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Abstract: Researchers all over the world are aiming to make robots with accurate and stable human-
like grasp capabilities, which will expand the application field of robots, and development of a
reasonable grasping strategy is the premise of this function. In this paper, the improved deeplabV3+
semantic segmentation algorithm is used to predict a triangle grasp strategy. The improved model
was trained on the relabeled Cornell grasp datasets and tested on self-collected datasets. Compared
with the existing rectangular grasp strategy, the proposed algorithm and triangle grasp strategy
have achieved outstanding performance in stability, accuracy, and speed. Finally, based on the ROS
platform, this paper deploys the trained model and verifies the real effect of the trained grasping
strategy prediction model, and achieves excellent grasping effect.

Keywords: semantic segmentation; grasp strategy; triangle; SPP; robot

1. Introduction

Researchers all over the world aim to make robots achieve intelligent, human-like
grasp capabilities, which will expand the application field of robots and create huge eco-
nomic and social value. With the rapid development of deep learning and the improvement
of camera sensor hardware, research on object recognition and location based on machine
vision has made great progress [1], but there is less research on object grasp point detection,
and it is mainly focused on rectangular grasp strategy [2–6]. Ian Lenz et al. [3] proposed
a two-layer cascaded deep learning network to predict grasping strategy: The first deep
network was used to quickly exclude the impossible grasp options; the second filtered the
grasp strategy based on the first network and output the optimal value. The improved
CNN proposed by Joseph Redmon et al. [6] had strong constraint processing, so that the
model only needed to traverse the image once to achieve accurate grasp strategy, which
greatly improved the running speed of the model. Sulabh Kumra et al. [7] used a residual
network and a unique skip connection structure: the model achieved excellent object
feature extraction and good results on the Cornell grasp dataset. Douglas Morrison [5]
et al. proposed a GG-CNN model, which could directly generate grasp strategies from
pixel-level depth images, overcoming other deep learning models which rely on sampling
and classifying individual grasp candidates, resulting in long calculation times. D Avella [8]
et al. designed a custom soft robotics end-effector and integrated it into a complete and
autonomous robot grasping system in order to overcome the limitations of existing robots’
grasping of objects in messy environments. The method achieved a success rate of 74.66%
on objects of different difficulties, and had good generalization for new environments.
From the above existing research results, it is found that research on object grasping points
is relatively limited, and mainly concentrated in the field of rectangular grasping. This
is because the existing research on grasping aims at relatively regular and simple objects
(such as cylinders and cuboids), and a rectangular grasping strategy can be realized by
a two-finger gripper with low cost. However, with the deepening of grasping research
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and the improvement of people’s expectations for robot grasping, the existing research
methods are no longer suitable for objects with complex structures (such as GARAGE KIT
and children’s toys). In comparison to a human-like grasping experience, the two-finger
rectangular grasping strategy demonstrates poor generalization and is unstable. In order
to solve the above problems, in this paper, we researched object grasp point detection
from the level of pixels. First, a semantic segmentation algorithm was used to accurately
segment the object from the image. The semantic segmentation algorithm used in this
paper was deeplabV3+ [9], proposed by Google in 2018, which achieved excellent results
on VOC12. Second, the improved semantic segmentation algorithm was used to generate a
triangle grasp strategy. The triangle grasp strategy has three grasp points, which greatly
improves the stability of the grasp and is suitable for irregular objects.

The paper is divided into six parts: The first chapter summarizes and analyzes the
advantages and disadvantages of the existing research results of object grasp strategy, and
puts forward the innovation of this paper; the second chapter introduces the principle
of the algorithm; the third chapter describes the improvement process, significance of
the model, and the setting of experimental parameters; the fourth chapter describes the
training process of the model; the fifth chapter comments the experimental results; and the
sixth chapter is the conclusion.

2. Principal Analysis

Precise semantic segmentation is the premise of grasp strategy generation. Google’s
deeplabV3+ algorithm not only inherits the excellent performance of the previous algo-
rithm on multi-scale objects, but also solves the problems of low prediction accuracy and
boundary information loss caused by feature map resolution degradation resulting from
multiple down-sampling of DCNN.

2.1. Atrous Convolution Kernel

Inserting a specific number of zeros into an ordinary convolution kernel is called
atrous convolution, which is one of the core innovations of the deeplab algorithm. Multiple
atrous revolution of different specifications can be connected in parallel to achieve excellent
multi-scale information extraction ability. Receptive field is an important parameter of the
semantic segmentation algorithm, and its main task is to calculate the number of nodes in
the current layer that can feel the previous layer, which has an impact on the accuracy and
speed of the model.

