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Abstract: The aim of this study is to develop a new observer-based stabilization strategy for a class
of Lipschitz uncertain systems. This new strategy improves the performances of existing methods
and ensures better convergence conditions. Sliding window approach involves previous estimated
states and measurements in the observer and the control law structures which increase the number
of decision variables in the constraint to be solved and offers less restrictive Linear Matrix Inequality
(LMI) conditions. The established sufficient stability conditions are in the form of Bilinear Matrix
Inequality (BMI) which is solved in two steps. First, by using a slack variable technique and
an appropriate reformulation of the Young’s inequality. Second, by introducing a useful approach
to transform the obtained constraint to a more suitable one easily tractable by standard software
algorithms. A comparison with the standard case is provided to show the superiority of the proposed
H∞ observer-based controller which offers greater degree of freedom. The accuracy and the potential
of the proposed process are shown through real time implementation of the one-link flexible joint
robot to ARDUINO UNO R3 device and numerical comparison with some existing results.

Keywords: Lipschitz discrete-time systems; observer-based stabilization design; parametric uncer-
tainties; sliding window approach; ARDUINO UNO R3 device

1. Introduction
1.1. Background

In many industrial processes, developing a perfect model to the system dynamics
is crucial either to build a controller or to obtain real time information on the system for
surveillance. Sometimes, data errors, disconcerted parameters, environmental noise, dis-
turbances or even the age of the system can lead to modeling errors. These errors can cause
a deviation of the dynamics during surveillance or decision-making. In fact, the presence
of uncertainties leads to instability, divergence or degraded controller performance. There-
fore, robust uncertainty stabilization methods have been proposed to filter disturbances
and uncertainties and ensure a good degree of noise sensitivity, good performance and
robustness. Many remarkable methods have been synthesized: robust stabilization via
output feedback [1,2], H∞ control for systems with uncertain parameters [3,4] and Lipschitz
nonlinearities [5], finite-time control for one-sided Lipschitz nonlinear systems [6], interval
observers for global feedback control [7], feedback Stabilization with nonlinear output [8]
and adaptive sliding mode control with finite-time [9] and tracking problem [10].

The dynamic behavior of a process can be fully described by the evolution of its state vari-
ables. Thus, many industrial systems require the measurement of several physical variables
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in order to guarantee supervision or control while ensuring a minimum level of perfor-
mance [11,12]. However, it is very difficult, if not impossible, to measure all these variables
mainly for cost and/or technical reasons. A usual way of addressing this problem is to place
software sensors, or observers, which construct a reliable estimation to the whole system
dynamics from the available information on inputs, outputs and the dynamic model of the
process [13–15]. Observer design is part of estimation theory with applications, practically,
to all fields of engineering, as evidenced by the large number of published works in this
field [16,17]. Furthermore, many researchers focus on the observer-based controller design for
nonlinear continuous or discrete-time systems. Interesting results are presented in [5,18,19].
In [18], for example, a two steps methodology for computing the observer and controller
gains for Lipschitz systems is presented in the form of LMI conditions. In [19], a unique
optimization problem, based on the diagonal Lyapunov matrix, is necessary to calculate
both the observer gain and the controller gain. Recently, an interesting publication of [5]
presents a useful scheme consisting on the use of a symmetric Lyapunov function to design
robust observer-based stabilization for nonlinear systems. A slack variable technique inspired
from [20] and the Young’s inequality allow to handle the difficulty of Non-deterministic
Polynomial-time hard (NP-hard) nature of the problem. All these interesting results use only
the last available state and measurement to synthesis the observer/controller gains.

This work is motivated by recent results on observer design [21,22], and the idea
here is to synthesize a new observer-based control methodology for a class of Lipschitz
discrete-time systems in the presence of bounded disturbances and parametric uncertain-
ties. By simply using a sliding window of measurements in a Luenberger observer and
a sliding window of delayed states in the controller, additional decisions variables can be
introduced and thus the optimization problem is strengthened. Contrary to conventional
approaches that consider only the last available measurement for the observer and the last
available state estimate for the controller [5], adding a defined number of previous states
and measurements in the observer and controller structures improves the disturbance
rejection and allows promoting the robustness of the designed observer-based control. In
order to add more degree of freedom in the optimization problem and obtain less conser-
vative LMI conditions, a slack variable technique [20] with a reformulation of the Young’s
inequality [23] are used. In order to highlight the contribution proposed in this paper, the
improvements are summarized as follows with respect to existing results:

• The problem of using previous measurements in the observer structure and estimated
states in the control law, in presence of modeling uncertainties, has not been tackled
before. For example, the Kalman filter uses the previous measurements with a single
regression step (r = 1) but what is proposed in this paper is to solve an estimation-
control problem in dual form (a single resolution step from LMI) with sliding windows
of estimated states and measurements (r > 1).

• The sliding window approach allows to introduce additional decision variables to the
convex problem which add more degree of freedom.

• The proposed linear constraint allows to compute the controller and the observation
gains in dual form (only one resolution step) contrary to the approaches in [18,20,24].

• A more optimal use and introduction of Young’s inequality will be proposed other
than the classical ones [5]. This will increase the degree of freedom when synthesizing
a robust control law as well as the treatment of less conservative LMIs.

• A technique for handling and transforming BMI constraints into LMI is used. This
technique is based on the inclusion of a “Slack-Variable”. This subsequently makes it
possible to eliminate the difficulty of calculating or optimizing bilinear terms.

