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Abstract: This paper proposes a driving method, the superimposed pulse driving method, that can
make an ultrasonic motor run at a low speed. Although this method solves the periodic oscillation of
speed in a traditional low-speed driving motor, it still has a small periodic fluctuation, which affects
the stability of the speed. To reduce the fluctuation rate of the motor speed, the structure model and
driving model of the motor are established, based on the theory of a beat traveling wave, and the
motion characteristics of the particle point are analyzed in this paper. The simulation curve of the
motor speed is obtained according to the stator and rotor contact model and the transfer model. The
research shows that the driving method introduced in this paper causes the stator surface to generate
a traveling beat wave, and the driving end of the stator generates an intermittent reciprocating
vibration and drives the rotor rotation, which is the mechanism of low-speed operation when the
driving method is used to drive the motor, as well as the reason for the periodic fluctuation of the
motor speed. To improve the speed stability, this paper controlled the output performance of the
motor by changing the two control variables—prepressure and frequency difference—and concluded
that the variation trend of the average speed and speed volatility were consistent with the variation
trend of the motor’s average speed determinant and the speed volatility determinant, respectively,
which is verified by the velocity measurement experiment and the vibration measurement experiment.
These insights lay the theoretical foundation for the velocity adjustment and stability optimization
and, finally, the application of the new driving method is prospected.

Keywords: ultrasonic motor; superimposed pulse driving method; beat traveling wave; low speed

1. Introduction

The single-gimbal control moment gyro (SGCMG) is the main spacecraft attitude
controller [1,2]. Considering the wide application of satellites in scientific research and
commercial and military fields, the attitude control capability of satellites with high preci-
sion and high stability is important. The accuracy and stability of the control moment gyro
(CMG) are determined by the gimbal’s angular velocity [3,4]. The existing framework of
the CMG electromagnetic motor servo system is used by the harmonic reducer driving [5]
with a slow system response and small power-to-weight ratio, but the fixed-angle locking
power consumption and electromagnetic radiation do not overcome these shortcomings.
These defects can lead to the CMG framework producing a “lag” phenomenon [6], and the
interference phenomenon will cause instability in the operation of the system. With the
improvement of maneuverability, stability, and the integration of the spacecraft, such as
space satellites, it is necessary to find a new power source to make up for the aforemen-
tioned deficiencies. Compared with the electromagnetic motor, the traveling wave rotary
ultrasonic motor (TRUM) has the following characteristics: small size, light weight, high
torque at low speeds, and no electromagnetic interference [7]. These unique characteristics
are concerns of the aviation field. Therefore, the unstable operation of the system can be
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solved by replacing the electromagnetic motor to control the speed of the CMG frame with
the ultrasonic motor.

The TRUM is a complicated nonlinear coupling system, and the speed and speed
stability of the motor are closely related to the contact interface between the stator and
rotor. There are many factors affecting the contact interface, such as structural parameters,
material parameters, load torque, driving power supply voltage, and prepressure and
driving frequency. The last two factors—on the output characteristics of the motor—are
particularly prominent. The prepressure determines the contact state of the stator and
rotor, which has a profound influence on the dynamic characteristics of the stator, the
friction and wear characteristics of the rotor, and the mechanical characteristics of the
ultrasonic motor. The driving frequency range of the traveling wave ultrasonic motor is
determined by the resonant frequency of the stator. By adjusting the driving frequency
of the traveling wave ultrasonic motor, the difference between the driving frequency and
the mechanical resonant frequency can be changed and, thus, speed regulation can be
achieved. Compared with the phase difference and voltage regulation, a small range of
frequency regulation can achieve linear speed regulation [8]. Many researchers regard the
influence of the aforementioned factors on the speed and speed stability of the ultrasonic
motor as research content. Chen et al. [9] studied the influence of prepressure on the key
performance of the traveling wave ultrasonic motor through the simulation and experiment
of the motor model. Mcfarland et al. [10] control the motor by applying different load
torques, prepressure, and piezoelectric driving voltages to obtain the parameters of the
speed, input power, output power, and efficiency to obtain the prepressure and height of
the stator teeth when the motor achieves the best performance. Chau et al. [11] use the
pulse width modulation and neural fuzzy control to control the speed trajectory of the
sinusoidal curve of the motor. Kobayashi et al. [12] use the method of adjusting the driving
frequency via the sampled-data H∞ control to realize the speed trajectory control of the
trapezoidal wave curve.

The optimization of the aforementioned control variables is realized on the basis of
the normal speed; however, the SGCMG framework requires operation at a low speed or
an ultralow speed, and the speed regulation ratio needs to reach 1000:1 [13]. Therefore, the
ability of the ultrasonic motor to work at an ultralow speed becomes the prerequisite to
replacing the electromagnetic motor and to accurately adjusting the attitude of the satellite.
To achieve this goal, some scholars have proposed a microstepping driving method to
control the ultrasonic motor [14–18]. Omura et al. [14] realized the low-speed control of the
traveling wave ultrasonic motor by adjusting the voltage and phase. Shi et al. [15] selected
the driving voltage of the motor as the control variable and adopted a fuzzy PID control to
adjust it in real time to realize the low-speed control of the linear motor. Senjyu et al. [16]
adopted the motor speed control method, combining frequency conversion speed reg-
ulation and DC power PWM control to achieve the highest efficiency speed regulation
control. Chen et al. [17] managed the motor speed and displacement by controlling the
number and driving period of the driving wave. Wang et al. [18] controlled the motor
speed and displacement by stimulating the first longitudinal vibration and the second
bending vibration of the motor, and by controlling the number of driving waves, driving
voltages, and the prepressure and driving frequencies. Although the microstep driving
method can realize the ultralow speed operation of the motor, the speed will have a large
periodic oscillation [19], which has a considerable impact on the stability of the motor
speed, but there is limited relevant literature that can solve the aforementioned problems.

To eliminate the velocity fluctuation caused by the driving mechanism, a new driving
method—the superimposed pulse driving method—was proposed [19], and the experi-
mental results show that, compared with the microstepping driving method, a new driving
method obviously reduces the inertia the mechanical system brings to the motor speed of
the adverse impact of the cyclical shocks and greatly reduces the volatility of their speed,
and the specific driving principle has been described in detail in the literature [19]. When
the new driving method is used to drive the motor, although the motor speed does not
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experience periodic oscillation, it still has a small amplitude of periodic jitter phenomenon,
which has an impact on the speed stability, so it is necessary to establish a mathematical
model to study and discuss its mechanism. So far, a great deal of research using different
methods has been published in the literature on the modeling and simulation of the TRUM.

In this paper, the two variables—prepressure and frequency difference—between
the driving frequency and resonant frequency are considered the input variables, and the
driving model of the ultrasonic motor is established, which lays a theoretical foundation
for speed regulation and stability optimization.

This paper is divided into nine sections. In Section 2, the equivalent model of the
motor stator is established and the expression of the resonant frequency of the stator under
prepressure is obtained. In Section 3, the theoretical model, based on the superimposed
pulse driving method, is established and the driving mechanism is described. In Section 4,
the contact model and transfer model of the stator and rotor, based on the superimposed
pulse driving method, are established. In Section 5, the motion characteristics of the particle
points on the stator surface in the three regions of the driving method are simulated, and the
trajectory and displacement curves of the particle point in vertical directions are obtained
when the beating wave propagates on the stator surface. In Section 6, by changing the
prepressure and frequency difference, the instantaneous speed simulation curve of the
motor, and the simulation curve that reflects the expression of the determining factor of the
motor’s average speed and fluctuation, are drawn. In Section 7, the vibration measurement
experiments are carried out to verify the correctness of the simulation model theory. In
Section 8, the univariate and multivariable motor speed control is carried out, the motor
speed measurement chart and the trend chart of the characteristic variables are drawn,
and the conclusions are given. At last, the experiment and simulation conclusions are
summarized, and the prospective research ideas are stated.

2. Structure of the Stator

The stator is the core of the motor, and the change in the stator natural frequency
and the particle point motion characteristics under prepressure can determine the output
performance of the ultrasonic motor. Therefore, this paper uses the TRUM-60 as the
research object and analyzes the influence of the stator structure on the natural frequency.

2.1. Equivalent Model and Stator

The stator of the traveling wave ultrasonic motor is composed of a piezoelectric ce-
ramic and ring metal elastomer with teeth, as shown in Figure 1a. The role of the teeth is
to increase the vibration amplitude of the stator and to improve the friction transmission
efficiency of the stator and rotor without affecting the bending stiffness and natural fre-
quency of the stator composite beam. To facilitate the analysis, the composite stator ring is
expanded into an equal-straight beam in this paper, as shown in Figure 1b.
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Figure 1. Schematic diagram of the stator structure of the ultrasonic motor: (a) stator structure with teeth; (b) expanded
equivalent model diagram of the piezoelectric composite stator; and (c) tooth groove section diagram.
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Because the back of the stator ring is affixed with piezoelectric ceramics, the stator
ring is a composite beam, as shown in Figure 1c, and the distance from the upper surface
of the composite beam to the neutral layer is as follows [20]:

D =
Eeqhe

2be + 2Ephphebp + Ephp
2bp

2
(
Eeqhebe + Ephpbp

) (1)

where ρeq = kdρe, Eeq = (1− kt)
3Ee, Geq = kdGe, kd = 1 − ktks, kt = ht

he
, ks = nsbs

ls
,

Aeq = hebe, Ap = hpbp, A = Aeq + Ap, and, additionally, ns denotes the number of teeth
of the stator ring; kt denotes the ratio of the tooth height of the stator, ht, to the thickness
of the elastic beam, ke; ks denotes the ratio of the sum of the width of the stator’s grooves,
nsbs, to the circumference of the stator, ls; ρeq denotes the material density of the elastic
beam; be denotes the width of the elastic beam; ht and he denote the tooth height and beam
thickness of the elastic beam, respectively; Ee and Ee denote Young’s modulus and the
shear modulus of the stator metal, respectively; and hP and bP denote the thickness and
width of the piezoelectric ceramics, respectively. The Young’s modulus, E, the average
density, ρ, the moment of inertia, Iz, and the shear modulus of the composite beam, G, are
shown below [21]:

E =
Eeq Ie + Ep Ip

Iz
, ρ =

ρeq Aeq + ρp Ap

A
, Iz = Ie + Ip, G =

Geq Aeq + Gp Ap

A
(2)

where Ie = be
D3+(he−D)3

3 , Ip = bp
(h−D)3−(he−D)3

3 , h = he + hp, Aeq = hebe, AP = hpbp,
A = Aeq + AP.

