
1
2

pB +
1
2

pC = −(pA − pB)−
1
2
(pB − pC).

Motivated by this relation and by introducing the variables ∆pAB = pA − pB and
∆pBC = pB − pC, the virtual control inputs ∆pα and ∆pβ are expressed in terms of the
actuator pressure differences,[

∆pα

∆pβ

]
=

[
0
√

3/2
−1 −1/2

][
∆pAB
∆pBC

]
⇔

[
∆pAB
∆pBC

]
=

[
−1/
√

3 −1
2/
√

3 0

][
∆pα

∆pβ

]
. (2)

https://www.mdpi.com/article/10.3390/act10110299/s1
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In combination with the definition of p̄, this defines the mapping from the actuator
pressures to the virtual control inputs,

(pA, pB, pC)→ (∆pα, ∆pβ, p̄). (3)

The inverse mapping from virtual control inputs to the three actuator pressures,

(∆pα, ∆pβ, p̄)→ (pA, pB, pC), (4)

is given by,

pA = max{ p̄, p̄ + ∆pAB, p̄ + ∆pAB + ∆pBC}
pB = max{ p̄, p̄ + ∆pBC, p̄− ∆pAB}
pC = max{ p̄, p̄− ∆pBC, p̄− ∆pAB − ∆pBC},

(5)

with ∆pAB and ∆pBC being defined in (2) forming functional composition,

(pA, pB, pC) = ξ(∆pα, ∆pβ, p̄), (6)

which is a bijective mapping that can similarly be applied to the virtual control inputs,
the absolute pressures (inverse mapping), and the set points of both. In the following,
the decoupling between the two rotational degrees of freedom and the joint stiffness is
experimentally validated. Therefore, sinusoidal setpoints for ∆pα and ∆pβ are commanded
that are tracked by independent pressure controllers (as will be discussed in Section 5.2).
The same experiment is repeated for different values of p̄. The resulting actuator pressures,
the virtual control inputs, and the angular responses are visualized in Figure 8.

Next, we investigate three different virtual control input parametrizations and the
implications of this for the actuator pressure usage. Thereby, the virtual control inputs,
(∆pα, ∆pβ), are used for all three parametrizations due to their direct coupling to the angu-
lar degrees of freedom. The third virtual control input is different for each parametrization
and summarized in Table 1. The formulas for computing the actuator pressures for each
parametrization are given by the formulas in Table 1, Equations (2) and (5), and the defini-
tions of ∆pAB and ∆pBC.

Table 1. Different virtual control input parametrizations: The virtual control inputs ∆pα, ∆pβ are
used for all three parametrizations, but the third virtual control input is different for each choice.

Parametrization 3. Virtual Control Input

1 pavg = 1
3 (pA + pB + pC)

2 p̄ = min{pA, pB, pC}
3 pA = const.

The first parametrization is intuitive to understand with the average actuator pressure
as the third virtual control input. The second parametrization originates from [23] and is
used in this work. The third parametrization is investigated, as it showcases an important
property of the different parametrizations possible.

We consider periodic and symmetric input signals in ∆pα and ∆pβ for all three cases,

∆pα(t) = 0.2 · sin(2π · t/T), ∆pβ(t) = 0.2 · cos(2π · t/T) with T = 1 s, t ∈ [0, 2 s]. (7)
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Figure 8. The figure shows a visualization of the control allocation strategy. (Top left) The plot
shows the pressure setpoints in the absolute representation, (top right) the virtual control inputs and
(bottom) the resulting angular trajectories. Each of the three trajectories has a constant lower pressure
level that increases from the red curve (p̄ = 1.05 bar) to the blue curve p̄ = 1.10 bar and to the green
curve (p̄ = 1.15 bar). The setpoint trajectory for the virtual control inputs defines a figure-eight
trajectory with a different vertical offset corresponding to different lower pressure levels that result
in figure-eight trajectories in the angular space of varying magnitude. Each of the three virtual
control input trajectories has the same magnitude, but results in a decreasing angular magnitude for
higher values of p̄. The reason for this behavior is that the movable link is forced towards a straight
orientation wrt. the static link for increasing values of p̄ leading to a decrease in angular magnitude.
While the set point trajectories have a simple form in the virtual control input representation, the
resulting absolute pressure setpoints are rather complex, emphasizing the importance of the control
allocation strategy.

A visualization of the virtual control input parametrizations and the resulting actuator
pressures pA, pB and pC is provided in Figure 9.