The outline of the paper is organized as follows. Some useful notations and prelim-
inaries are presented in the next part of this section. Section 2 introduces the problem
formulation. In Section 3, the synthesis procedure of the robust sliding window observer-
based controller is detailed and a particular solution is proposed to overcome the problem
of BMI. Section 4 presents a comparison with the standard case and a discussion on the
enhancement of the main approach of this paper is given. In Section 5, experimental
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results are provided. They confirm the high quality of stabilization offered by the proposed
approach through a real-time implementation based on ARDUINO UNO R3 board that is
used as an Digital Signal Processing (DSP) emulator through target mode (Hardware In
the Loop). Finally, concluding remarks can be found in Section 6.

1.2. Notation

The following notation will be used throughout this paper:

• In a matrix, the notation (?) represents the blocks induced by symmetry.
• ep(i) represents a vector of the canonical basis of Rp, where

ep(i) =

 ith

0, . . . , 0,
︷︸︸︷

1 , 0, . . . , 0︸ ︷︷ ︸
p− components

T

∈ Rp, p > 1.

• ‖Z‖ =
√

ZTZ is the Euclidean vector norm.
• ZT is the transposed matrix of Z.
• Ip represents the identity matrix of dimension p.
• Z is a square matrix. The notation Z > 0 (Z < 0) means that Z is positive definite

(negative definite).
• The l2 norm of the vector Z ∈ Rp is given by ‖ Z ‖lp

2
and is defined as ‖ Z ‖lp

2
=√

∞
∑

k=0
‖ Zk ‖2.

1.3. Preliminaries

Lemma 1 ([23]). Consider a nonlinear function g : Rn → Rn, the following two items are equiva-
lent:

• g is globally Lipschitz with respect to its argument, i.e.,

‖ g(a)− g(b) ‖6 γg ‖ a− b ‖, ∀ a, b ∈ Rn. (1)

• there exist constants gij and gij so that for all ∀ a, b ∈ Rn there exist zi ∈ Co(a, b), zi 6= a,
zi 6= b and functions gij : Rn × Rn −→ R satisfying the following equality:

g(a)− g(b) =
q,n

∑
i,j=1

gij(zi)Hij(a− b) (2)

and gij 6 gij(zi) 6 gij where gij(zi) =
∂gi
∂xj

(zi) and Hij = eq(i)eT
n (j).

Lemma 2 ([23]). Let X and Y be two matrices of appropriate dimensions. For any symmetric
positive definite matrix S of appropriate dimension, the following variant of Young’s relation holds:

XTY + YTX 6
1
2
(X + SY)TS−1(X + SY) (3)

It can be seen that only half of XTY +YTX is majored. This result adds more degree of freedom
and provides a more general and relaxed LMI conditions as detailed in [23].

Lemma 3 ([25]). Consider three matrices X, Y and S of appropriate dimensions with STS ≤ I.
Then, ∀ η > 0, the following inequality holds:

XSY + YTSTXT ≤ ηXXT +
1
η

YTY (4)
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2. Problem Formulation

Consider the following class of nonlinear uncertain systems:{
x(k + 1) =

(
A + ∆A(k)

)
x(k) + Bu(k) + Dg

(
x(k)

)
+ E1ω(k)

y(k) =
(
C + ∆C(k)

)
x(k) + E2ω(k)

(5)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp and ω(k) ∈ Rs are the state, the input, the output
and the disturbance vectors, respectively. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rn×p,
E1 ∈ Rn×s and E2 ∈ Rp×s are constant matrices. g : Rn → Rq is a Lipschitz nonlinear
vector. ∆A(k) and ∆C(k) are unknown matrices representing time-varying parameter
uncertainties with

∆A(k) = M1F(k)N1 (6a)

∆C(k) = M2F(k)N2 (6b)

where the unknown matrix F(k) satisfies the following condition:

F(k)T F(k) ≤ I. (7)

For the system (5), we consider the following sliding measurement window observer:

x̂(k + 1) = Ax̂(k) + Bu(k) + Dg
(

x̂(k)
)
+ L


y(k)− Cx̂(k)

y(k− 1)− Cx̂(k− 1)
...

y(k− r + 1)− Cx̂(k− r + 1)

 (8)

where r, L and x̂(k) represent, respectively, the number of the considered measurements,
the global observer gain matrix and the state estimate.

To include the sliding window of measurements, Equation (5) can be rewritten until
the following form:

z(k + 1) =
(
A+ ∆A(k)

)
z(k) + Bu(k) +Dg

(
ITz(k)

)
+ E1ν(k) (9)

with

z(k) =


x(k)

x(k− 1)
...

x(k− r + 1)

, ν(k) =


ω(k)

ω(k− 1)
...

ω(k− r + 1)

, A =



A 0 · · · · · · 0
In 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 In 0

,

∆A(k) =


∆A(k) 0 · · · 0

0 0 · · · 0
...

. . . . . .
...

0 · · · 0 0

 =M1F(k)N1,M1 =


M1
0
...
0

, N1 =
(

N1 0 · · · 0
)
,

B =


B
0
...
0

, D =


D
0
...
0

, I =


In
0
...
0

 and E1 =


E1 0 · · · 0
0 0 · · · 0
...

. . . . . .
...

0 · · · 0 0

.