2.2. Natural Frequency Analysis

The stator vibration, on the basis of the Timoshenko model theory, is analyzed in this
paper, and the coupling equation is obtained according to the D’Alembert principle [22,23]: ρA ∂2ω(x,t)

∂t2 + κGA
(

∂θ(x,t)
∂x − ∂2ω(x,t)

∂x2

)
= p(x, t)

ρIz
∂2θ(x,t)

∂t2 − EIz
∂2θ(x,t)

∂x2 + κGA
(

θ(x, t)− ∂ω(x,t)
∂x

)
= 0

(3)

where A denotes the cross-sectional area; ρ denotes the mass density of the beam material;
P(x, t) denotes the load along the beam; κ denotes the shear correction coefficient; and
θ(x, t) denotes the bending angle between the beam axis and the x axis. According to
the boundary conditions, the modal response of the beam with the modal order, nj, is
shown below.

ω(x, t) = Wmax cos(kcx) sin(ωn0t) (4)

where kc =
nj
R , R denotes the stator radius; nj denotes the modal order of the stator

vibration; ωn0 denotes the natural frequency of the stator without prepressure; and Wmax
denotes the response amplitude of the stator to the excitation. According to Newton’s
second law, the vibration equation under prepressure can be described as:

a1
∂4ω(x, t)

∂x4 + a2
∂4ω(x, t)

∂x2∂t2 + a3
∂2ω(x, t)

∂t2 + a4
∂4ω(x, t)

∂t4 + kdsω(x, t) = 0 (5)

where a1= EIz, a2 = −
( ρ

κG + ρ
E
)
EIz, a3 = ρA, a4 = ρ2EIz

EκG , kdx = 2mxmEmbm
hm

, kds denotes
the vertical equivalent spring stiffness of the friction materials; Em denotes the elastic
modulus of the friction material; 2xm denotes the length of the contact zone between the
stator and rotor; and bm and hm denote the width and thickness of the friction material
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layer, respectively. Submitting Equations (2) and (4) into Equation (5), the stator resonant
angular frequency, ωn, under prepressure can be simplified as:

ωn =

√√√√ EIzkc4 + kdx

ρA + ρ
(

1
κG + 1

E

)
kc2

(6)

Prepressure is one of the key parameters that limits the performance of the ultrasonic
motor, and it can affect the resonant frequency of the stator [8]. The frequency characteristic
analyzer will be used to measure the resonant frequency of the stator under different
prepressures to verify the reliability of Equation (5) in Section 7.

2.3. Amplitude Analysis under Prepressure

The stator vibration waveform is formed by the superposition of the standing waves
excited by two groups of piezoelectric plates, and the stator is a linear system, so the
amplitude of the stator vibration only needs to consider the amplitude generated by the
excitation of one group of piezoelectric plates. According to the piezoelectric equation [8],
the maximum particle point amplitude without prepressure can be described as:

Wmax =
λAzm

2M1ωn2
1√(

1− ωq2

ωn2

)2
+
(

2ξ
ωq
ωn

)2
(7)

where M1 =
Apρpλ

2 , Azm =
Dbpd31

2sE
11

4Us
π

( 2π
λ

)2
, λ = 2L = πR

9 , L denotes the length of a

piezoelectric partition; Us denotes the sinusoidal voltage applied vertically to the piezo-
electric plate; d31 denotes the strain constants of the piezoelectric ceramic materials; sE

11
denotes the flexibility factor; ξ denotes the damping ratio of the stator; and ωq denotes the
driving angular frequency of the piezoelectric ceramic vibration. The prepressure affects
the resonant frequency of the stator and has a great influence on the amplitude of the stator
particle point [24]. The amplitude of the stator decreases gradually with the increase in
prepressure. The relationship between the particle point amplitude of the stator surface,
Wmax f , and the prepressure under different prepressures, Fc, can be described as:

Wmax f = C f Fc
−ςWmax (8)

The amplitude of the stator under different prepressures will be measured by using the
scanning laser vibration measurement system in Section 7, and the values of the constants,
C f and ς, in Equation (8), can be obtained by curve fitting.

3. Theoretical Analysis of Ultrasonic Motor Driving Method
3.1. Stator Particle Point Setting

There is a layer of relatively soft friction material between the stator and rotor of
the ultrasonic motor. When the ultrasonic motor works, the contour line of the stator
surface is a sinusoidal wave shape because of the generation of traveling waves. Under
the prepressure, because the material of the stator and rotor is hard and the prepressure is
small, it can be assumed that there is no contact deformation between the stator and rotor.
Only the friction layer produces corresponding deformation, and the deformation of the
friction layer is consistent with the contour line of the stator surface [25,26]. The contact
interface between the stator and rotor of the traveling wave ultrasonic motor is shown
in Figure 2b.

When the motor is driven by the superimposed pulse driving method, the main
objective of this paper is to detect the variation trend of the motor speed and speed
fluctuation by changing the difference in the prepressure and the angular frequency.
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Figure 2. A schematic diagram of the stator vibration mode and contact state: (a) schematic diagram of the stator vibration
mode; (b) a schematic diagram of the stator and rotor contact state; and (c) a motion diagram of the particle point at the
stator drive end.

The movement characteristics of the particle point (e.g., particle point Q in Figure 2)
can reflect the variation in the motor speed and the speed of the volatility trends because
of the speed of the rotor and the elliptical motion of the stator particle point transfer. In
particular, the motion characteristics of the wave peak particle point (particle point H in
Figure 2) have been in contact with the friction material of the rotor and can determine the
output performance of the motor. It should be noted that particle point Q, defined in this
paper, is any fixed particle point of the stator, and the abscissa position of the particle point
does not change with time, while the abscissa position of the particle point, H xmax, does,
as shown in Figure 2c.

3.2. Partition Introduction to the Driving Method

One cycle of the superimposed pulse driving method is divided into three regions,
namely, the traveling standing wave increasing region, TaddT , the traveling standing wave
amplitude reduction region, TreduT , and the traveling standing wave amplitude increasing
and decreasing transition region, TaddreduT , respectively, as shown in Figure 3.
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3.2.1. Traveling Standing Wave Amplitude Reduction Region (TreduT)

According to the principle of mechanical vibration [17], before the A-phase of the
stator is de-energized (the period before t1 in Figure 3), the particle point, Q, on the stator
near the equilibrium position, has a constant-amplitude vibration with driving frequency,
ωq, and the amplitude of Wmax f . However, after the power is cut off (the period after t1 in
Figure 3), the particle point does not decay to the equilibrium position immediately. Instead,
it vibrates near the equilibrium position with resonant frequency and decreasing vibration
amplitude. The particle point of the stator B-phase vibrates at a constant amplitude, with
the driving frequency and the vibration amplitude, Wmax f , near the equilibrium position.
The whole aforementioned process is in TreduT .

3.2.2. Traveling Standing Wave Amplitude Increasing and Decreasing Transition
Region (TaddreduT)

Before the amplitude of particle point Q decays to the equilibrium position, the
A-phase of the stator starts to charge up, and the particle point on the stator will vibrate
back and forth with increasing amplitude near the equilibrium position. The whole
aforementioned process is in TaddreduT .

3.2.3. The Traveling Standing Wave Increasing Region (TaddT)

According to the working principle of the traveling wave ultrasonic motor, the piezo-
electric ceramics are driven by a sinusoidal voltage with a phase difference of 90 degrees.
Because of the motor stator for the underdamped system, the amplitude of the stator for
the A-phase particle points maintain Wmax f . However, after the B-phase of the stator is
charged, the particle point, Q, will experience a reciprocating vibration with increasing
amplitude near the equilibrium position, and the two-phase standing waves with the
same oscillation frequency, but different vibration amplitudes will be superimposed to
synthesize the traveling wave and to propagate on the stator. The whole aforementioned
process is in TaddT .

3.3. Motion Characteristics of the Stator Particle Points in TreduT

According to the theory of free vibration and the forced vibration of the underdamped
system [23], the modal responses, wA(t) and wB(t), in the vertical direction of the stator’s
two phases are obtained as follows (see the electronic Supplementary Material for the
specific derivation formulas):

wA(t) =


Wmax f e−ξωn(t−t1) sin(ωn(t− t1) + ϕAredu), (t ∈ [t1, t2])

AABaddredu sin
(

ωn+ωq
2 (t− t2) +

ΘBaddredu+ΨAaddredu
2 + ϕBaddredu

)
, (t ∈ [t2, t3])

AABaddredu sin
(

ωn+ωq
2 (t− t3) +

ωn+ωq
2 (t3 − t2) +

ΘBaddredu+ΨAaddredu
2 + ϕBaddredu

)
, (t ∈ [t3, t4])

(9)

wB(t) =


Wmaxf sin

(
ωq(t− t1) +

π
2
)
, (t ∈ [t1, t2])

Wmaxf e−ξωn(t−t2) cos
(
ωn(t− t2) +

π
2
)
, (t ∈ [t2, t3])

ABadd sin
(

ωn+ωq
2 (t− t3) +

ΘBadd+π+ΨBadd
2 + ϕBadd

)
, (t ∈ [t3, t4])

(10)

where Wmax f denotes the response amplitude of the stator to the excitation of the A-phase.
Additionally, AABaddredu denotes the response amplitude of the stator to the excitation of phase
A, and ϕAredu, ϕBaddredu +

ΘBaddredu+ΨAaddredu
2 , and ϕBaddredu +

ΘBaddredu+ΨAaddredu
2 +

ωq+ωn
2 denote

the initial response phase of the stator to the excitation of the A-phase in the three regions
(TreduT, TaddreduT, and TaddT) of the driving method. Further, ΘBaddredu, ϕBaddredu, ϕAredu, and
ΨAaddredu denote the shift angle of the phase difference (see the electronic Supplementary
Material for specific derivation formulas).
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According to the superposition principle, the vertical and tangential displacements of
particle point Q can be described as:{

ζz(x, t) = wA(t) sin(kcx) + wB(t) cos(kcx)
ζx(x, t) = D ∂ζz(x,t)

∂x
, (t ∈ [t1, t4]) (11)

According to the rotation vector method, the amplitude, AQ, of point Q in the vertical
direction is expressed as follows:

AQ =
√

AA
2+AB2+2AA AB cos

(
∆ω
(
t− tQ

)
+ θQ

)
, (t ∈ [t1, t4]) (12)

where AA and AB denote the amplitude vectors of the stator two-phase mode function
in the three regions of the driving method, respectively, and the expressions in the three
regions of the driving method are as follows:

AA =

{
Wmaxfe−ξωn(t−t1) sin(kcx), (t ∈ [t1, t2])
AABaddredu sin(kcx), (t ∈ [t2, t4])

, AB =


Wmaxf cos(kcx), (t ∈ [t1, t2])

Wmaxf cos(kcx)e−ξωn(t−t2), (t ∈ [t2, t3])
ABadd cos(kcx), (t ∈ [t3, t4])

, (13)

In Equation (12), ∆ω, tq, and ΘQ denote the angular frequency difference, the ini-
tial time value, and the phase difference of the stator’s two phases, respectively. The
expressions in the three regions of the driving method are as follows:

∆ω =


∆ωredu = ωq −ωn, (t ∈ [t1, t2])

∆ωaddredu =
ωq−ωn

2 , (t ∈ [t2, t3])
∆ωadd = 0, (t ∈ [t3, t4])

, tQ =


t1, (t ∈ [t1, t2])
t2, (t ∈ [t2, t3])
t3, (t ∈ [t3, t4])

,

θQ =


−π

2 , (t ∈ [t1, t2])
ΘBaddredu −ΨAaddredu − π, (t ∈ [t2, t3])
ΘBadd+π+ΨBadd

2 + ϕBadd −
ωn+ωq

2 (t3 − t2) +
ΘBaddredu+ΨAaddredu

2 + ϕBaddredu, (t ∈ [t3, t3])

(14)

where ∆ωredu, ∆ωaddredu, and ∆ωadd denote the angular frequency difference in the
three regions of the driving method, respectively. In Equation (14), ΘBadd, ϕBadd, and
ΨBadd also denote the shift angle of the phase difference (see the electronic Supplementary
Material for the specific derivation formulas). When the motor is driven based on the
superposition driving method, the expressions of the period of the beat traveling wave
on the stator surface in the three regions of the driving method are shown as follows (see
Equation (A9) in Appendix A):

Tredu = 2π
∆ωredu

, (t ∈ [t1, t2])

Taddredu = 2π
∆ωaddredu

, (t ∈ [t2, t3])

Tadd = 2π
∆ωadd

, (t ∈ [t3, t4])

(15)

The tangential velocity of a particle can be expressed as:

vx(x, t) = Av sin(kcx + Ψv), (t ∈ [t1, t4]) (16)

where Av and Ψv denote the amplitude and phase angle of the tangential velocity of the
particle, respectively, and the expressions are demonstrated in the three regions of the
driving method.

Av =

{
Wmaxf Dkc

√
Ma2 + Mb

2, (t ∈ [t1, t2])

Dkc
√

Ma2 + Mb
2, (t ∈ [t2, t4])

, Ψv =

 arctan
(

Mb
Ma

)
, (Ma ≥ 0)

arctan
(

Mb
Ma

)
+ π, (Ma < 0)

(17)
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where

Ma =


ωq sin

(
ωq(t− t1) +

π
2
)
, (t ∈ [t1, t2])

Wmaxf ωne−ξωn(t−t2)
(
ξ cos

(
ωn(t− t2) +

π
2
)
+ sin

(
ωn(t− t2) +

π
2
))

, (t ∈ [t2, t3])

ABadd cos
(

ωn+ωq
2 (t− t3) +

ΘBadd+ΨBadd
2 + ϕBadd +

π
2

)
, (t ∈ [t3, t4])

(18)

Mb =


ωne−ξωn(t−t1) cos

(
ωn(t− t1) +

π
2
)
− ξωne−ξωn(t−t1) sin

(
ωn(t− t1) +

π
2
)
, (t ∈ [t1, t2])

AABaddredu cos
(

ωn+ωq
2 (t− t2) +

ΘBaddredu+ΨAaddredu
2 + ϕBaddredu

)
, (t ∈ [t2, t3])

AABaddredu cos
(

ωn+ωq
2 (t− t3) +

ωn+ωq
2 (t3 − t2) +

ΘBaddredu+ΨAaddredu
2 + ϕBaddredu

)
, (t ∈ [t3, t4])

(19)

3.4. Motion Characteristics of Particle Point H of the Stator Wave Crest

When the stator particle point is at the wave peak, the vertical velocity is zero, which
is ∂ζzadd

∂x = 0 [8]. Substitute Equation (11) into the equation to obtain the x-coordinate of
particle point H for the stator wave crest, as follows:

xmax(t) =


arctan

(
wA(t)
wB(t)

)
kc

, (cos(kcx) ≥ 0)
arctan

(
wA(t)
wB(t)

)
+π

kc
, (cos(kcx) < 0)

, (t ∈ [t1, t4]) (20)

Substitute Equation (20) into Equation (11) to obtain the vertical displacement of the
particle point at the wave peak:

ζzmax(t) = ζz(x, t)|x=xmax(t)
, (t ∈ [t1, t4]) (21)

Substituting Equation (20) into Equation (11), the tangential velocity of the particle at
the wave peak is expressed as:

vxmax(t) =
∂ζz(x, t)

∂t

∣∣∣∣
x=xmax(t)

, (t ∈ [t1, t4]) (22)

3.5. The Elliptical Trajectory of the Stator Particle Point Q

As shown in Figure 4a, the coordinate of any point (ζx, ζz) in the xy coordinate system
is (ζx

′, ζz
′) in the coordinate system x′y′.
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3.5. The Elliptical Trajectory of the Stator Particle Point Q 
As shown in Figure 4a, the coordinate of any point (𝜁 , 𝜁 ) in the 𝑥𝑦 coordinate sys-

tem is (𝜁 , 𝜁 ) in the coordinate system 𝑥 𝑦 .  

 

Figure 4. Cont.
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The general equation of the ellipse obtained by combining Equation (11) with Equa-
tion (A13) in Appendix B is shown as follows:

Aell(ζx(x, t))2 + Cell(ζx(x, t))2 + Bellζx(x, t)ζz(x, t) = Fell (23)

where

Fell =


((

PAredu
2 + PBredu

2) cos(kcx)
)2, (t ∈ [t1, t2])((

PAaddredu
2 + PBaddredu

2) cos(kcx)
)2, (t ∈ [t2, t3])((

PAadd
2 + PBadd

2) cos(kcx)
)2, (t ∈ [t3, t4])

, Aell =



(
PAredu

Wmaxf Dkc

)2
, (t ∈ [t1, t2])(

PAaddredu
Dkc

)2
, (t ∈ [t2, t3])(

PAadd
Dkc

)2
, (t ∈ [t3, t4])

,

Bell =


2PAreduPBredu

WmaxfDkc
, (t ∈ [t1, t2])

2PAaddreduPBaddredu
Dkc

, (t ∈ [t2, t3])
2PAaddPBadd

Dkc
, (t ∈ [t3, t4])

, Cell =


(

PBredu
Wmaxf

)2
, (t ∈ [t1, t2])

(PBaddredu)
2, (t ∈ [t2, t3])

(PBadd)
2, (t ∈ [t3, t4])

,


PAredu = e−ξωn(t−t1) sin

(
ωn(t− t1) +

π
2
)
, PBredu = cos

(
ωq(t− t1) +

π
2
)
, (t ∈ [t1, t2])

PAaddredu = wA(t), PBredu = Wmaxf e−ξωn(t−t2) cos
(
ωn(t− t2) +

π
2
)
, (t ∈ [t2, t3])

PAadd = wA(t), PBadd = wB(t), (t ∈ [t3, t4])

According to Equation (A8) in Appendix A, the determining factor for the direction of
the elliptical motion is:

Qq(t) ≈ DkcWaWb

(
ωa + ωb

2
sin
(
∆ω
(
t− tQ

)
+ ∆ϕQ

))
(24)

where

Qq(t) =


Qredu(t), (t ∈ [t1, t2])

Qaddredu(t), (t ∈ [t2, t3])

Qadd(t), (t ∈ [t3, t4])

, Wa =

{
Wmaxf e−ξωn(t−t1), (t ∈ [t1, t2])

AABaddredu, (t ∈ [t2, t4])
, Wb =


Wmaxf , (t ∈ [t1, t2])

Wmaxf e−ξωn(t−t2), (t ∈ [t2, t3])

ABadd, (t ∈ [t3, t4])

,

∆ϕQ =


π
2 , (t ∈ [t1, t2])

π − ϕBaddredu −
ΘBaddredu+ΨAaddredu

2 , (t ∈ [t2, t3])
ΘBadd+ΨBadd

2 + ϕBadd −
ωn+ωq

2 (t3 − t2)
(

ΘBaddredu+ΨAaddredu
2 + ϕBaddredu − π

2

)
, (t ∈ [t3, t4])
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Additionally, Qredu and Qaddredu denote the determinants of the motion direction of
the ellipse in TreduT and TaddreduT , respectively, as shown in Figure 4b,c. In each beat wave
period, the elliptical motion of a particle will have two phases of rotation in the clockwise
direction and counterclockwise direction, and the time for both phases is half of the beat
wave period. Notably, Qadd is the determining factor of the elliptical motion direction in
TaddT , as shown in Figure 4d. Because the propagation waveform on the stator surface is a
traveling wave with changing amplitude—instead of the beat traveling wave—particle Q
rotates clockwise around the center point of the ellipse.

4. Stator and Rotor Contact Model and Transfer Model

Contact force is generated when the stator and rotor contact each other. It is necessary
to conduct contact modeling to evaluate the contact force. Friction materials are used to
adhere to the surface of the rotor to improve the interfacial force of the motor. When the
rotor is pressed against the stator surface, a deformation occurs on the friction material
surface. When the stator is excited, the traveling waves are excited on the surface of the
stator, and the upper surface takes on a sine-wave shape [27]. Because of the different
elastic moduli of the friction materials and the stator, the contact surface is considered the
Hertz contact model of the rigid stator and flexible rotor [25]. The contact interface between
the stator and rotor of the TRUM is expanded in two dimensions along the circumferential
direction, as shown in Figure 5.
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Figure 5. Contact models of the interface between the stator and the rotor.

The peak of the wave will penetrate into the friction material, and the contact area
is not a point, but a region. At this point, the two resultant forces, the normal force and
the tangential force, act on the contact surface. The contact model and transfer model are
analyzed below.