Given periodic input signals for ∆pα and ∆pβ, only parametrizations 1 and 2 result in
equivalent actuator pressure signals, in the sense that pA, pB and pC are periodic signals
of equal magnitude. The reason is that the third virtual control input of parametrizations
1 and 2 is symmetric in all three actuator pressures, which is clearly not the case for
parametrization 3. There are different reasons why equivalent actuator pressure signals are
beneficial: First, they guarantee that all valves are equally used, meaning that the available
valve flow capacity (of all three valves) is fully exploited. This becomes particularly
relevant when considering the implication of the valve capacity on the closed-loop pressure
dynamics (see Figure 15 for more details). Secondly, it means that the actuators and valves
are used equally, implying that all wear and aging phenomena evolve equally for the three
subsystems. Therefore, the control allocation parametrizations 1 and 2 are preferential to
parametrization 3. Note that parametrization 3 would be an interesting allocation strategy
for a system where one of the three valves has a significantly smaller flow capacity and
could be used to adjust this mainly constant pressure. As parametrization 2 features a
virtual control input, p̄, with a clear physical interpretation as the joint stiffness (see [23]), it
is chosen as the control allocation strategy for this work.
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=
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Figure 9. Visualization of the three virtual control input parametrizations: The first column shows parametrization 1
with the average actuator pressure used as the third virtual control input, the second column shows parametrization 2
with the lower actuator pressure level as third virtual control input (as used in this work) and the right column shows
parametrization 3, where pA is directly used as the third virtual control input. The periodic input signal in ∆pα and ∆pβ

is indicated for parametrization 1 by the black circle in the pressure space. The virtual control input, pavg = 1.15 bar, is a
measure of the distance between the ∆pα-∆pβ-plane containing the circle and the origin. The resulting actuator pressures
are shown in the bottom plot and it can clearly be seen that the resulting signals are periodic and of equal magnitude with a
shifted phase. For parametrization 2, the resulting curves in the pressure space are given by the black curves (section of an
ellipse), lying on the three colored planes that are offset to the origin by p̄ = 1.05 bar. They result from projecting the circle
of the input signals, ∆pα and ∆pβ, onto the three planes. The three actuator pressures in the bottom plot are also periodic
signals with equal magnitude and a shift in phase. For parametrization 3, the curve in the pressure space is obtained
by constraining the circle in ∆pα and ∆pβ to the plane pA = 1.25 bar, resulting in an elliptical curve. The corresponding
actuator pressures are all periodic signals, but only pB and pC have equal magnitude. Hence, this virtual control input
parametrization differs qualitatively from parametrizations 1 and 2.

4.3. Arm Dynamics

The dynamics are strongly dependent on the lower pressure level as it relates to the
joint stiffness and to the attached payload due to the lightweight nature of the system.
Consequently, the modeling approach presented in this section needs to address both
dependencies to provide a sufficiently accurate basis for the control approach. The applied
procedure is twofold: The dependency of the dynamics on the attached payload mass is
addressed by relying on a gray box model structure, where the effect of the attached mass
is described from first principles. The parameters of the gray box model are identified from
system identification experiments that are performed for different lower pressure levels, p̄.
Low order polynomials as a function of p̄ are fitted for each parameter in a second step.

Leveraging the control allocation strategy presented in the previous section allows us
to model the arm dynamics as two decoupled systems in the α and β-direction, respectively.
Thereby, ∆pα,SP and ∆pβ,SP form the inputs to each system and α and β are the outputs.
The modeling procedure is discussed for the α-direction, but is similarly applied for the
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β-direction. The corresponding plots can be found in Appendix A. The dynamics are
assumed to be given by the (linearized) pendulum equation,(

m +
M
4

)
R2

0α̈ + dαα̇ + kαα = τα. (8)

The parameter R0 denotes the length from the pivot point to the load mass, m, when
the soft joint is not elongated. The mass of the movable link is given by M and considered
as a point mass with distance R0/2 from the pivot point. The stiffness and damping
parameters kα, dα are determined through system identification experiments. The equation
holds for the robotic arm mounted horizontally to a wall as shown in Figure 7. In case the
robotic arm is mounted vertically on a horizontal plane, the equation changes slightly. The
dependency between the driving torque, τα, and ∆pα,SP is assumed to be given by a linear
first order model,

τα(s) =
ηα

Tαs + 1
∆pα,SP(s), (9)

where s denotes the Laplace variable and ηα and Tα the gain and time constant determined
from system identification. The first order model accounts for the dynamics between the
commanded pressure setpoint and the torque acting on the system. A detailed investigation
of the timescale separation of the pressure dynamics and the arm dynamics is presented in
Section 5.2. Combining the second order model (8) with the first order actuator dynamics
(9) yields the linear, third order model with input ∆pα,SP and output α,

Gα(s, m) =
ηα

Tαs + 1
1

(m + M/4)R2
0s2 + dαs + kα

, (10)

and analogously for β. Note the parametric dependency on the payload mass m.
Next, system identification experiments are conducted for different values of p̄.