The new reformulation of the sliding window observer (8) is as follows:

ẑ(k + 1) = Aẑ(k) + Bu(k) +Dg
(
IT ẑ(k)

)
+ ILCζ(k) + IL∆C(k)z(k) + ILE2ν(k) (10)
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where

ζ(k) = z(k)− ẑ(k), L =
(

L1 L2 · · · Lr
)
,

∆C(k) = block-diag

 r times︷ ︸︸ ︷
∆C(k), . . . , ∆C(k)

 =M2F (k)N2,

F (k) = block-diag
(

F(k), . . . , F(k− r + 1)
)
,M2 = block-diag

 r times︷ ︸︸ ︷
M2, . . . , M2

,

C = block-diag

 r times︷ ︸︸ ︷
C, . . . , C

, N2 = block-diag

 r times︷ ︸︸ ︷
N2, . . . , N2

 and

E2 = block-diag

 r times︷ ︸︸ ︷
E2, . . . , E2

.

The considered observer is coupled with the following state estimate feedback con-
troller:

u(k) =
r

∑
i=1

Ki x̂(k− i + 1) (11)

The controller (11) can be rewritten as follows:

u(k) = Kẑ(k) , K =
(
K1 K2 · · · Kr

)
(12)

The observer gain L and the control gain K are unknown matrices to be determined
such that the closed-loop system is asymptotically stable and satisfies theH∞ criterion.

Define ζ(k) = z(k)− ẑ(k), the error between z(k) and its estimate. The dynamic of the
estimation error ζ(k + 1) = z(k + 1)− ẑ(k + 1) is given by

ζ(k + 1) =
(
∆A(k)− IL∆C(k)

)
z(k) + (A− ILC)ζ(k) +D

(
g
(
ITz(k)

)
− g
(
IT ẑ(k)

))
+ (E1 − ILE2)ν(k).

(13)

Using Equations (12), the closed-loop system can be rewritten as follows:

z(k + 1) =
(
A+ ∆A(k) + BK

)
z(k)−BKζ(k) +Dg

(
ITz(k)

)
+ E1ν(k) (14)

Then, using the fact that g(.) is a Lipschitz vector and applying Lemma 1, we obtain

g
(
ITz(k)

)
=

q,n

∑
i,j=1

ϕijHijITz(k) (15a)

g
(
ITz(k)

)
− g
(
IT ẑk

)
=

q,n

∑
i,j=1

φijHijITζk (15b)

with g
ij
6 ϕij 6 gij, g

ij
6 φij 6 gij and Hij = eq(i)eT

n (j).

Using Equations (13)–(15b), an augmented global system can be defined as follows:

z̃(k + 1) =
(
Ã+ Ξ(Θ)

)
z̃(k) + Ẽν(k) (16)

with ẼT =
(
ET

1 (E1 − ILE2)
T), z̃(k) =

(
z(k)
ζ(k)

)
, Ã =

(
A+ ∆A(k) + BK −BK
∆A(k)− IL∆C(k) A− ILC

)
and Ξ(Θ) = block-diag

(
D

q,n
∑

i,j=1
ϕijHijIT ,D

q,n
∑

i,j=1
φijHijIT).
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The parameter Θ belongs to the bounded convex setHqn for which the set of vertices
is defined by

VHqn = {ϕ, φ ∈ Rq×n and ϕij, φij ∈ {gij
, gij}}. (17)

In the rest of the paper, the following notations will be used: Ξ1(Θ) =
q,n
∑

i,j=1
ϕijHij and

Ξ2(Θ) =
q,n
∑

i,j=1
φij Hij.

3. New Sliding Window Observer-Based Controller Design Methodology

This section presents the synthesis of the proposed observer-based controller approach.
New enhanced stability conditions are detailed.

3.1. Stability Analysis

The main result of this article is proposed in the following corollary. The presented
result is in the form of BMI. The linearization and the transformation of this constraint into
a convex problem is detailed in the next section.

Corollary 1. For a disturbance attenuation level λ > 0, the robustH∞ observer-based controller
design problem corresponding to the system (5), the observer (8) and the state feedback controller
(11) is solvable if there exist positive scalars η1, η2 and η3, and matrices P̂1, P2, P̂3, Q̂1 > 0,
Q2 ∈ Rnr×nr, L ∈ Rn×pr and K ∈ Rm×nr such that the following BMI is feasible:

min λ subject to



Π



0 0 0 0 0
Q2M1 Q2ILM2 0 0 0

0 0 Q̂1N T
1 Q̂1N T

1 Q̂1N T
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(?)



− 1
η2

I 0 0 0 0

(?) − 1
η3

I 0 0 0

(?) (?) −η1 I 0 0
(?) (?) (?) −η2 I 0
(?) (?) (?) (?) −η3 I





< 0
(18)

with
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Π =



Π11 P̂3 Π13 0 E1 −BKQ̂T
1

(?) Π22 0 Π24 Π25 0
(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) Π44 0 In×r

(?) (?) (?) (?) −λ2

r
Is×r 0

(?) (?) (?) (?) (?) −1
2

Q̂1


Π11 = P̂1 − Q̂1 − Q̂T

1 + η1M1MT
1

Π13 =
(
A+DΞ1(Θ)IT + BK

)
Q̂T

1
Π22 = P2 −Q2 −QT

2
Π24 = Q2

(
A+DΞ2(Θ)IT − ILC

)
Π25 = Q2(E1 − ILE2)
Π44 = −P2 + IGTGIT

Θ ∈ VHqn .