4.1. Analysis of Stator and Rotor Contact Model

When the motor is driven by a superimposed pulse driving method, the stator will
excite mode B09. According to the Hertz contact theory, the stator is a cylinder with an
equal-radius curvature at the peak of the row wave. When the rotor is assumed to be
an elastic plane, the contact area length of the contact interface between the motor and
the rotor is 2xm under the action of prepressure Fc. The contact position of the interface
between the stator and rotor changes with time, along with the shape, and the relative
motion and the interaction force of the contact area between the stator and rotor, so the
particle point amplitude of the stator wave peak will change with time. According to the
Hertz contact theory, the equivalent curvature diameter, ρk(t), is expressed as follows [26]:
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ρk(t) =
2rt

2

m2ζzmax(t)
(25)

where rt denotes the equivalent radius of the stator, and the contact area length, 2xm(t), of
the contact interface between the stator and rotor under the action of prepressure, Fc, is
shown below [26]:

2xm(t) = 1.6

√
Fcρk(t)CE

mbm
(26)

where CE = 1−µe
2

Eeq
+ 1−µm

2

Em
, and, additionally, CE denotes the parameters related to the

material properties; and µe and µm denote the Poisson’s ratio of the stator to the friction
material, respectively [26,28]. Combining Equation (20) and Equation (26), the x-coordinate
expression of the contact critical point between the motor stator and rotor in one period of
the superimposed pulse driving method is shown as follows:

xxm(t) = xmax(t) + xm(t), (t ∈ [t1, t4]) (27)

As shown in Figure 5, δ0 stands for the distance between the lower surface of the
friction material and the central axis of the waveform of the stator surface without defor-
mation. This paper adopts δ0 instead of 2xm(t) to express the contact range, which will be
more conducive to describing the contact degree between the stator and rotor. Substitute
Equation (27) into Equation (11) to obtain the expression shown below.

δ0 = ζz(x, t)|x=xxm(t)
, (t ∈ [t1, t4]) (28)

The tangential velocity of the contact critical point is shown as follows:

vxm(t) = D
∂ζz(x, t)

∂x∂t

∣∣∣∣
x=xxm(t)

, (t ∈ [t1, t4]) (29)

Because the pressure distribution function is proportional to the vertical displacement
of the stator particle point [29], the obtained expression is shown as follows:

p(x, t) = k f Ap(ζz(x, t)− δ0), (t ∈ [t1, t4]) (30)

The expression derived from Hooke’s law [30] is shown below.

Fc =
∫ xxm(t)

xmax(t)

p(x, t)dx, (t ∈ [t1, t4]) (31)

Combining Equation (28), Equation (30), and Equation (31), the pressure distribution
functions of the three regions of the superimposed pulse driving method are shown
as follows:

Ap(t) =



Fc hm

2mE f bm

Wmaxf
kc


 sin(kc xxm(t))e−ξωn (t−t1) sin

(
ωn(t− t1) +

π
2
)

+ cos(kc xxm(t))e−ξωn (t−t1) sin
(
ωq(t− t1) +

π
2
)
−

 sin(kc xmax(t))e−ξωn (t−t1) sin
(
ωn(t− t1) +

π
2
)

+ cos(kc xmax(t))e−ξωn (t−t1) sin
(
ωq(t− t1) +

π
2
)

−xm (t)δ0


, (t ∈ [t1 , t2 ])

Fc hm

2mE f bm

 1
kc


(

Wmaxf cos(kc xxm(t))e−ξωn (t−t2) cos(ωn(t− t2)) + wA(t) sin(kc xxm(t))
)
−(

Wmaxf cos(kc xmax(t))e−ξωn (t−t2) cos(ωn(t− t2)) + wA(t) sin(kc xmax(t))
)

−xm (t)δ0


, (t ∈ [t2 , t3 ])

Fc hm

2mE f bm

 1
kc


(
−Wmaxf cos(kc xxm(t)) cos

(
ωq(t− t3) + π

)
+ wB(t) sin(kc xxm(t))

)
−(

−Wmaxf cos(kc xmax(t)) cos(ωn(t− t3) + π) + wB(t) sin(kc xmax(t))
)

−xm (t)δ0


, (t ∈ [t3 , t4 ])

(32)
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4.2. Transfer Model Analysis of the Stator and Rotor
4.2.1. Analysis of the Nonslip Point

The force of the friction is generated between the stator and rotor and drives the rotor
to rotate under prepressure in Figure 5, and the tangential velocity of the particle points
on the contact surface of the stator and rotor is set as vxx(t). A1 and A5 are set as edge
contact points, and the tangential velocity of the two particle points is set as vxm(t). A3 is
set as the contact point of the wave crest, and the tangential velocity of the particle point
is set as vxmax(t). Additionally, A2 and A4 are set as the two contact points with the same
tangential velocity on the contact surface of the stator and rotor, that is, vA2(t) = vA4(t).
Because there is no relative sliding between the stator and friction material here, the stator
particle point has no hindering or driving effect on the rotor. This point is also called the
nonsliding point, which is the critical point [31] dividing the driving area and the braking
area, and the speed at this point is set as vxp(t).

4.2.2. Position Value of Nonsliding Point

Instantaneous tangential velocities of the stator particles in the three regions of the
driving method are drawn according to Equation (16) and are shown in Figure 6.
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The abscissa of the velocity peaks and troughs in the three regions of the driving
method is obtained according to the aforementioned equation as follows: φvm1 =

arctan
(

Ma
Mb

)
kc

φvm1 =
arctan

(
Ma
Mb

)
+π

kc

, (t ∈ [t1, t4]) (33)

When the tangential velocity of the nonsliding point is set to vxp(t), the expression of
the abscissa of the nonsliding point is obtained according to the definition of the inverse
function as follows:

xpx(t) =



arcsin

(
vxp(t)

Dkc
√

Ma2+Mb
2

)
−ψv

kc
, (Mb ≥ 0)

−π−arcsin

(
vxp(t)

Dkc
√

Ma2+Mb
2

)
−ψv

kc
, (Ma > 0, Mb ≤ 0)

π−arcsin

(
vxp(t)

Dkc
√

Ma2+Mb
2

)
−ψv

kc
, (Ma < 0, Mb ≤ 0)

(34)
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According to the definition of the inverse, the range of the inverse tangent function
is
(
−π

2 , π
2
)
. However, because the wave peak particle point propagates on the stator surface

with a wavelength of λ = 2π
kc

, the abscissa range of the nonsliding point is set as
(
− π

2kc
, 3π

2kc

)
,

according to Figure 4. On the basis of the fact that the x-coordinate of the nonsliding
point, X, is the value between the x-coordinate of the wave peak (Equation (34)) and the
x-coordinate of the critical point of the contact surface (Equation (27)), the expression of
the nonsliding point corresponding to the only nonsliding point of the tangential velocity
xp(t) is as follows:

xp(t) =



xpx(t), (xxm(t) ≤ φvm1)
xpx(t), (xmax(t) < φvm1, xxm(t) > φvm2, vxm(t) > vxx(xmax(t), t) > 0)
xpx(t), (xmax(t) < φvm1, xxm(t) > φvm2, vxm(t) < vxx(xmax(t), t) < 0)
2φvm1 − xpx(t), (xmax(t) < φvm1 < xxm(t), vxx(xmax(t), t) > vxm(t) > 0)
2φvm1 − xpx(t), (xmax(t) < φvm1 < xxm(t), vxx(xmax(t), t) < vxm(t) < 0)
2φvm1 − xpx(t), (xmax(t) < φvm1 < xxm(t), vxx(xmax(t), t) < vxm(t) < 0)
2φvm1 − xpx(t), (xmax(t) > φvm1)
2φvm1 − xpx(t), (xmax(t) < φvm2 < xxm(t), vxm(t) > vxx(xmax(t), t) > 0)
2φvm1 − xpx(t), (xmax(t) < φvm2 < xxm(t), vxm(t) < vxx(xmax(t), t) < 0)
xpx(t) + 2π, (xmax(t) < φvm2 < xxm(t), vxx(xmax(t), t) > vxm(t) > 0)
xpx(t) + 2π, (xmax(t) < φvm2 < xxm(t), vxx(xmax(t), t) < vxm(t) < 0)
xpx(t) + 2π, (xmax(t) ≥ φvm2)

(35)

4.2.3. Analysis of Driving Torque

Because Coulomb’s friction is considered friction force, fn(t), this one can be expressed
by Equation (36) [32]:

fn(t) = 2mµ
∫ xxm(t)

xmax(t)

p(x, t)sign
(
vxx(x, t)− vxp(t)

)
dx, (t ∈ [t1, t4]) (36)

where

sign
(
vxx(x, t)− vxp(t)

)
=

{
1,
((

vxx(x, t)− vxp(x, t) > 0, vxp(x, t) > 0
)
∪
(
vxx(x, t)− vxp(x, t) > 0, vxp(x, t) < 0

))
−1,

((
vxx(x, t)− vxp(x, t) < 0, vxp(x, t) > 0

)
∪
(
vxx(x, t)− vxp(x, t) < 0, vxp(x, t) < 0

)) (37)

When the traveling wave propagates on the stator surface, the velocity direction
remains the same [8]. However, when the beat traveling wave propagates on the stator
surface, the tangential velocity direction of the particle point, H, of the wave peak in
contact with the rotor changes periodically. Taking the nonsliding point as the critical
point, the braking zone and driving zone of the transfer model are divided according to
the aforementioned definition. In this paper, when the velocity direction of the nonsliding
point is to the right, it is positive, and when the velocity direction of the nonsliding point is
to the left, it is negative. Additionally, when the velocity direction of the nonsliding point
is to the left, the transfer model of the stator and rotor is a reverse nonsliding point transfer
model. When the velocity direction of the nonsliding point is to the right, the transfer
model of the stator and rotor is a forward nonsliding point transfer model. The following
is a detailed analysis of the two transfer models.

a. Forward Nonslip Point Transfer Model
In this paper, the tangential velocity, vxm(t), of the edge contact point, the tangential

velocity, vxmax(t), of the crest contact point, and tangential velocity zero are taken as special
points of the stator particle point, and the tangential velocity, vxp(t), of the nonsliding
point is compared with that of the nonsliding point and then inserted into Equation (37) to
obtain the eight transfer models shown in Figure 7.
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The transfer model in Figure 7 determines the direction of friction according to the cal-
culation results of the formulas, sign

(
vxm(t)− vxp(t)

)
, and sign

(
vxmax(t)− vxp(t)

)
. When

the tangential velocity, vxm(t), of the edge contact point or the tangential velocity, vxmax(t),
of the crest contact point are greater than the tangential velocity, vxp(t), of the nonsliding
point, this region is the driving zone (the area of the plus sign), and vice versa is the braking
zone (the area of the minus sign).

b. Reverse Sliding Point Transfer Model
A same modeling method as the forward nonslip point transfer model is used to

obtain the eight reverse nonsliding point transfer models, as shown in Figure 8.
When the tangential velocity, vxm(t), of the edge contact point, or the tangential

velocity, vxmax(t), of the crest contact point are less than the tangential velocity, vxp(t), of
the nonsliding point, this region is the driving zone (the area of the plus sign), and vice
versa is the braking zone (the area of the minus sign). According to the torque balance
equation, the expression is shown as follows:

J
dωp(t)

dt
= Mn(t)− Tload (38)

where Mn(t) = fnall(t)rc , fnall(t) = ft − fb, ωp(t) =
vxp(t)

rc
, fnall(t) denotes the resultant

force of friction, Tload(t) denotes the loading moment, J denotes the moment of inertia for
the rotor, and ωp(t) denotes the angular velocity of the rotor’s rotation.