Thereby, no payload mass is attached. A series of sinusoidal excitation signals are ap-
plied sequentially in ∆pα,SP and ∆pβ,SP, respectively. The lower pressure level, p̄, is set
to a fixed value for each identification experiment in the range of 1.0 bar to 1.2 bar. For
each frequency, the input signal is applied for ten successive periods, where the first four
periods are discarded to reduce transient effects. The remaining periods are averaged
and the magnitude and phase of the transfer function are estimated using a sinusoidal
correlation method (see [55]). A continuous-time transfer function with three poles and no
zero, as given by the model structure (10), is fitted to the estimated data. The measured
transfer function and the resulting fit for the α-direction are shown in Figure 10 for the
different values of p̄.

The frequency responses show a clear dependency on the lower pressure level p̄. In
order to address this dependency in the model, the gain, time constant, stiffness, and
damping parameters in (10) are assumed to depend on p̄, namely

Gα(s, p̄, m) =
ηα( p̄)

Tα( p̄)s + 1
1

(m + M/4)R2
0s2 + dα( p̄)s + kα( p̄)

. (11)

A comparison of the coefficients for each of the five identification experiments per-
formed for a certain lower pressure level, p̄, provides a set of parameter values for ηα,
Tα, dα, and kα. Low order polynomials are fitted to the five values for each parameter
separately to obtain a parametric description in p̄, as shown in Figure 11.

Combining the parametric dependency on the lower pressure level with the depen-
dency on the payload mass from first principles results in a linear parameter varying model
in p̄ and m. Note that the approach applied here differs from the method presented in [25],
where the linear parameter varying model depends on the input pressure and not on a
lower pressure level.
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Figure 10. The frequency response in the α-direction for different lower pressure levels p̄ with the
magnitude in the top plot and the phase in the bottom plot. The measured frequency responses
resulting from the identification experiments are indicated by the crosses and the corresponding fits
by the solid lines. For increasing values of p̄, the magnitude of the frequency response decreases and
the resonance frequency of the system increases. The error between measured and fitted frequency
response could be further reduced for small values of p̄ by adding an additional zero to the fitted
transfer function. However, we reject the extension for the sake of simplicity and in order to have a
constant model structure for all values of p̄.

During the identification experiments, no payload mass was attached. In order to
validate the model for non-zero payload masses, two additional system identification
experiments are conducted in α-direction, where the same procedure as before is applied,
but a mass of 0.1 kg or 0.2 kg is attached. The lower pressure level is set to an average value
of 1.1 bar for both experiments. A comparison between the model prediction and the actual
measured frequency response is shown in Figure 12, showing that the model predicts the
change in the dynamics relatively accurately.
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Figure 11. The parameters of the transfer function, Gα(s, p̄, m), as a function of the lower pressure
level p̄. The red crosses indicate the parameter values from the identification experiments and the
black solid lines show the first or third order polynomial fits. The stiffness parameter (top left plot)
shows a linear relation with the lower pressure level, p̄.

Figure 12. The figure shows a comparison of the frequency response when a payload mass is attached.
The solid red line shows the (fitted) frequency response where no mass is attached and is referred
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to as the nominal model. The solid blue and green lines show the predicted frequency responses
based on the nominal model and extrapolating the effect of the mass based on (11). The blue and
green crosses indicate the measured frequency response with an attached payload mass of 0.1 kg or
0.2 kg, respectively. The lower pressure level is set to 1.1 bar for both experiments. The left shift of
the resonance frequency is accurately predicted by the model, while the rise of resonance is slightly
overestimated.

4.4. Model Limitations

While the linear parameter varying model captures the principle dynamics of the
system, there are neglected dynamic effects that can, e.g., be attributed to the viscoelastic
material behavior as discussed in [5]. An example of slowly changing viscoelastic material
behavior is shown in Figure 13. The stress relaxation happening after the inflation of each
actuator for a certain time, causes a shift in the angular response in the α-β-plane. This
effect happens at a slower timescale compared to the identification experiments shown
in Figure 10 and potentially depends on the history of past inputs and states. Feedback
control is indispensable to compensate for such effects. Alternatively, as the behavior is
repeatable for each experiment, the application of learning control is a viable alternative,
as discussed in [48].

Figure 13. The figure shows the angular response for each of the three experiments in which one
of the three actuators is preloaded, i.e., inflated to 1.3 bar for 5 min. Then, sinusoidal set point
trajectories for ∆pα,SP and ∆pβ,SP are commanded, resulting in a circle in the α-β-plane. Thereby, p̄ is
set to ambient pressure. The procedure is repeated for actuators B and C being preloaded and the
same pressure setpoint trajectories are commanded. The recorded circles are shifted away from the
particular actuator that was preloaded. Within each experiment, the single realizations of the circle
show little variation, emphasizing the good repeatability achievable with the system.