Proof. In order to ensure the asymptotic stability of the closed loop system by the proposed
H∞ observer-based controller, the observer gain L and the controller gain K must satisfy
the followingH∞ criterion:

‖G
(
x− x̂

)
‖l2 ≤ λ‖ω‖l2 (19)

where G is a known matrix and λ > 0 is the disturbance attenuation level that will be
minimized. Therefore, we must look for a Lyapunov function V(k) such that

∆V(k) + z̃(k)T ĨGĨT z̃(k)− λ2

r
νT(k)ν(k) < 0. (20)

with x(k) = ITz(k), x̂(k) = IT ẑ(k), ˜I =block-diag(I , I) and G = block-diag
(
0, GTG

)
.

Let us consider the following candidate Lyapunov function:

V(k) = z̃T(k)Pz̃(k) (21)

where P = PT > 0 is the matrix of Lyapunov.
The choice of the structure of the Lyapunov P matrix is influenced by the difficulty

of the problem to be solved. One of the most used structures to solve the problem of
observer-based controller is P = block-diag(P1, P2). This particular structure allows to
simplify the calculation by eliminating some couplings between the observer and controller
gains. However, the resulting LMI remains conservative. To improve the existing results,
a non-diagonal Lyapunov matrix is used in this contribution in order to get a more relaxed
LMI conditions. Then, we propose the following structure for the matrix P:

P =

(
P1 P3
PT

3 P2

)
. (22)

Define ∆V(k) = V(k + 1)−V(k). Then, the inequality (20) is equivalent to

(
z̃(k)
ν(k)

)T
(Ã+ Ξ(Θ)

)T P
(
Ã+ Ξ(Θ)

)
− P + ĨGĨT (

Ã+ Ξ(Θ)
)T PẼ

(?) ẼT PẼ − λ2

r
Is×r

(z̃(k)
ν(k)

)
< 0. (23)

Note that the inequality (23) is satisfied if(Ã+ Ξ(Θ)
)T P

(
Ã+ Ξ(Θ)

)
− P + ĨGĨT (

Ã+ Ξ(Θ)
)T PẼ

(?) ẼT PẼ − λ2

r
Is×r

 < 0 (24)
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which is equivalent, using Schur’s lemma, to
−P−1 Ã+ Ξ(Θ) Ẽ
(?) −P + ĨGĨT 0

(?) (?) −λ2

r
Is×r

 < 0. (25)

The inequality (25) is still unresolved due to its bilinear nature caused by the existence
of the unknown matrix P and its inverse P−1. The next step consists to propose a new
approach to overcome this major obstacle using an LMI approach based on a judicious
use of Young’s reformulation. Thus, we obtain sufficient and less conservative conditions
ensuring the stability of the closed-loop system.

As the variables P and P−1 are interdependent, they should not exist simultaneously
in the same constraint. To eliminate the P−1 matrix, the idea is to introduce a slack variable
Q of appropriate dimensions and to pre-multiply (25) by the matrix block-diag(Q, I, I) and
post-multiply it by the block-diag(QT , I, I) matrix. Then, using the inequality−QP−1QTT ≤
P−Q−QT , the inequality (25) is then equivalent to

P−Q−QT Q
(
Ã+ Ξ(Θ)

)
QẼ

(?) −P + ĨGĨT 0

(?) (?) −λ2

r
Is×r

 < 0. (26)

Let us consider the following structure of the matrix Q:

Q =

(
Q1 Q3
Q4 Q2

)
. (27)

Using (22) and (27), the inequality (26) can be written as follows:



P1 −Q1 −QT
1 P2 −Q3 −QT

4 Π13 Π14 Q1E1 + Q3(E1 − ILE2)

(?) P2 −Q2 −QT
2 Π23 Π24 Q4E1 + Q2(E1 − ILE2)

(?) (?) −P1 −P3 0
(?) (?) (?) −P2 + IGTGIT 0

(?) (?) (?) (?) −λ2

r
Is×r


< 0 (28)

with

Π13 = Q1
(
A+ ∆A(k) + BK+DΞ1(Θ)IT)+ Q3

(
∆A(k)− IL∆C(k)

)
Π14 = −Q1BK+ Q3

(
A− ILC +DΞ2(Θ)IT)

Π23 = Q4
(
A+ ∆A(k) + BK+DΞ1(Θ)IT)+ Q2

(
∆A(k)− IL∆C(k)

)
Π24 = −Q4BK+ Q2

(
A− ILC +DΞ2(Θ)IT).

Note here that while the gain L is coupled with Q3 and Q2, the gain K is coupled
with Q1 and Q4. To overcome this problem, we can choose Q3 = Q4 = 0. Then, we get the
following structure of the matrix Q:

Q = block-diag(Q1, Q2). (29)
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Through pre-multiplying and post-multiplying (28) by block-diag(Q̂1, I, Q̂1, I, I) and
block-diag(Q̂T

1 , I, Q̂T
1 , I, I) with Q̂1 = Q−1

1 and using the notations P̂3 = Q̂1P3, P̂1 = Q̂1P1Q̂T
1 ,

we get the following inequality:
P1 −Q1 −QT

1 P̂3 Π13 −BK E1
(?) P2 −Q2 −QT

2 Π23 Π24 Q2(E1 − ILE2)
(?) (?) −P̂1 −P̂3 0
(?) (?) (?) −P2 + IGTGIT 0

(?) (?) (?) (?) −λ2

r
Is×r

 < 0 (30)

with Π13 =
(
A+ ∆A(k) + BK+DΞ1(Θ)IT)Q̂T

1
Π23 = Q2(∆A(k)− IL∆C(k))Q̂T

1
Π24 = Q2

(
A− ILC +DΞ2(Θ)IT). .