Actuators 2021, 10, 304 16 of 38

Actuators 2021, 10, x FOR PEER REVIEW 17 of 40 
 

 

The transfer model in Figure 7 determines the direction of friction according to the 
calculation results of the formulas, sign(𝑣 (𝑡) − 𝑣 (𝑡)), and sign(𝑣 (𝑡) − 𝑣 (𝑡)). 
When the tangential velocity, 𝑣 (𝑡), of the edge contact point or the tangential velocity, 𝑣 (𝑡), of the crest contact point are greater than the tangential velocity, 𝑣 (𝑡), of the 
nonsliding point, this region is the driving zone (the area of the plus sign), and vice versa 
is the braking zone (the area of the minus sign). 

b. Reverse Sliding Point Transfer Model 
A same modeling method as the forward nonslip point transfer model is used to ob-

tain the eight reverse nonsliding point transfer models, as shown in Figure 8. 

 

 
Figure 8. Reverse sliding point transfer model. 

When the tangential velocity, 𝑣 (𝑡), of the edge contact point, or the tangential ve-
locity, 𝑣 (𝑡), of the crest contact point are less than the tangential velocity, 𝑣 (𝑡), of 
the nonsliding point, this region is the driving zone (the area of the plus sign), and vice 
versa is the braking zone (the area of the minus sign). According to the torque balance 
equation, the expression is shown as follows: 

( )
( )p

n load

d t
J M t T

dt
ω

= −  (38)

where 𝑀 (𝑡) = 𝑓 (𝑡)𝑟  , 𝑓 (𝑡) = 𝑓 − 𝑓 , 𝜔 (𝑡) = ( ) , 𝑓 (𝑡) denotes the resultant 
force of friction, 𝑇 (𝑡) denotes the loading moment,  𝐽 denotes the moment of inertia 
for the rotor, and 𝜔 (𝑡) denotes the angular velocity of the rotor’s rotation. 

5. Simulation of Motion Characteristics of the Stator Particle Point 
According to the aforementioned contact model of the stator on the surface of the 

particle point, the movement characteristics can reflect the output performance of the mo-
tor, and the following will use MATLAB to simulate the motion trajectory, tangential ve-
locity, and vertical displacement of the stator particle simulation curve. 

  

Figure 8. Reverse sliding point transfer model.

5. Simulation of Motion Characteristics of the Stator Particle Point

According to the aforementioned contact model of the stator on the surface of the
particle point, the movement characteristics can reflect the output performance of the
motor, and the following will use MATLAB to simulate the motion trajectory, tangential
velocity, and vertical displacement of the stator particle simulation curve.

5.1. Motor Simulation Parameter Setting

This paper makes use of TUSM-60 to conduct the model simulation, and the parame-
ters of the ultrasonic motor are in Table 1.

Table 1. The simulation parameters of TRUM60.

Parameter Description Numerical Value (Unite)

R Stator radius 60 (mm)
ns Number of stator teeth 72
ls Stator perimeter 188.4 (mm)
bs Stator slot width 0.8 (mm)
be Stator elastic beam width 8 (mm)
bm Friction material width 1.2 (mm)
ht Stator elastic beam thickness 2 (mm)
he Stator teeth thickness 4.5 (mm)
hp Piezoelectric material thickness 0.5 (mm)
hm Friction material thickness 0.2 (mm)
ρe Stator elastic beam density 8900

(
kg·m3)

ρp Piezoelectric material density 7500
(
kg·m3)

ρm Friction material density 2100
(
kg·m3)
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Table 1. Cont.

Parameter Description Numerical Value (Unite)

Ee Stator elastic beam Young’s modulus 155 (GPa)
Ep Piezoelectric material Young’s modulus 76.5 (GPa)
Em Friction material Young’s modulus 5 (GPa)
Ge Stator elastic beam shear modulus 46.8 (GPa)
Gp Piezoelectric material shear modulus 22.9 (GPa)
µe Stator elastic beam Poisson’s ratio 0.33
µp Piezoelectric material Poisson’s ratio 0.31
µm Friction material Poisson’s ratio 0.3
ξ Damping ratio 0.006
κ Height-width ratio of the beam section 0.9
Us Piezoelectric voltage 400 (V)
Tload Mortor load 0.3 (N·m)
J Moment of inertia of the rotor 4.5 × 10−6

κ Shear correction coefficient 0.9

5.2. Simulation of Particle Point Motion Characteristics
5.2.1. Simulation of Particle Point Motion Characteristics in TreduT

Particle point Q is selected as the reference point below, and the number of peri-
odic pulses, m, and the single-phase output pulses, n, are set to 100 and 55, respectively.
When the pressure is set to Fc = 180 N, the difference in the angular frequency is set
to ∆ωredu = 2π ∗ 3000 rad/s, according to Equation (23), and the elliptical trajectory of
particle point Q is shown in Figure 9.
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According to Equation (12) and Equation (24), the simulation curves of the vertical
displacement of particle point Q, ζz(t), and the determining factor equation of the elliptical
motion direction, Qqredu(t), are obtained, respectively.

As shown in Figure 10, there is one beat period in TreduT is Tredu, and one beat period is
divided into four-beat miniperiods, Tredu1 v Tredu4, on average (see Figure 9). The particle
point Q moves clockwise in the first and fourth beat miniperiods (Tredu1 and Tredu4), while
the middle two small periods of the beat wave (Tredu2 and Tredu3) move counterclockwise. In
this paper, the clockwise direction is set as the positive direction, and the counterclockwise
direction is set as the negative direction. It can be found that the change trend of the
positive and negative signs of the determinant value of Formula Qqredu(t) is consistent
with the rotation direction of particle Q in Figure 11. Additionally, the change trend for
the value of the determining factor of the elliptical motion direction, Qqredu(t), and the
tangential velocity of particle point H, vxmax(t), at the wave peak is also consistent.
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5.2.2. Simulation of the Particle Point Motion Characteristics in TaddreduT

Particle point Q is still selected as the reference point below. The number of periodic
pulses, m, the number of single-phase output pulses, n, the prepressure, Fc, and the angular
frequency difference, ∆ωaddredu, are consistent with those set above (the specific content is
located in Section 5.2.1). The elliptical trajectory of particle point Q is shown in Figure 12.
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According to Equations (11) and (24), the simulation curves of the vertical displace-
ment of particle point Q, ζz(t), and the determining factor equation of the elliptical motion
direction, Qqaddredu(t), are obtained, respectively.

As shown in Figure 13, there is one beat period in TaddreduT is Taddredu, and a beat
period is divided into four-beat miniperiods, Tadr1 v Tadr4, on average (see Figure 12). The
particle point Q moves counterclockwise in the first two stages of the beat miniperiod
(Tadr1 and Tadr2), while the other two small periods of the beat wave (Tadr3 and Tadr4) move
clockwise. According to the change in the particle point’s motion and the positive and
negative signs of the result of Formula Qqaddredu(t) in Figure 14, the change in the positive
and negative signs of the determinant value of Formula Qqaddredu(t) is consistent with
the rotation direction of particle Q in Figure 14. Additionally, the change in the trend of
the value of the determining factor of the elliptical motion direction, Qqaddredu(t), and the
tangential velocity of particle point H, vxmax(t), at the wave peak, is also consistent.
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5.2.3. Simulation of Particle Point Motion Characteristics in TaddT

Particle point Q is still selected as the reference point below. The number of peri-
odic pulses, m, and the number of single-phase output pulses, n, are set to 100 and 75,
respectively, and the prepressure, Fc, and the difference in the angular frequency, ∆ωadd,
are consistent with those set above (the specific content is located in Section 5.2.1). The
elliptical trajectory of particle point Q is shown in Figure 15.

According to Equations (11) and (24), the simulation curves of the vertical displace-
ment of particle point Q, ζzadd(t), and the determining factor equation of the elliptical
motion direction, Qqadd(t), were obtained, respectively.
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Although the beat period of the vertical displacement is 4π
ωq+ωn

, as shown in Figure 16,
the beat vibration of the stator surface is not caused by the frequency difference but by the
constant change in the amplitude of the stator’s two phases. When the stator surface is in
TaddT , as the stator surface propagates in the form of traveling waves, particle point Q does
not change the rotation direction intermittently but keeps moving in a clockwise elliptical
trajectory, which is consistent with the positive value of formula Qqadd(t) in Figure 17.
Additionally, the change trend for the value of the determining factor of the elliptical
motion Qqadd(t) and the tangential velocity vxmax(t) of the particle point H at the wave
peak is also consistent in Figure 17.
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5.3. Simulation Characteristics of the Drive Method

From the waveform of the aforementioned simulation curve, it can be seen that the
determining factor in any region of the superimposed pulse driving method can reflect the
rotation direction of the particle point of the stator, as well as reflect the tangential velocity
of the particle point at the peak of the wave. Because the friction material between the
wave peak particle point and the rotor is always in contact, the tangential velocity and
vertical displacement of the particle obtained by the contact model and the transfer model
will directly affect the motor speed and the fluctuation of the speed. In the following,
a series of expressions are obtained to reflect the output performance of the motor by
changing the prepressure, Fc, and frequency difference, ∆ω, based on the characteristics of
the determining factor of the direction of the elliptical motion in Section 6.