4.5. Longitudinal Movement

The control allocation strategy presented in Section 4.2 decouples the two rotational
degrees of freedom from the lower pressure level (or joint stiffness). However, a change in
the lower pressure level can cause a disturbance on the angles. The reason for this behavior
is that the maximum attainable angle range for fixed values of ∆pα and ∆pβ decreases as
the lower pressure level increases. The behavior can be seen in the right plot of Figure 8
with the extent of the figure-eight trajectory decreasing for increasing values of p̄. The
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intuition is that the robotic arm is pushed towards a straight configuration when all three
actuators are inflated. The induced error in the α and β-directions can approximately be
described by the following model,

eα = cl αSP p̄

eβ = cl βSP p̄,
(12)

where cl > 0 is a conversion factor from rad bar to rad. The error depends on the sign and
the magnitude of the current setpoint angle. For a larger setpoint angle, an increase in p̄
causes a larger error. The model is exploited in the feed forward control strategy discussed
in Section 5.3.

5. Control

The control strategy for the robotic arm is presented in this section. First, the available
sensory feedback is discussed followed by the cascaded control architecture implemented.
The low level feedback control approaches for the pressure dynamics are discussed, fol-
lowed by the controller for the arm dynamics leveraging the model presented in the
previous section. Two feed forward compensation schemes are presented that compensate
for the effect of gravity and the longitudinal movement discussed in Section 4.5.

5.1. Sensory Feedback

The motion capture system provides sensory feedback of the Cartesian coordinates
(x, y, z) of the markers attached to the tip of the movable link. The two angles α and β are
obtained by applying the following formulas,

α = arcsin(−(y− y0)/R)

β = arcsin((x− x0)/(R cos(α))),
(13)

where R denotes the length from the pivot point to the markers and (x0, y0) the Cartesian
coordinates of the pivot point. All three parameters are determined from a least squares
regression applied to data recorded during a calibration procedure where the robotic arm
is moved while recording the tip coordinates. The longitudinal elongation is not explicitly
computed, since it is controlled in a feed forward manner. Sensory feedback of the actuator
pressures is provided by three pressure sensors.

5.2. Feedback Control

A cascaded control architecture is implemented that is based on a timescale separation
between the faster pressure dynamics and the slower arm dynamics. Hence, the pressure
dynamics of each actuator are controlled in independent inner control loops running at
1000 Hz and relying on sensory feedback from the pressure sensors. The arm dynamics are
controlled in an outer control loop running at 50 Hz and using sensory feedback from the
angles α and β. The pressure setpoints, (pA,SP, pB,SP, pC,SP), are computed by the position
controller in the outer loop and form the interface to the inner loops of the cascaded control
architecture.

A cascaded control architecture allows for the use of all the available sensory feedback
at its full rate and the handling of non-linearities of the pressure dynamics in separate
inner loops. As a consequence, the derivation of the outer control loop is simplified and
the position controller can be tuned more aggressively. The block diagram is shown in
Figure 14.
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Figure 14. The cascaded control architecture employed for the soft robotic arm. The architecture is
structured into a low level part that is executed at 1000 Hz on an embedded hardware and a high level
part that is executed on a laptop computer at 50 Hz. A timescale separation between the pressure
and arm dynamics is exploited, where each actuator pressure is controlled by a proportional-integral-
derivative controller in a separate inner control loop. The position controller in the outer loop uses
sensory feedback of the angles to compute two virtual control inputs ∆pα,SP and ∆pβ,SP. The gain
scheduled position controller depends on the commanded value for p̄ and the known payload mass
m. The control allocation strategy is applied to map the virtual control inputs to the actuator pressure
set points that are the reference signals for the inner loops. Feed forward control action is added to
compensate for the effect of gravity and a longitudinal actuation of the arm.

Three separate proportional–integral–derivative controllers (PID controller) are used
to control the inner loops,

uA = KP(pA,SP − pA) + KI

∫
(pA,SP − pA) dt + KD

d
dt

pA

uB = KP(pB,SP − pB) + KI

∫
(pB,SP − pB) dt + KD

d
dt

pB

uC = KP(pC,SP − pC) + KI

∫
(pC,SP − pC) dt + KD

d
dt

pC,

(14)

with uA, uB, and uC denoting the input to the valves. The integrator is limited to avoid
excessive control action for infeasible setpoints.