In inequality (30), we can notice that the matrix gain K is coupled with the matrix Q̂T
1

in the term Π13, and not in Π14. Therefore, the idea consists in coupling the gain K, in Π14,
with the matrix Q̂T

1 . The inequality (30) can be written as follows:
P̂1 − Q̂1 − Q̂T

1 P̂3 Π13 0 E1
(?) P2 −Q2 −QT

2 Π23 Π24 Q2(E1 − ILE2)
(?) (?) −P̂1 −P̂3 0
(?) (?) (?) −P2 + IGTGIT 0

(?) (?) (?) (?) −λ2

r
Is×r



+


0
0
0

In×r
0


︸ ︷︷ ︸

XT

(
−(BK)T 0 0 0 0

)︸ ︷︷ ︸
Y

+YTX < 0.

(31)

Researches usually use the standard young’s inequality to couple the controller gain
with the Lyapunov matrix or the slack variable. In this contribution, we will use the
reformulation of Young’s lemma [23]. In fact, this way to introduce the Young’s relation
allows to have more degrees of freedom. Thus, by applying Lemma 2 on (31) with S = Q̂1
(in this case the matrix Q̂1 must be a symmetric positive matrix), the following inequality
is obtained:



P̂1 − Q̂1 − Q̂T
1 P̂3 Π13 0 E1 −BKQ̂T

1
(?) P2 −Q2 −QT

2 Π23 Π24 Q2(E1 − ILE2) 0
(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) IGTGIT − P2 0 In×r

(?) (?) (?) (?) −λ2

r
Is×r 0

(?) (?) (?) (?) (?) −1
2

Q̂1


< 0 (32)
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Using Lemma 3 and Equations (6), we obtain

P̂1 − Q̂1 − Q̂T
1 P̂3 Π13 0 E1 −BKQ̂T

1
(?) P2 −Q2 −QT

2 0 Π24 Q2(E1 − ILE2) 0
(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) IGTGIT − P2 0 In×r

(?) (?) (?) (?) −λ2

r
Is×r 0

(?) (?) (?) (?) (?) −1
2

Q̂1


+η1X1XT

1 +
1
η1

YT
1 Y1 + η2X2XT

2 +
1
η2

YT
1 Y1 + η3X3XT

3 +
1
η3

YT
2 Y2 < 0

(33)

with

Π13 =
(
A+ BK+DΞ1(Θ)IT)Q̂T

1
X1 =

(
MT

1 0 0 0 0 0
)T

X2 =
(
0 MT

1 QT
2 0 0 0 0

)T

X3 =
(
0 MT

2LTITQT
2 0 0 0 0

)T

Y1 =
(
0 0 N1Q̂T

1 0 0 0
)

Y2 =
(
0 0 N2Q̂T

1 0 0 0
)
.

Thus, by applying Schur’s lemma, we obtain the constraint (18). This ends the proof
of Corollary 1.

3.2. Converting BMI into LMI

To linearize the BMI given by (18), a change of variables for the terms coupled with
the control gain K is defined:

K̂ = KQ̂T
1 . (34)

However, a simple change of variables cannot be applied for terms coupled with the
observer’s gain L due to the presence of the matrix I . Therefore, a particular form of the
matrix Q2 is proposed to linearize the BMI (18):

Q2 =



Q11
2 α1Q11

2 · · · · · · α1Q11
2

β1Q11
2 Q22

2 α2Q22
2 · · · α2Q22

2
... β2Q22

2
. . . . . .

...
...

...
. . . . . . αr−1Qr−1,r−1

2
β1Q11

2 β2Q22
2 · · · βr−1Qr−1,r−1

2 Qrr
2


(35)

with 0 ≤ αi < 1 and 0 ≤ βi < 1 for i ∈ {1, · · · , r− 1}.
Thereafter, we can define the following changes of variables:

L̂i = Q11
2 Li, for i ∈ {1, · · · , r} (36)

Then, the BMI (18) is transformed into a convex problem.
After the resolution of the obtained LMIs problem, the observer and the controller

gains can be computed through the following equations:

K = K̂Q̂−T
1 (37a)

Li = (Q11
2 )−1 L̂i, for i ∈ {1, · · · , r} (37b)

Remark 1. The feasibility of the LMI procedure is raised when choosing 0 ≤ αi < 1 and
0 ≤ βi < 1. This choice is established through numerical evaluation on many examples.

Remark 2. Note that the inequality (18) can be transformed into LMI using (35), if we set a priori
η2, η3, αi and βi for i ∈ {1, · · · , r− 1}. αi and βi, for i ∈ {1, · · · , r− 1} can be fixed by assigning
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uniform subdivisions of the interval (0, 1). To fix the values of η2 and η3, we can use the gridding

method or we can linearize (18) against η2 and η3 using the inequality
−1
η2

I ≤ −(2− η2)I and

−1
η3

I ≤ −(2− η3)I.

4. Discussion on the Enhancement
4.1. Standard Approach

In the standard case with only one measurement, the classic structure of the Luen-
berger observer is used:

x̂(k + 1) = Ax̂(k) + Bu(k) + Dg
(
x̂(k)

)
+ L

(
y(k)− Cx̂(k)

)
(38)

coupled with the following control law:

u(k) = Kx̂(k). (39)

The estimation error is given by

e(k) = x(k)− x̂(k) (40)

The dynamic of the estimation error is described below,

e(k + 1) =
(
∆A(k)− L∆C(k)

)
x(k) + (A− LC)e(k) + D

(
g
(
x(k)

)
− g
(
x̂(k)

))
+(E1 − LE2)ω(k).