6. Simulation of the Motor Output Characteristics
6.1. Setting of Characteristic Variables

In this paper, four characteristic variables are set up to pave the way for the following
analysis. The expression for the average vs(t) of the motor speed is shown in Figure 18.

vs(t) =
v1(t) + v2(t) + · · ·+ vi(t)

I
, (i = 1, 2, 3 · · · · · · , I) (39)

where vi(t) denotes the instantaneous speed of the motor; and I denotes the number of
sampling points.

The expression for the motor speed volatility, σs, is shown below.

σs =

∣∣∣∣Sk
vs

∣∣∣∣× 100
0
0

(40)

where Sk
2 denotes the variance of motor speed fluctuation, and the expression is shown below.

Ss
2 =

(v1(t)− vs(t))
2 + (v2(t)− vs(t))

2 + · · ·+ (vi(t)− vs(t))
2

I
, (i = 1, 2, 3 · · · · · · , I) (41)



Actuators 2021, 10, 304 23 of 38Actuators 2021, 10, x FOR PEER REVIEW 25 of 40 
 

 

 
Figure 18. Schematic diagram for the instantaneous velocity of the rotor. 

The expression for the motor speed volatility, 𝜎 , is shown below.  

0
0100k

s
s

S=
v

σ ×  (40)

where 𝑆  denotes the variance of motor speed fluctuation, and the expression is shown 
below. 

( ) ( ) ( ) ( )
2 2 2

1 2( ) ( ) ( ) ( ) ( ) ( )
, 1,2,3 ,s s i s2

s

v t v t v t v t v t v t
S i I

I
− + − + + −

= =


  (41)

As shown in Figure 19, ( )
( ) ( )( )
( ) ( )( )

0

0

+
q q

q q

Q t Q t
Q t =

Q t Q t−

 ≥


<

，

，
, and the instantaneous tangential 
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As shown in Figure 19, Q(t) =
{

Qq(t)
+,
(
Qq(t) ≥ 0

)
Qq(t)

−,
(
Qq(t) < 0

) , and the instantaneous tan-

gential velocity are defined as the forward velocity when the direction is to the right,
and the backward velocity when the direction is to the left, in the three regions of the

driving method.
t=TQ+

∑
t=0

Qq(t)
+ and

t=TQ−
∑

t=0

∣∣∣Qq(t)
−
∣∣∣ denote the algebraic sum of Qq(t)

+ and∣∣∣Qq(t)
−
∣∣∣, respectively, and TQall denotes the one-cycle time of the superimposed pulse

driving method. TQ+ denotes the time for the stator particle to rotate in the clockwise
direction within TQall , and TQ− denotes the time for the stator particle to rotate in the
counterclockwise direction within TQall .
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According to Equations (11) and (24), the relationship between the determinants of
the elliptical motion direction, Qq(t), the tangential velocity of the peak particle point
H, vxmax(t), and vertical displacement of the peak particle point H, ζzmax(t), in the three
regions of the driving method is obtained and shown as follows:

Qq(t)= ζzmax(t)vxmax(t), (ζzmax(t) ≥ 0) (42)

Since the rotor and the stator are in contact at the wave peak, the two parameters, the
amplitude and the tangential velocity of the particle at the wave peak, jointly determine
the rotor speed [8], and the two parameters are directly proportional to the rotor speed.
According to Equation (42), the determining factor, Qq(t), is the product of the above
two parameters, so the determining factor determines the rotational speed of the rotor.

According to the definition of the scale factor, when ∑ Qq(t)+

∑ Qq(t)−
is larger, the clockwise rotation

speed of the stator particle is larger, resulting in the greater forward velocity of the rotor,
and vice versa. According to the definition of the average speed and volatility (Equations
(39) and (40)), the expressions for the motor’s average speed determining factor, Qaver, and
the speed fluctuation determining factor Qvib, which respectively reflect the average speed
and fluctuation of the motor, are calculated as follows:

Qaver =

t=TQ+

∑
t=0

∣∣∣Qq(t)
+
∣∣∣−t=TQ−

∑
t=0

∣∣∣Qq(t)
−
∣∣∣∣∣∣∣∣t=TQ+

∑
t=0

∣∣∣Qq(t)
+
∣∣∣+t=TQ−

∑
t=0

∣∣∣Qq(t)
−
∣∣∣∣∣∣∣∣TQall

(43)

Qvib =

√
t=TQ+

∑
t=0

∣∣∣Qq(t)
+
∣∣∣2+t=TQ−

∑
t=0

∣∣∣Qq(t)
−
∣∣∣2√

t=TQ+

∑
t=0

∣∣∣Qq(t)
+
∣∣∣2−t=TQ−

∑
t=0

∣∣∣Qq(t)
−
∣∣∣2TQall

2Qaver

(44)

where
t=TQ+

∑
t=0

∣∣∣Qq(t)
+
∣∣∣2 and

t=TQ−
∑

t=0

∣∣∣Qq(t)
−
∣∣∣2 denote the algebraic sum of

∣∣∣Qq(t)
+
∣∣∣2 and∣∣∣Qq(t)

−
∣∣∣2, respectively.

6.2. Simulation of Motor Output Characteristics

The number of periodic pulses, m, and the single-phase output pulses, n, are set to
20 and 14, respectively, and the simulation of the motor instantaneous speed, vi, and the
elliptical motion direction determination factor, Qq(t), was performed under the condition
that only one of the two parameters (angular frequency difference, ∆ω, and prepressure, Fc)
was changed, and the other parameter remained unchanged.

6.2.1. Simulation of Motor Speed and Determining Factor with Angular
Frequency Difference

When the prepressure is set as Fc = 180 N, and the angular frequency difference,
∆ω, changes within the range of (2π ∗ 2800 ∼ 2π ∗ 3300) rad/s, the simulation curve is as
shown in Figure 20.

After analyzing the simulation experiment according to the aforementioned definitions
of the characteristic variables, the conclusion is as shown in Figure 21.
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It can be seen from Figure 20b that
t=TQall

∑
t=0

Qq(t)
+ decreases with the increase in the

angular frequency difference, while
t=TQall

∑
t=0

∣∣∣Qq(t)
−
∣∣∣ increases with the increase in the angu-

lar frequency difference, ∆ω. However, the cycle time for the superimposed pulse driving
method, TQall , remains almost constant. According to Equation (A14) in Appendix C.1,
Qaver will decrease with the increase in the angular frequency difference. According to

Equation (A16) in Appendix C.2, when
t=TQall

∑
t=0

∣∣∣Qq(t)
+
∣∣∣2 >

t=TQall

∑
t=0

∣∣∣Qq(t)
−
∣∣∣2, the determining

factor for the rotation speed volatility, Qvib, will increase with the increase in the angular
frequency difference, ∆ω. Therefore, when the angular frequency difference, ∆ω, changes,
the variation trend for the average speed, vs, and the speed volatility, σs, were consistent
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with the variation trend for the motor’s average speed determinant, Qaver, and the speed
volatility determinant, Qvib, respectively, as shown in Figure 21.

6.2.2. Simulation of Motor Speed and Determining Factor Change with Prepressure

When the angular frequency difference is set as ∆ω = 2π ∗ 3000 rad/s, and the
prepressure, Fc, changes within the range of (160 ∼ 210) N, the simulation curve is as
shown in Figure 22.
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Figure 22. Simulation diagram of the characteristic variables changing with prepressure: (a) a simulation diagram of the
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After analyzing the six groups of simulation experiments, according to the definition
of the aforementioned variables, the conclusions were made and are as shown in Figure 23.
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It can be seen from Figure 22b that
t=TQall

∑
t=0

Qq(t)
+ decreases with the increase in pre-

pressure, Fc, and
t=TQall

∑
t=0

∣∣∣Qq(t)
−
∣∣∣ decreases with the increase in prepressure, Fc, while the

time of TQall in one cycle of the superimposed pulse driving method remains almost un-
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changed. According to Equation (A14) in Appendix C.1, when ∑
t=TQall
t=0 Qq(t)+

∑
t=TQall
t=0 |Qq(t)−|

increases

with the increase in Fc, Qaver increases with the increase in Fc. According to Equation (A16)

in Appendix C.2, when ∑
t=TQall
t=0 |Qq(t)+|2

∑
t=TQall
t=0 |Qq(t)−|2

> 1, the determining factor for the rotation speed

volatility, Qvib, decreases with the increase in prepressure, Fc. Therefore, when the prepres-
sure, Fc, changes, the variation trend for the average speed, vs, and the speed volatility, σs,
were consistent with the variation trend of the motor’s average speed determinant, Qaver,
and the speed volatility determinant, Qvib, respectively, as shown in Figure 23.

7. Vibration Test of Motor
7.1. Amplitude Analysis Experiment

As shown in Figure 24, the shell of the existing motor with prepressure is first cut into
a small slot and part of the stator tooth surface is exposed. Then, the prepressure is changed
by adjusting the motor’s adjustment nut. The PV-500-3D high-frequency scanning laser
vibrometer, developed by the German company, Polytec, irradiates the scanning laser point
on the tooth surface. Finally, after the prepressure adjustment is completed, the amplitude
of the lower stator particle point under the 400VP−P single-phase sinusoidal excitation is
measured through the reflection of the tooth surface, as shown in Table 2.
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Figure 24. Tooling diagram of stator amplitude test with prepressure.

When there is no prepressure on the stator, the amplitude measured, Wmax = 12.6 µm,
is almost the same as the calculated result of Equation (7), and the data in Table 2 are inserted
into Equation (8) and fitted to get the values for the constants, C f = 14.926 and ς = 0.678.

Table 2. Stator amplitude test results under different prepressures.

Prepressure FN (N) 100 120 140 160 180 200 220

Amplitude Wmax f (µm) 8.3 7.3 6.6 6.0 5.5 5.2 4.8

7.2. Prepressure Analysis Experiment

As shown in Figure 25a, to test the reliability of the calculation results of Equation (6),
this paper adjusts the prepressure by adjusting the debugging nut of the motor and uses the
frequency characteristic analyzer, FRA5087, to measure the resonant frequency of the stator
changing with the prepressure under the 400VP−P single-phase sinusoidal excitation. Then,
the measured results of the experiment and theoretical calculation are compared to obtain
the resonance frequency measurement graph with prepressure, as shown in Figure 25b.
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According to Figure 25, the error value between the resonance frequency simulation
result and the experimental test conclusion under prepressure is very small, which indicates
that the calculation result of Equation (6) is reliable.