The arm dynamics are controlled in an outer loop by a position controller that lever-
ages the control allocation strategy presented in Section 4.2. Based on the current error in
both angles α and β, the decoupled position controller computes separate correction inputs,
∆pα,SP and ∆pβ,SP. The controller is based on the model identified in Section 4.3 and relies
on a pole-zero cancellation,

Cα(s, p̄, m) = κα
(m + M/4)R2

0s2 + dα( p̄)s + kα( p̄)
s

, (15)

and analogously for β. The gain of the controller is denoted by κα. The linear gain-
scheduled feedback controller compensates for the effect of the payload mass, m, and the
lower pressure level, p̄. Thereby, the parameters p̄ and m are assumed to vary sufficiently
slowly with respect to time (p. 48 in [56]). A case where this assumption is not fulfilled
will be discussed in Section 5.3. The order of the feedback controller (15) corresponds to a
PID controller, where the ratio between the gains is parameterized by the identified model.
The computed control inputs, ∆pα,SP and ∆pβ,SP, are then converted to the three actuator
pressure setpoints by applying (6).

As a consequence of leveraging the control allocation strategy, the feedback control
action does not affect the lower pressure level and therefore, does not change the joint
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stiffness. Hence, the compliance of the system is preserved and can be commanded
independently of the feedback controller. Therefore, a typical concern in the control of soft
robots that accurate feedback control comes at the cost of a reduction of the compliance of
the system (see [34]) can be prevented.

It remains to verify that the closed-loop system is stable. Therefore, the complementary
sensitivity function is calculated for α,

Tα(s, p̄) =
Cα(s, p̄, m) · Gα(s, p̄, m)

1 + Cα(s, p̄, m) · Gα(s, p̄, m)

=

καηα( p̄)
Tα( p̄)

s2 + 1
Tα( p̄) s + καηα( p̄)

Tα( p̄)

,
(16)

and accordingly for β. Thereby, the payload mass is assumed to be known exactly and
as a consequence, its effect on the dynamics is compensated by the controller. There is a
dependency of Tα(s, p̄) on p̄ due to the first term in (11) related to the actuator dynamics
that are not compensated by the controller. The closed loop system for α (and similarly
for β) is a second order system and according to the Routh–Hurwitz criterion (see [57]) is
stable, as the coefficients of the denominator polynomial are strictly positive for κα,β > 0
and the parameters identified.

In the following paragraph, we verify the assumption of a timescale separation be-
tween the pressure and arm dynamics that form the basis for the cascaded control approach.
First, the effect of different magnitudes of timescale separation on the resulting closed loop
behavior is investigated. To this end, the following simplified system is considered with
the inner control loop as,

ẍ = ẋd − ẋ, (17)

where x is the state, ẋd the desired velocity. The normalized first order system has a time
constant of one. The outer control loop is assumed to be,

ẋd =
1
σ
(xr − x), (18)

where xr is the reference for x and σ denotes the time constant of the first order system.
Combining the inner and outer loops yields the following second order system,

ẍ =
1
σ
(xr − x)− ẋ ⇐⇒ ẍ + ẋ +

1
σ

x =
1
σ

xr. (19)

Note that (16) also corresponds to a second order system. The poles of (19) are
given by,

s2 + s +
1
σ
= 0 ⇒ s1,2 =

−1±
√

1− 4/σ

2
. (20)

We consider four different values of σ and investigate the resulting closed loop behav-
ior in Table 2.



Actuators 2021, 10, 299 23 of 33

Table 2. The closed loop poles for a second order system, where the ratio of the time constants of
the outer and inner loop is σ. For σ → ∞, we have a perfect timescale separation with the closed
loop poles equal to the poles of the inner loop (s1 = −1) and the outer loop (s2 = 0). For σ = 10
(the outer loop is ten times slower than the inner loop), we still obtain a reasonably good timescale
separation. For σ = 4 the two poles coincide (corresponding to critical damping) and for values of
σ < 4, e.g., σ = 2, the poles become complex conjugated, resulting in a underdamped system. For
the last case, the assumption of a timescale separation is clearly violated, resulting in the introduction
of oscillatory behavior.

σ s1 s2

∞ −1 0
10 −0.88 −0.11
4 −0.5 −0.5
2 −0.5 + 0.5i −0.5− 0.5i

If the time constant of the outer loop is ten times slower than the time constant of the
inner loop, the assumption of a timescale separation is fulfilled and a cascaded control
architecture is justified without the risk of oscillatory behavior being introduced.

In the next step, we experimentally investigate the time constant of the inner pressure
control loop. Since the pressure dynamics strongly depend on the available flow capacity
of the valves employed (see Section 3.3) the analysis is performed for different valve
flow capacities, where the flow capacity is limited to 50% or 25% of its nominal value in
software. The closed-loop pressure dynamics are identified from a series of pressure steps
in actuator A. Both positive and negative steps of magnitude 0.1 bar are considered in the
range between 1.0 bar and 1.5 bar. A linear first order model is identified based on this
data, which predicts the behavior relatively accurately. The magnitude of the frequency
response for the different flow capacities is shown in Figure 15. It can clearly be seen that
using valves with a sufficient flow capacity is crucial to ensure a sufficiently small time
constant of the closed loop pressure dynamics.