(41)

The augmented closed-loop system has the following form:

x̃(k + 1) =
(

Ã + Ξ∗(Θ)
)
x̃(k) + Ẽω(k) (42)

with

x̄(k) =
(

x(k)
e(k)

)
, Ã =

(
A + ∆A(k) + BK −BK
∆A(k)− L∆C(k) A− LC

)
,

Ξ∗(Θ) = block-diag

(
D

p,n
∑

i,j=1
ϕijHij, D

p,n
∑

i,j=1
φijHij

)
and ĒT =

(
ET

1 (E1 − LE2)
T).

The aim is to find the controller gain K and the observer gain L such that the closed-
loop system (42) is asymptotically stable and theH∞ criterion (19) is guaranteed. Therefore,
the problem ofH∞ consists to solve the following inequality:

∆V(k) + x̄(k)TGx̄(k)− λ2ωT(k)ω(k) < 0 (43)

with ∆V(k) = V(k + 1)−V(k) and V(k) = eT(k)Pe(k).
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By following the same steps described in the previous paragraph, we can find the
following inequality:

Π∗



0 0 0 0 0
Q2M1 Q2LM2 0 0 0

0 0 Q̂1NT
1 Q̂1NT

1 Q̂1NT
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(?)



− 1
η2

I 0 0 0 0

(?) − 1
η3

I 0 0 0

(?) (?) −η1 I 0 0
(?) (?) (?) −η2 I 0
(?) (?) (?) (?) −η3 I





< 0 (44)

with

Π∗ =



Π∗11 P̂3 Π∗13 0 E1 −BKQ̂T
1

(?) Π∗22 0 Π∗24 Π∗25 0
(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) Π∗44 0 In
(?) (?) (?) (?) −λ2 Is 0

(?) (?) (?) (?) (?) −1
2

Q̂1


Π∗11 = P̂1 − Q̂1 − Q̂T

1 + η1M1MT
1 Π∗22 = P2 −Q2 −QT

2
Π∗13 =

(
A + DΞ1(Θ)

)
Q̂T

1 + BKQ̂T
1

Π∗25 = Q2E1 −Q2LE2
Π∗24 = Q2

(
A + DΞ2(Θ)

)
−Q2LC

Π∗44 = −P2 + GTG.

In this case, an LMI is obtained using simple changes of variables K̂ = KQ̂T
1 and

L̂ = Q2L.

4.2. Comparison from LMI Feasibility Point of View

In order to compare the sliding window approach with the standard one, we consider
the simple case where r = 2 (two measurements) with

A =

(
A 0
In 0

)
,M1 =

(
M1
0

)
, N1 =

(
N1 0

)
, B =

(
B
0

)
, D =

(
D
0

)
, I =

(
In
0

)
,

E1 =

(
E1 0
0 0

)
, C =

(
C 0
0 C

)
, E2 =

(
E2 0
0 E2

)
,M2 =

(
M2 0
0 M2

)
, N2 =

(
N2 0
0 N2

)
,

P̂1 =

(
P̂11

1 P̂12
1

P̂12T

1 P̂22
1

)
, P2 =

(
P11

2 P12
2

P12T

2 P22
2

)
, P̂3 =

(
P̂11

3 P̂12
3

P̂21
3 P̂22

3

)
, Q̂1 =

(
Q̂11

1 Q̂12
1

Q̂12T

1 Q̂22
1

)
,

Q2 =

(
Q11

2 Q12
2

Q21
2 Q22

2

)
, L =

(
L1 L2

)
and K =

(
K1 K2

)
.
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Then, the constraint (18) is equivalent to



Π11 P̂3 Π13 0 E1 Π16
(?) Π22 0 Π24 Π25 0
(?) (?) −P̂1 −P̂3 0 0
(?) (?) (?) Π44 0 In
(?) (?) (?) (?) Π55 0

(?) (?) (?) (?) (?) −1
2

Q̂1





0 0 0 0 0
Ω21 Ω22 0 0 0

0 0 Ω33 Ω33 Ω35
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(?)



−1
η2

I 0 0 0 0

(?)
−1
η3

I 0 0 0

(?) (?) −η1 I 0 0
(?) (?) (?) −η2 I 0
(?) (?) (?) (?) −η3 I





< 0 (45)

with

Π11 =

(
P̂11

1 − Q̂11
1 − Q̂11T

1 + η1M1MT
1 P̂12

1 − 2Q̂12
1

(?) P̂22
1 − Q̂22

1 − Q̂22T

1

)
Π13 =

((
A + DΞ1(Θ) + BK1

)
Q̂11T

1 + BK2Q̂12T

1 (A + DΞ1(Θ) + BK1)Q̂12
1 + BK2Q̂22T

1
Q̂11T

1 Q̂12
1

)
Π16 =

(
−BK1Q̂11T

1 − BK2Q̂12T

1 −BK1Q̂12
1 − BK2Q̂22T

1
0 0

)

Π22 =

(
P11

2 −Q11
2 −Q11T

2 P12
2 −Q12

2 −Q21T

2
(?) P22

2 −Q22
2 −Q22T

2

)
Π24 =

(
Q11

2
(

A + DΞ2(Θ)− L1C
)
+ Q12

2 −Q11
2 L2C

Q21
2
(

A + DΞ2(Θ)− L1C
)
+ Q22

2 −Q21
2 L2C

)
Π25 =

(
Q11

2 (E1 − L1E2) −Q11
2 L2E2

Q21
2 (E1 − L1E2) −Q21

2 L2E2

)
Π44 =

(
GTG− P11

2 −P12
2

−P12T

2 −P22
2

)
Π55 = −λ2

r
Is×r,

Ω21 =

(
Q11

2 M1
Q21

2 M1

)
Ω22 =

(
Q11

2 L1M2 Q11
2 L2M2

Q21
2 L1M2 Q21

2 L2M2

)
Ω33 =

(
Q̂11

1 NT
1

Q̂12T

1 NT
1

)

Ω35 =

(
Q̂11

1 NT
2 Q̂12

1 NT
2

Q̂12T

1 NT
2 Q̂22

1 NT
2

)
.