7.3. Single-Phase Power-Off Vibration Measurement Experiment

Because the motor stator is an underdamped system, when the stator single-phase
power is cut off, the particle point on the stator will not immediately decay to the equi-
librium position. Instead, it will experience a reciprocating vibration with the resonance
frequency near the equilibrium position while its vibration amplitude is constantly decay-
ing. To verify the correctness of this theory, as shown in Figure 26a, the signal generator
sends out a pulse signal with a time length of 20 ms, and then the sinusoidal signal, with
a frequency of 45 kHz, is amplified to 80VP−P by the power amplifier and applied to
the A-phase piezoelectric ceramic plate of the stator to make the stator particle point
vibrate with a standing wave and constant amplitude. Finally, the scanning laser vibrom-
eter was used to measure the vertical velocity of the stator tooth particle point (point M
in Figure 24) near the outage time point, to f f , as shown in Figure 26b.

The vibration frequency of the particle point (point M) on the stator surface of the
A-phase piezoelectric ceramic wafer is the driving frequency, ω_q (45 kHz), at the time
period, T single, before the power failure. However, at the time period T_single redu, after
the power failure, the amplitude of the particle point’s vertical velocity decreases continu-
ously and the vibration frequency changes from the driving frequency,ω_q (45 kHz), to
the resonance frequency,ω_n (39.703 kHz). Through a single-phase power-off vibration
measurement experiment, it is verified that the stator forced-vibration frequency is the
driving frequency, and the stator free-vibration frequency is the resonant frequency, which
lays a theoretical foundation for the following two-phase power-off experiment.

In addition, since the motor stator is an underdamped system, the amplitude of free
vibration decays exponentially. Therefore, this paper determines the damping ratio, ξ, in
Table 1, according to the velocity attenuation rate of the particle point (point M) in the
vertical direction.



Actuators 2021, 10, 304 29 of 38

Actuators 2021, 10, x FOR PEER REVIEW 30 of 40 
 

 

 
Figure 25. Resonance frequency measurement diagram with prepressure: (a) a resonance frequency test kit diagram with 
prepressure; and (b) a comparison diagram of the experimental test results and theoretical calculation results with the 
change in prepressure. 

According to Figure 25, the error value between the resonance frequency simulation 
result and the experimental test conclusion under prepressure is very small, which indi-
cates that the calculation result of Equation (6) is reliable. 

7.3. Single-Phase Power-off Vibration Measurement Experiment 
Because the motor stator is an underdamped system, when the stator single-phase 

power is cut off, the particle point on the stator will not immediately decay to the equilib-
rium position. Instead, it will experience a reciprocating vibration with the resonance fre-
quency near the equilibrium position while its vibration amplitude is constantly decaying. 
To verify the correctness of this theory, as shown in Figure 26a, the signal generator sends 
out a pulse signal with a time length of 20 ms, and then the sinusoidal signal, with a fre-
quency of 45 kHz, is amplified to 80𝑉  by the power amplifier and applied to the A-
phase piezoelectric ceramic plate of the stator to make the stator particle point vibrate with 
a standing wave and constant amplitude. Finally, the scanning laser vibrometer was used 
to measure the vertical velocity of the stator tooth particle point (point M in Figure 24) 
near the outage time point, 𝑡 , as shown in Figure 26b. 

 

Figure 26. A stator single-phase vibration measurement experiment diagram: (a) vibration measurement fixture diagram;
and (b) velocity measurement diagram of particle M on the stator surface in the vertical direction.

7.4. Two-Phase Power-Off Vibration Measurement Experiment

To verify the correctness of the beat traveling wave period in Section 5, the experi-
mental process is as follows: first, the sinusoidal signal, with a voltage of 80VP−P, and a
frequency of 45 kHz, is applied to the B-phase piezoelectric ceramic plate of the stator to
make the stator particle points vibrate with the standing wave and equal amplitude (blue
line in Figure 27a), and then the sinusoidal signal with the same frequency and voltage
amplitude, and a phase difference of 90 degrees, is applied to the A-phase piezoelectric
ceramic plate of the stator (red line in Figure 27a). Finally, the A-phase piezoelectric ceramic
chip is powered off at the moment of time point to f f .

Actuators 2021, 10, x FOR PEER REVIEW 31 of 40 
 

 

Figure 26. A stator single-phase vibration measurement experiment diagram: (a) vibration measurement fixture diagram; 
and (b) velocity measurement diagram of particle M on the stator surface in the vertical direction. 

The vibration frequency of the particle point (point M) on the stator surface of the A-
phase piezoelectric ceramic wafer is the driving frequency, ω_q (45 kHz), at the time pe-
riod, T single, before the power failure. However, at the time period T_single redu, after 
the power failure, the amplitude of the particle point’s vertical velocity decreases contin-
uously and the vibration frequency changes from the driving frequency, ω_q (45 kHz), to 
the resonance frequency, ω_n(39.703kHz). Through a single-phase power-off vibration 
measurement experiment, it is verified that the stator forced-vibration frequency is the 
driving frequency, and the stator free-vibration frequency is the resonant frequency, 
which lays a theoretical foundation for the following two-phase power-off experiment. 

In addition, since the motor stator is an underdamped system, the amplitude of free 
vibration decays exponentially. Therefore, this paper determines the damping ratio, ξ, in 
Table 1, according to the velocity attenuation rate of the particle point (point M) in the 
vertical direction. 

7.4. Two-Phase Power-Off Vibration Measurement Experiment 
To verify the correctness of the beat traveling wave period in Section 5, the experi-

mental process is as follows: first, the sinusoidal signal, with a voltage of 80𝑉 , and a 
frequency of 45 kHz, is applied to the B-phase piezoelectric ceramic plate of the stator to 
make the stator particle points vibrate with the standing wave and equal amplitude (blue 
line in Figure 27a), and then the sinusoidal signal with the same frequency and voltage 
amplitude, and a phase difference of 90 degrees, is applied to the A-phase piezoelectric 
ceramic plate of the stator (red line in Figure 27a). Finally, the A-phase piezoelectric ce-
ramic chip is powered off at the moment of time point 𝑡 . 

 
Figure 27. Schematic diagram of the two-phase excitation response in the stator two-phase vibration measurement exper-
iment: (a) a schematic diagram of the two-phase excitation response; and (b) a measurement diagram of the vertical ve-
locity of particle point M on the stator surface. 

According to the experimental measurement, the vibration frequency of the stator 
tooth particle point (point M in Figure 24), before the outage time point, 𝑡 , is the driv-
ing frequency, 𝜔  (45 kHz), while after the outage time point 𝑡 , the envelope of the 
longitudinal velocity and amplitude of the particle point is displayed as a beat wave con-
tour. According to Equation (15), the period of the beat wave is as follows: 

Figure 27. Schematic diagram of the two-phase excitation response in the stator two-phase vibration measurement
experiment: (a) a schematic diagram of the two-phase excitation response; and (b) a measurement diagram of the vertical
velocity of particle point M on the stator surface.
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According to the experimental measurement, the vibration frequency of the stator
tooth particle point (point M in Figure 24), before the outage time point, to f f , is the
driving frequency, ωq (45 kHz), while after the outage time point to f f , the envelope of
the longitudinal velocity and amplitude of the particle point is displayed as a beat wave
contour. According to Equation (15), the period of the beat wave is as follows:

Tredu =
2π

ωq −ωn
= 0.188 ms (45)

As shown in Figure 27b, the beating wave period obtained from the vibration measure-
ment experiment is tq = 0.19 ms, which is close to the calculation result of Equation (15). It
verifies the correctness of the theory that, when standing waves of different frequencies
and amplitudes are applied to the two phases of the motor, the beating traveling wave will
be generated on the stator surface.

8. Experiment Research
8.1. The Establishment of the Experimental Platform

As shown in Figure 28, the experimental platform consists of a data acquisition device,
a drive control board, and an upper computer. In this experiment platform, a high-precision
encoder is used to measure the low speed of the motor, string is used to drag the weight in
the outer ring of the torque plate, and the product of the pressure measured by the pressure
sensor and the radius of the rotor is used to obtain the load moment.
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8.2. Setting of Experimental Control Variables and Analysis of Experimental Results

The driving controller is composed of a control block and a driving block. The
driving block used a four-phase push-pull circuit, and the control block used a single-chip
microcomputer, DSP-TMS320F28335. The parameters listed in Table 3 are taken as an
example to test the motor speed to verify the correctness of the aforementioned speed
simulation conclusions.

Table 3. Parameter setting table.

Parameters Value

Angular frequency difference ∆ω (2π × 3000) rad/s
Number 14
Number 20

Mortor load Tload 0.3 (N·m)
Prepressure Fc 180 (N)
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According to the parameters set in Table 3, and with a sampling period of 2 ms,
the motor speed measurement diagram measured by the driving controller is shown
in Figure 29.
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After analyzing the data in Figure 29, the conclusions are shown in Table 4.

Table 4. Result analysis table.

Parameters Value

Average motor speed vs 633 (acr s)
Range of motor speed vaver 400 (arc s/s)

Determinant of the direction of the ellipse Qaver 1447.5
Volatility of motor speed σs 17.3%

Determinant value of speed volatility Qvib 3446.4

8.3. Univariate and Multivariable Control Motor Experiments and Analysis of Experiments

Three groups of experiments were conducted to verify the correctness of the variation
trend of the simulation curves in Figures 21 and 23.

8.3.1. Open-Loop Control of Single Variable Variation

In the following experiment, only one control variable (prepressure, Fc, or the angular
frequency difference, ∆ω) was changed, and the other control variable remained unchanged.

a. Open-Loop Control of Angular Frequency Difference
In this group of experiments, the prepressure, Fc, was set as 180 N, and the range of the

angular frequency difference, ∆ω, was (2π ∗ 2800 ∼ 2π ∗ 3300) rad/s. The experimental
conclusion is shown in Figure 30.