Figure 15. The identified closed-loop pressure dynamics for actuator A resulting from a series of
pressure steps. The red curve shows the magnitude of the frequency response when the full flow
capacity of the proportional valve is used (100%). The blue and green curves show the magnitude
when the flow capacity is limited to 50% and 25% of the nominal value, respectively. The black
dashed line indicates the −3 dB line. The cutoff frequencies decrease from 22.7 Hz for the red curve
to 2.9 Hz for the blue curve and 0.7 Hz for the green curve.

Next, we investigate the time constant of the arm dynamics. Therefore, we compute
the cutoff frequency (gain equal to −3 dB) of the complementary sensitivity function (16),
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for both α and β and different values of p̄, in the range of 1.0 bar to 1.2 bar. The resulting
cutoff frequencies lie in the range of 1.1 Hz to 1.7 Hz.

In comparison to the cutoff frequency of the closed-loop pressure dynamics (22.7 Hz
when using the full flow capacity of the valve), we can conclude that the cutoff frequencies
(and similarly the time constants) of the closed loop arm dynamics are separated by more
than a factor of ten. It follows from the behavior analyzed in Table 2 that no oscillatory
behavior is introduced by the cascaded control approach and a violation of the underlying
timescale separation assumption.

This section is concluded by an experimental evaluation of the feedback control
approach presented. Thereby, the ability to independently adjust the joint stiffness and to
control the position of the arm is validated. The same reference trajectory for α and β is
tracked for different levels of joint stiffness and for the case of a payload mass, attached or
not. The results are shown in Figure 16. The results indicate the ability of the controller to
adjust the joint stiffness and independently control the rotational degrees of freedom with
and without a payload mass attached. Furthermore, the results show that the dynamical
effects of changing joint stiffness or an attached payload mass are sufficiently compensated
by the controller proposed, leading to a similar angular response for the different cases
considered. However, a mismatch between true and commanded payload mass yields a
clearly degraded tracking performance as we expected. This emphasizes the importance of
systematically addressing the effect of an attached payload mass in the feedback controller
as a result of its strong influence on the dynamics.

5.3. Feed Forward Control

In this section, two feed forward compensations are presented to compensate for
known disturbances. A first feed forward component is added to compensate for gravita-
tional effects acting on β (see Figure 7),

∆pβ,g =
R0g
ηβ

(
M
2

+ m
)

cos(βSP), (21)

where ηβ is the conversion gain from pressure to torque (see (9)).
The second feed forward control action addresses a disturbance caused by a fast

change in p̄. In general, the lower stiffness level is changed sufficiently slowly, such that
any effect on the angles as described in Section 4.5 can be compensated by the feedback
controller. However, when p̄ is increased quickly to cause a longitudinal elongation for
grasping an object, the disturbance can not be rejected sufficiently quickly by the feedback
controller. Therefore, the following feed forward control action is applied based on the
model (12),

∆pα,l = λ
kα

ηα
cl αSP max( p̄− p̄min, 0)

∆pβ,l = λ
kβ

ηβ
cl βSP max( p̄− p̄min, 0),

(22)

where kα/ηα is the steady state conversion from angle to pressure setpoint (compare (11)).
The parameter λ is a gain tuned for best performance, with a value of λ = 1.3 yielding the
best results. The parameter, p̄min, is a lower bound for p̄ from when the feed forward action
is used. A comparison when p̄ is rapidly changed and the feed forward control action is
used or not used is shown in Figure 17. The proposed feed forward scheme reduces the
maximum error by a factor of two.
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Figure 16. The resulting tracking performance when relying on the feedback controller is shown in
the top plot for α and in the bottom plot for β. The black dashed lines denote the set point trajectories
and the colored lines the four cases investigated. Thereby, the following parameters are changed:
the attached payload mass, m, the value set for the payload mass in the controller, mc, and the
lower pressure level p̄. Normally, the two values for m and mc are identical, but for the sake of this
investigation, we also consider differing values. The red line shows the results when no payload
mass is attached and the joint stiffness is set to the lower level (p̄ = 1.05 bar) and the blue line shows
the case where a payload mass is attached and the joint stiffness is set to a low level. The green line
represents the case where a payload mass is attached and the joint stiffness is set to the high level
(p̄ = 1.10 bar). For all three cases, the controller had knowledge of the true payload mass attached
(mc = m), resulting in similar tracking performance for both α and β. The purple line indicates the
behavior when a payload mass is attached (m = 0.17 kg), but the controller assumes no payload
mass (mc = 0). The joint stiffness is set to the lower level for this case. Distinct oscillations are visible
for the last case, when considering β. As a consequence of the mismatch between the true mass and
the value commanded to the controller, the control performance is degraded. Additionally, note the
slight errors occurring in one angle, when commanding a change in the other angle and vice versa.
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Figure 17. The lower pressure level, p̄, as shown in the bottom plot, is rapidly increased to cause a
longitudinal elongation for grasping an object. The top and middle plots show a comparison of the
angles α and β when no feed forward (ff) control action is used (red curve) and when the proposed
feed forward strategy is employed (blue curve). Relying on the feed forward approach reduces the
maximum error in α from 7.1 deg to 3.5 deg and in β from 6.4 deg to 3.0 deg. In the case where no
feed forward control action is used, we purely rely on the feedback controller. Note that an increase
in p̄ causes the robotic arm to be deflected towards the origin and vice versa for a decrease in p̄.