If we consider the following particular solution of (18):

P̂1 =

(
P̂11

1 0
0 P̂22

1

)
, P̂3 =

(
P̂11

3 0
0 P̂22

3

)
, P2 =

(
P11

2 0
0 P22

2

)
, Q̂1 =

(
Q̂11

1 0
0 Q̂22

1

)
,

Q2 =

(
Q11

2 0
0 Q22

2

)
, K =

(
K1 0

)
and L =

(
L1 0

)
.

It is clear that all the solutions of (44) are thus included in the set of solutions of (18)
(where L1 = L and K1 = K). Then, the following conclusion can be made: even with two
measurements, the suggestedH∞ sliding window control approach offers less restrictive
synthesis conditions than the standard method.
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4.3. Comparison from Computational Complexity Point of View

Two types of complexity issues are commented in this section: complexity of real-time
implementation and the resolution complexity of LMIs.

4.3.1. Real-Time Application: Feasibility and Complexity

For the proposed sliding window design methodology and the standard Luenberger
technique, the computational complexity remains the same. In fact, for all k > 1, the gains
remain constant because they are calculated offline. Then, there are no additional complexity
for real-time applications once these gains are returned by the Matlab LMI Toolbox.

4.3.2. Computational Complexity in Solving the LMIs

This kind of complexity is different from the above one. It is not related to real-time
implementation. Indeed, the provided LMIs can be solved with any available MATLAB
LMI-Solvers. Different numerical solvers exist and all of them use the ‘interior point
optimization method’ to return solutions. From a complexity point of view, the well known
‘interior point algorithm’ is a polynomial algorithm (not a NP algorithm: Non-deterministic
Polynomial time). When this algorithm is applied to a linear convex problem like the case
of LMIs, it gives results in polynomial time.

Using the standard or the sliding window approach, we always have only one LMI to
resolve taking into account the conditions on the decision variables (P̂1 > 0, P2 > 0 and
Q̂1 > 0). However, we do not have the same number of decision variables, and therefore
inequalities do not have the same dimensions. There are seven decision variables in the
standard case (P̂1, P2, P̂3, Q̂1, Q2, K̂ = KQ̂T

1 and L̂ = Q2L) and 5 + 2r decision variables
in the sliding window case (P̂1, P2, P̂3, Q̂1, K̂, Qii

2 , and L̂i for i ∈ {1, · · · , r}). Therefore,
depending on the number of measurements taken into account for the observer’s synthesis,
we have 2r more variables than the standard case. Hence, in our case, the computational
complexity is not significantly affected due to the the nature of the ‘interior point algorithm’.
Running time algorithm remains insignificant even with the addition of decision variables
leading to more iterations before returning solutions.

5. Simulation and Experimental Results

In order to validate the approach presented in this paper, two examples are considered.
The obtained results attest the effectiveness and the superiority of the proposed observer-
based controller.

5.1. Example 1

Let us consider the example of the flexible joint robot studied in [26]. By adding
a noise and parametric uncertainties to the state and the output vectors, the robot can be
described by the state model (5) with

A =


1 T 0 0

−48.6T 1− 1.25T 48.6T 0
0 0 1 T

19.5T 0 −19.5T 1

, B =


0

21.6T
0
0

, D =


0
0
0
1

, E1 =


T
0
T
T

,

C =

(
1 0 0 0
0 1 0 0

)
, E2 =

(
0.01
0.01

)
, M1 =


0.01
0.01
0.01
0.01

, NT
1 =


0.01
0.01
0.01
0.01

, M2 =

(
0.01
0.01

)
,

NT
2 =


0.1
0.1
0.1
0.1

, F(k) = e−k, T = 0.01s, G = 0.1I4 and g
(

x(k)
)
= −3.33T sin

(
x3(k)

)
.

g
(

x(k)
)

satisfies Lemma 1 with VH14 = { ± 3.33T }.
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5.1.1. Simulation Results

By solving the LMIs given by the proposed approach, we obtain the following results
with r = 2: λmin = 0.2487,

L1 =


0.9625 0.0382
−1.7523 1.7563
0.0104 0.9929
−6.1492 7.1714

, L2 =


−0.0019 0.0023
−0.0391 0.0626
−0.0243 0.0375
−0.1845 0.2785

,

K1 =
(
−27.1140 −2.1521 11.3408 −6.7691

)
,

K2 =
(
−0.1132 −0.1132 −0.1132 −0.1133

)
.

5.1.2. Experimental Results

In order to validate the proposed approach presented in this paper, a real-time imple-
mentation using ARDUINO UNO R3 board as a real-time emulator (hardware-in-the-loop),
that is used as an Digital Signal Processing (DSP) emulator through target mode, is presented.

Note. All technical implementation details are explained in [8,22].
The diagram illustrating the implementation is given by Figure 1.

Figure 1. Block diagram of real-time implementation.