By comparing the analysis results in Figures 21 and 30, it can be found that when the
frequency difference changes, the experimental analysis results of the velocity and volatility
are slightly higher than the simulation results because the assembly of temperature, air
humidity, and coaxiality is not taken into account in the simulation process, but these
factors can obviously affect the output characteristics of the motor. As shown in Figure
30, the change in the angular frequency difference, ∆ω, the variation trend of the average
speed, vs, and the speed volatility, σs, were consistent with the variation trend of the
motor’s average speed determinant, Qaver, and the speed volatility determinant, Qvib,



Actuators 2021, 10, 304 32 of 38

respectively, which is consistent with the conclusion of the simulation experiment results
analysis in Figure 21.
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b. Open-Loop Control of the Prepressure Change
In this group of experiments, the angular frequency difference, ∆ω, was set as

2π ∗ 3300 rad/s, and the range of prepressure, Fc, was (160 ∼ 210) N. The experimental
conclusion is shown in Figure 31.
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By comparing the analysis results in Figures 23 and 31, it can be found that when the
prepressure changes, the experimental analysis results of the velocity and volatility are also
slightly higher than the simulation results, also due to the fact that environmental factors
and assembly errors are not taken into account in the simulation process. As shown in
Figure 31, the change in prepressure, Fc, the variation trend of the average speed, vs, and
the speed volatility, σs, were consistent with the variation trend of the motor’s average
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speed determinant, Qaver, and the speed volatility determinant, Qvib, respectively, which is
consistent with the conclusion of the simulation experiment results analysis in Figure 23.

8.3.2. Open-Loop Control of Multivariable Change

Six experiments were conducted under the premise that the two control variables had
changed. The set values of the two variables are shown in Table 5.

Table 5. Multicontrol variable set values table.

Experimental Test Number 1 2 3 4 5 6

Prepressure Fc (N) 180 170 160 190 200 210

Angular frequency difference ∆ω (rad/s) 3300 3100 3000 2800 2900 3200

The experimental platform controls the motor operation according to the variables
in Table 5, and the experimental results are shown in the figure below.

According to the deduction of the contact model and the transfer model theory above,
when one of the values of the two variables changes, or changes simultaneously, the two
parameters (amplitude and tangential velocity of the particle) may become larger or smaller
at the same time, or one may become larger and the other may become smaller. Because the
above two parameters are proportional to the motor speed, and the deciding factor is the
product of the two parameters, according to Equation (42), when the multivariate changes,
the determining factor, Qq(t), is also able to reflect the trend of the motor speed change.
In order to prove the correctness of the conclusion, multivariable control experiments
were carried out in this paper, as shown in Figure 32, when the two control variables of
the angular frequency difference, ∆ω, and prepressure, Fc, change simultaneously, the
variation trend of the average speed, vs, and the speed volatility, σs, were consistent with the
variation trend of the motor’s average speed determinant, Qaver, and the speed volatility
determinant, Qvib, respectively. Through the conclusion of this experiment, it can be
concluded that whether changing the multivariable or the single variable, the determining
factor can reflect the change trend of the motor speed and the fluctuation.
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9. Conclusions

In this paper, the driving principle of the superimposed pulse driving method is
introduced, and the motor can operate at a low speed through the characteristic of the
method, which solves the periodic oscillation of the motor speed when the traditional
method (microstep driving method) drives the motor. Because of the driving mechanism,
the speed will also have a small range of periodic jitter. To improve the speed stability,
this paper established a motor driving model based on the superimposed pulse driving
method. After a simulation drawing, vibration measurement experiment, and speed test
experiment, the following conclusions were obtained:

1. According to the model of the stator structure with teeth, the relation of the stator
resonant frequency with prepressure is obtained.

2. By changing the control variable of the frequency difference, a theoretical analysis,
simulation drawing, and vibration measurement experiment are carried out on the
motion characteristics of the stator particle points, and, finally, the correctness of the
theory of the beat traveling wave is proven, according to the conclusion.

3. On the basis of the Hertz contact theory, to establish the contact model and trans-
fer model of the stator and rotor, when the motor is driven by the superposition
pulse drive method, the stator surface generates a traveling beat wave, which causes
the driving end of the stator to experience an intermittent reciprocating vibration
and drives the rotor rotation, which is the driving method when the drive motor
realizes a low-speed running mechanism, and is the cause of motor speed cycli-
cal fluctuations. To reduce the speed volatility, this paper changed the two control
variables (prepressure and frequency difference), and when the angular frequency
difference and prepressure changed in the range of (2π ∗ 2800 ∼ 2π ∗ 3300) rad/s
and (160 ∼ 210) N, respectively—whether the motor speed was controlled by a sin-
gle control variable or a multivariable control—the variation trend in the average
speed, vs, and the speed volatility, σs, were consistent with the variation trend of the
motor’s average speed determinant, Qaver, and thge speed volatility determinant,
Qvib, respectively, which is verified by the velocity measurement experiment and the
vibration measurement experiment, and lays a theoretical foundation for velocity
adjustment and stability optimization.

4. The significance of this study is that the researchers only needed to calculate the
values of the two determinants to get the variation trend for the motor’s speed and
volatility, and adjust the prepressure and driving frequency according to this trend to
finally obtain the required results, thus avoiding tedious experiments and saving a lot
of time for scientific research.
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.3390/act10110304/s1. Equation derivation of motion characteristics of the stator particle points in
the three regions of the driving method.
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Appendix A

The two-phase modal response of the motor can be described as:{
wA(x, t)= Wa sin(kcx) cos(ωat + ϕa)
wB(x, t)= Wb cos(kcx) cos(ωbt + ϕb)

(A1)

where wa and wb denote the response amplitudes of the two-phase excitation, respectively,
and ϕa and ϕb denote the phases of the two-phase excitation, respectively. According to
the superposition theorem, the displacement of the stator particle in the vertical direction
and tangential direction are shown below.{

ξz(x, t) = wA(x, t) + wB(x, t)= Wa sin(kcx) cos(ωat + ϕa) + Wb cos(kcx) cos(ωbt + ϕb)
ξx(x, t)= Dkc(Wa cos(kcx) cos(ωat + ϕa)−Wb sin(kcx) cos(ωbt + ϕb))

(A2)

Under the action of the beating traveling waves, the motion of the particles on the
stator surface is still an elliptical motion. According to Figure 5, the tangent value of the
corner, φq, in the polar coordinate system is shown below.

tan φq(x, t) =
ξz(x, t)
ξx(x, t)

(A3)

The partial derivative of both sides of Equation (A3) is obtained and is as shown below.

∂φq(x, t)
∂t

=
∂ξx(x,t)

∂t ξz(x, t)− ∂ξz(x,t)
∂t ξx(x, t)

(ξx(x, t))2

(
cos
(
φq(x, t)

))2
=

∂ξx(x,t)
∂t ξz(x, t)− ∂ξz(x,t)

∂t ξx(x, t)

(ξx(x, t))2 + (ξz(x, t))2 (A4)

In the polar coordinate system, the derivative of the corner, φq represents the rotation
direction of the particle on the stator surface in an elliptical motion. Because the denom-
inator of Equation (A4) is always positive, the determining factor of the direction of the
elliptical motion is expressed as:

Qq(t) =
∂ξx(x, t)

∂t
ξz(x, t)− ∂ξz(x, t)

∂t
ξx(x, t) (A5)

Substitute Equation (A2) into Equation (A5) to obtain the simplified expression as follows:

Qq(t) =
DkcWaWb

2
((ωb −ωa) sin((ωb + ωa)t + (ϕb + ϕa)) + (ωb + ωa) sin((ωb −ωa)t + (ϕb − ϕa))) (A6)

As the modal frequency of the stator of the ultrasonic motor is about 40 KHz, the
following conclusions can be drawn:

ϕb + ϕa � ϕb − ϕa (A7)

After simplifying Equation (A6), the simplified formula for determining the direction
of the elliptical motion is shown as follows:

Qq(t) ≈
(ωb + ωa)DkcWaWb

2
(sin((ωb −ωa)t + (ϕb − ϕa))) (A8)

According to the properties of the harmonic function, the period of Equation (A8) is
shown as follows:

Tq =
2π

|ωb −ωa|
(A9)

The ellipse of a beat wave is divided into two periods, namely, the forward ellipse and
the reverse ellipse, at each beat period, Tq, and the time of each period is Tq

2 .
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Appendix B

The general equation derivation process of the ellipse is shown below, and the two-
phase modal response of the motor is shown below.{

wA(x, t)= Wa sin(kcx) cos(ωat + ϕa)
wB(x, t)= Wb cos(kcx) cos(ωbt + ϕb)

(A10)

The vertical and tangential displacements of particle point Q on the stator surface.{
ξz(x, t) = wA(x, t) + wB(x, t)= Wa sin(kcx) cos(ωat + ϕa) + Wb cos(kcx) cos(ωbt + ϕb)
ξx(x, t)= Dkc(Wa cos(kcx) cos(ωat + ϕa)−Wb sin(kcx) cos(ωbt + ϕb))

(A11)

where PA = Wa cos(ωat + ϕa), PB = Wb cos(ωbt + ϕb). After simplification and ar-
rangement, Formula (A11) is shown as follows:{

ξz(x, t)PB = (PA sin(kcx) + PB cos(kcx))PB (1)
ξx(x,t)

Dkc
PA = (PA cos(kcx)− PB sin(kcx))PA (2)

(A12)

The general equation of the ellipse obtained after finishing Equation (A12) according
to the operation method, ((1) + (2))2, is shown as follows:(

PA
Dkc

)2

(ξx(x, t))2 + (PBξz(x, t))2 +
2PAPB

Dkc
ξx(x, t)ξz(x, t) =

((
PA

2 + PB
2
)

cos(kcx)
)2

(A13)

Appendix C

Appendix C.1 Derivation of Equation (43) Monotonicity

The monotonicity of Equation (43) is proven as follows:

Qaver =
X− 1

(X + 1)TQall
(A14)

where X =

t=TQall
∑

t=0
|Qq(t)

+|
t=TQall

∑
t=0
|Qq(t)

−|
, and the derivative of Formula (A14) is shown below.

∂Qaver

∂X
=

2

(X + 1)2TQall
>0 (A15)

It can be concluded that Equation (A14) is a monotonically increasing function, so
Qaver decreases as X decreases.

Appendix C.2 Derivation of Equation (44) Monotonicity

The monotonicity of Equation (44) is proven as follows:

Qvib = z(Y) f (Y) (A16)

where Y =

t=TQall
∑

t=0
|Qq(t)

+|2

t=TQall
∑

t=0
|Qq(t)

−|2
, f (Y) =

√
Y+1√
Y−1

, z(Y) = 1
TQall

2Qaver
, and the derivative of Equa-

tion (A16) is shown below.

∂ f (Y)
∂Y

=
−2

Y− 1
(A17)
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In Equation (A16), according to the property of the function monotonicity, when Y > 1,
f (Y) is a monotone decreasing function, and when Y ≤ 1, f (Y) is a monotone increasing
function. Because z(Y) is a monotonically increasing function, Qvib decreases as Y increases
when Y > 1, and Qvib increases as Y increases when Y < 1.
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