6. Applications

In this section, we demonstrate two object manipulation applications with the soft
robotic arm. In the first example, a rubber ball is picked up at a known location and placed
at another know location. In the second example, the rubber ball is picked up from the
same initial location, but handed over to a human (for an example of a different object being
manipulated, we refer to [48]). Due to the feed forward strategy developed and discussed
in Section 5.3, the grasping of the object is possible without the application of the learning
control scheme that was required in [48] to reliably grasp an object and drop it into a box.
Here, the object being manipulated is a rubber ball with a diameter of 70 mm and a mass of
0.16 kg. The object is placed on a wooden platform with a circular cutout to hold it in place.
For both applications a flexible suction cup (FSGA 33 NK-45 G1/4-AG from Schmalz) is
used that has an additional bellow and can adapt to the object being manipulated. The
reader is referred to the video attachment for an illustration of the experiments conducted
(see Supplementary Video S1).

6.1. Pick and Place Application

The pick and place application consists of the following phases: First, the robotic arm
moves from the idle location to the known pickup location. The lower actuator pressure
level is temporarily increased to longitudinally elongate the movable link. Activating the
vacuum enables the robotic arm to grasp the object with the suction cup. Then, the robotic
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arm moves the object to the target location. Finally the object is placed by releasing the
vacuum and quickly activating the ejection impulse. Throughout the application, the mass
is assumed to be known, and is adjusted during the different phases of the application
depending on whether the robotic arm is in contact with the object or not. The significance
of this assumption could be reduced by using an average mass and detuning the controller
to robustly work with a wider range of payload masses. The controller gains are set to
κα = κβ = 0.9. The lower actuator pressure level is set to a constant value of 1.04 bar,
except when the robotic arm longitudinally extends to grasp the object. A visualization of
the application is provided in Figure 18. The robotic arm can reliably move the rubber ball
from the initial location to the target location. The longitudinal elongation of the arm, the
lifting and the placing of the ball cause a disturbance that the robotic arm is able to reject.

Figure 18. A visualization of the pick and place application: The top two plots show the angles α and
β and their setpoints, respectively. The arm starts from the idle position, (α, β) = (0°, 0°), and picks
up the object at the location, (−22°,−30.5°), moves it to the target location at (−32°,−38°), and then
moves back to the idle location (0°, 0°). The arm is raised in the positive β-direction between picking
the object and releasing it, to avoid interfering with the platforms where the object is picked from and
released to. Releasing the object causes an error in both angles due to the sudden change of mass. The
third plot shows the lower actuator pressure level, p̄, and the load mass assumed by the controller.
When the suction cup points towards the object, the lower actuator pressure level is increased to cause
a longitudinal elongation and pick up the object. The payload mass commanded to the controller is
continuously increased from the weight of the suction cup to the combined weight of suction cup
and manipulated object. When the object is released, the commanded mass is continuously decreased
back to the weight of the suction cup. The bottom plot shows the control inputs of the vacuum
generation unit. The red curve shows the vacuum input to generate a vacuum at the suction cup. It
is activated shortly before the suction cup touches the object to ensure a reliable picking procedure.
The blue curve shows the ejection impulse used to release the vacuum when placing the object.
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6.2. Collaborative Application with Human

In the second application, we demonstrate that the soft robotic arm can pick up an
object and hand it over to a human. Thereby, the safety aspect discussed in Section 2
becomes apparent as the collaborative application requires close contact between the robot
arm and the human. Once the robot arm has moved the object to the target location, it needs
to determine when it should hand the object over to the human. Therefore, a property of
the soft robotic arm is leveraged: The compliance of the joint allows the human to move the
object and thereby also the robotic arm that still grasps the rubber ball. Once the angular
error between the current robot position and its setpoint exceeds a predefined threshold, the
robot arm releases the object. The application is visualized in Figure 19. Both applications
can be conducted at an increased execution speed by applying the iterative learning control
scheme presented in [48]. This allows for compensation of repetitive disturbances arising
from aggressive movements and ensures accurate tracking performance. For the sake of
brevity, the learning control scheme is not presented here and the reader is referred to [48].
A visualization of the collaborative application with and without applying the learning
scheme is provided in the video attachment (see Supplementary Materials).