Figures 2 and 3 present, respectively, the trajectories of the real state and its estimate
and the control signal u(k) using the sliding window approach (r = 2). The uncertainties
F(k) are multiplied by a randomly variable gain Γ between 0 and 5 introduced through
the analog port of the Arduino board. For Figure 2a, the added noise is a sinusoidal signal
variable in amplitudes ±3.8 V and frequency-modulated (330–520 Hz). For Figure 2b, we
use the same noise as in Figure 2a injected in two random intervals. For Figure 2c, the
added noise is a sinusoidal signal variable in amplitudes ±2.5 V and frequency-modulated
(120–300 Hz). For Figure 2d, we inject a sinusoidal signal variable in amplitudes ±3 V and
frequency-modulated (500–700 Hz) in two random intervals.
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Figure 2. Evolution of the states (solid line) and their estimates (dashed line): (a) Behavior of x1 and
its estimate, (b) Behavior of x2 and its estimate, (c) Behavior of x3 and its estimate, (d) Behavior of x4

and its estimate.

0 2 4 6 8 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3. Evolution of the control signal u.

As shown in Figure 2, the states are well estimated using the proposed design method.
All the presented Figure 2a–d reveal that the proposed approach provides good robust-
ness qualities in the presence of unknown disturbances and uncertainties, which further
demonstrates the practical feasibility.

5.2. Exemple 2

Let us consider the system studied in [5]. This system is described by the state model
(5) with
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A =

 0.2 0.1 0.4
0.6 1 0.5
−0.3 0 0.3

, B =

 1 3
−0.4 0.5
0.6 −0.4

, E1 =

1
1
1

, C =

(
0 1 1
1 0 1

)
,

D =

1 0 0
0 1 0
0 0 1

, E2 =

(
0.2
0.2

)
, M1 =

 0 0
0.1 0.3
0 0.2

, NT
1 =

0 0.2
0 0
0 0.4

, M2 =

(
0 0.3
0 0.8

)
,

N2 =

(
0 0 0
0 0 0.2

)
, F(k) = sin(k4) and g

(
x(k)

)
=

0.1 sin
(
x2(k)

)
0.2 sin

(
x3(k)

)
0.3 sin

(
x1(k)

)
.

g
(

x(k)
)

satisfies Lemma 1 with a set of vertices

VH33 =


 0 ±0.1 0

0 0 ±0.2
±0.3 0 0

.

The class of nonlinear systems studied in this paper verify the Lipschitz property. By
treating this last property in order to evaluate the obtained results with respect to some ex-
isting solid work, we consider the methods in [5,19] for comparison. The first approach [5]
deals with the design of robust observer-based control using a reformulated Lipschitz
property combined with a slack variable technique and some mathematical artifacts. The
obtained result is in the form of LMI conditions. The second method [19] proposes LMI
conditions for the observer-basedH∞ stabilization problem based on the Lyapunov theory
and the use of mathematical artifacts such as matrix decomposition and Young relation.

Thus, for comparison and by solving the LMIs given by the proposed approach, the
standard approach (r = 1) and the approaches in [5,19], we obtain the results presented in
Table 1.

Table 1. Different values of λmin.

Approach λmin

Observer-Based H∞ Stabilization approach [19] 2.6777
Observer-Based H∞ Stabilization approach [5] 2.3790

Standard approach (r = 1) 1.6052
Sliding window approach (r = 2) 1.4551

It is clear that the value of λmin calculated using the sliding window approach is
smaller than those calculated using the standard one, the approaches in [5,19] which
confirm the superiority of the proposed design scheme. Next, the obtained gain matrices
using the standard approach and sliding window approach (r = 2):

• Standard approach:

L =

0.4034 −0.1235
1.1556 −0.3755
0.2140 −0.0923

, K =

(
0.3407 −0.0351 −0.1467
−0.2555 −0.1046 −0.1331

)
.

• Sliding window approach (r = 2):

L1 =

0.4181 −0.1258
1.1749 −0.3818
0.2278 −0.0960

, L2 =

 0.0055 −0.0030
0.0036 −0.0025
−0.0012 0.0003

,

K1 =

(
0.3357 −0.0392 −0.1523
−0.2507 −0.1028 −0.1311

)
, K2 =

(
0.0000 0.0000 0.0005
0.0000 −0.0000 −0.0042

)
.

The simulation results using the sliding window approach are given in Figure 4 for
x(0) =

(
10 7 −5

)T and x̂(0) =
(
−1 4 1.5

)T . The considered disturbance is equal to
1 and injected for 2s < t < 3s.
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Figure 4. Evolution of the states x1, x2, x3 (solid line) and their estimates (dashed line) using the
sliding window approach.

Figure 4 shows that the proposed control law with the sliding window ensures the
stability of the system with reduced amplitudes and perturbations. The result can be further
improved by increasing the width of the sliding measurement window (r).

6. Conclusions

In this paper, a new robust observer-based stabilization design methodology for
a class of Lipschitz discrete-time systems with parametric uncertainties in a noisy context
has been presented. The proposed controller is intended not only to reduce the effect of
external noise, but also to be robust regarding all the uncertainties present in the model
under study. The proposed new strategy introduces two sliding windows of delayed
measurements and states, respectively, into the standard structures of the Luenberger
observer and the estimated state feedback control law which allows to get relaxed LMI
conditions. A judicious use of Young’s lemma combined with a particular slack variable
allows to enhance the obtained optimization problem. Numerical results and real-time
implementation with DSP device board used as an emulator are presented to validate the
proposed scheme compared to existent methods.
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