Figure 19. Visualization of the collaborative application where the robot picks up an object and hands
it over to a human: The top two plots show the angles α and β and their setpoints, respectively. The
third plot shows the lower actuator pressure level and the assumed payload mass. The bottom plot
indicates the control inputs of the vacuum generation unit. The arm starts from the idle position,
(α, β) = (0°, 0°), picks up the object at the initial location, (−22°,−30.5°), moves it to the final
position at (15°, 30°), and waits for the human interaction. The robot arm maintains the vacuum
as long as the object lies in the green region corresponds to an angular range of ±3° of the setpoint
in α or β, respectively. As soon as the human moves the object outside the green region (the time
instance is indicated by the vertical, dotted black line), the payload mass assumed by the controller is
adjusted, the vacuum is released and the ejection impulse is activated for 0.1 s to purge the vacuum.
A human interaction is only expected for t ≥ 10 s to exclude a triggering of the release condition due
to transient tracking errors.
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7. Conclusions

This article presents an inflatable robotic arm for object manipulation. The design is
motivated by a first principle safety analysis and realized by state-of-the-art manufacturing
techniques, leading to a robust and reliable system. The mechanical, pneumatic, and
electronic subsystems are discussed in detail. A property of the control allocation strategy
employed is discussed, along with its implication for the use of the valves. The cascaded
control architecture, which is commonly applied in soft robotics, relies on the assumption of
a timescale separation between the faster pressure dynamics and the slower arm dynamics.
The closed loop pressure dynamics are identified for different valve flow capacities and it is
shown that an insufficient valve flow capacity prevents a timescale separation, and can lead
to oscillatory behavior and a degradation of the overall control performance. The analysis
conducted presents a tool that can be applied during the design process of a pneumatically
actuated soft robot for determining the optimal valve size. First principles can be used to
estimate the closed loop pressure and arm dynamics and the resulting time constants.

A feed forward compensation scheme is derived that mitigates errors induced by a
short-term increase of all actuator pressures to cause a longitudinal elongation for grasping
an object. Two pick and place applications are realized with the causal feedback strategy.
Thereby, no learning control is required, as was the case in previous work. Compared
to [48], where the object was simply dropped into a box, a special focus lies on the placing
part of the application. In the first example, the object is placed at a known target location
and in the second example it is handed over to a human. Thereby, the compliance of the
soft robotic system is leveraged for detecting the interaction with the human and releasing
the object. A previously developed iterative learning control approach was applied and
the results are presented in the video attachment. This allows an increase in the execution
speed while maintaining sufficient tracking performance.

An interesting direction for future work is the extension of the modeling approach
presented to describe dynamic effects happening at slower timescales that are attributed
to the viscoelastic material behavior. Techniques from disturbance estimation could be
used to identify the current offsets, to compensate for them, and consequently to lower the
amount of integral control action required.

Although two applications could be realized with the system presented, the number of
degrees of freedom could be limiting for more complex applications. An idea to circumvent
this limitation would be to connect the inflatable robotic arm to a conventionally actuated
base (e.g., using electric motors). This would increase the number of degrees of freedom,
but also ensure that all parts sticking out from the base are soft and lightweight and,
therefore, preserve the safety considerations.

The interaction detection presented in this work is based on the compliance of the
robotic arm and a measured positional deviation. An interesting extension would be the
estimation of the interaction forces based on the model presented. This would also be
interesting to further improve the safety of the robotic arm by limiting the forces exerted.

Finally, there are many interesting applications beyond the scope of pick and place
applications that are subjects for future work. One example is joint object manipulation
together with a human, where the capability of adjusting the joint stiffness is promising.

Supplementary Materials: The following files are available online https://www.mdpi.com/article/
10.3390/act10110299/s1. S1: A Video of the experiments conducted. S2: The schematics of the custom
interface board. S3: The derivation of the control allocation strategy.
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Appendix A. System Identification

In this section, the plots of the system identification experiments performed in β-
direction are presented. The measured and fitted frequency response for Gβ(s, p̄, m) is
shown in Figure A1. The parameters of Gβ(s, p̄, m) as a function of p̄ and their correspond-
ing fits are shown in Figure A2.

Figure A1. The frequency response in β-direction for different lower pressure levels p̄ with the
magnitude in the top plot and the phase in the bottom plot. The measured frequency responses
resulting from the identification experiments are indicated by the crosses and the corresponding fits
by the solid lines.
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Figure A2. The parameters of the transfer function, Gβ(s, p̄, m), as a function of the lower pressure
level p̄. The red crosses indicate the parameter values from the identification experiments and the
black solid lines show the first or third order polynomial fits.
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