As shown in Figure 1a, after the stride of one-dimensional convolution is changed
from 2 to 1, the receptive field clearly changes, and the receptive field of both is 3 when the
output is (0, 1, 2, 3) and (0, 1, 2, 3, 4, 5, 6). It is found that (0, 1, 2, 3) in pool 1 corresponds to
(0, 2, 4, 6) in pool 2, which shows that when the receptive fields are the same, other nodes
are added to the model, which can make the feature map of the latter layer denser and
allow it to contain more information.
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In order to keep the receptive field unchanged, the ordinary solid convolution layer
filters need to be expanded, which is the origin of the atrous convolution algorithm. After
using atrous convolution, the size of filter k changes as follows:

k = k + (k− 1)(hole_size− 1) (1)

where k is the size of the original filter, hole_size is the dilated rate. Assuming that the
original filter size is 3 and the dilated rate is 2, according to the formula (1), the expanded
filter size is 5, and the expanded part is filled with 0 (Figure 1b).

In addition, the calculation of the model receptive field starts from the first layer
of the input layer and then calculates in turn. Therefore, the receptive field size of the
output feature map of the first layer convolution layer is equal to the size of the filter. The
calculation formula of the model receptive field is as follows:

Sn = Sn−1 ∗ s (2)

RFn = RFn−1 + (kn − 1) ∗ Sn−1 (3)

where Sn is the strides of n layers in front of the network, and s is the stride of the current
layer. RFn is the receptive field (RF) of the upper layer, RFn−1 is the receptive field of this
layer, kn is the size of convolution kernel, and the effect of padding on the receptive field
can be ignored. The receptive field of the n-th layer of the model can be quickly calculated
through the above formula, which can not only improve the overall control, but also help
to judge the rationality of the model structure.

2.2. Encoder and Decoder

In order to make the model have better multi-scale information fusion capability,
deeplabV3+ combines the spatial pyramid pool (SPP) (Figure 2a) and encoder–decoder
module used in deeplabV3 (Figure 2b), and then proposes a new atrous convolution
encoder–decoder structure (as shown in Figure 2c), which well realizes the balance of
accuracy and speed. The encoder part (Figure 2c left) realizes the extract of high-level
feature semantic information through continuous down-sampling, and takes into account
the semantic information of different size objects through the SPP, which greatly improves
the multi-scale information perception ability. The decoder module (Figure 2c right) restores
the image to the original size by up-sampling while retaining the boundary information,
which solves the problem of boundary information loss in the semantic segmentation
model.
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2.3. Overall Structure of DeeplabV3+

Figure 3 shows the overall structure of deeplabV3+ in detail. The encoder is used to
extract the semantic information contained in the high-level features of the image. The
atrous convolution module not only realizes image feature extraction and multi-scale
context information acquisition, but also replaces the down-sampling module, which
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makes the output stride of the feature map 16. The main function of the decoder module is
to extract the boundary information from the low-level features of the image.
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Figure 3. The overall structure of deeplabV3+.

3. Improvement of Model Structure

Deeplab algorithm is mainly used in the field of semantic segmentation, so it needs
to be improved before used in the research of object grasp strategy. Firstly, the detection
of grasping points is a multi-output task, including grasp confidence value, grasp angle
and grasp width. As shown in Figure 4, after input RGB, the model needs to output three
values: grasp confidence value, grasp angle and grasp width, and realize the output of the
optimal grasping strategy based on them. Secondly, it can be seen from Figure 3 that the
output of the model needs to be modified to three before the output of the grasp strategy
can be realized and Figure 5 shows the improved model structure in detail.
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As shown in Figure 2, SPP is the core of the algorithm. It not only plays the role of
feature extraction, but also as the core innovation of deeplab. At present, there is no sys-
tematic mathematical theoretical basis for SPP structure, but the setting of atrous value and
the number of convolution kernels are the key factors to determine the performance of SPP,
therefore, this paper will optimize the model from these two aspects. After summarizing
the relevant references [10–15], it is found that the current research has personalized and
transformed the atrous value and the number of convolution kernels for their respective
fields, so as to improve the matching degree between the model and the application field.
After specific analysis, the following principles are summarized:

(1) The SPP with large and small atrous value is adopted on high-resolution image and
low-resolution image, respectively, which can alleviate the grid effect and ensure the
ability of the model to obtain multi-scale object information at the same time;

(2) Sawtooth structure and loop structure have their own advantages and disadvan-
tages. In principle, the complexity is reduced as much as possible while ensuring the
performance of the model;

(3) The difference between atrous values should not jump too large, which basically
meets the distribution of arithmetic sequence.

The above analysis shows that it is necessary to design different specifications of
SPP according to different tasks. Therefore, this paper designs and tests a variety of
SPP structures in order to develop a model more suitable for triangle grasping strategy
prediction. On the other hand, in order to modify the output to three indicators for
evaluating the grasp strategy, the last convolution layer and up-sampling layer of the
model are deleted (as shown in Figure 5), and the deeplabV3+ is used as a feature extractor.
When images are input into the model, the feature extractor will output several feature
maps of specific size, and these feature maps are input into the grasp predictor, the grasp
confidence value, grasp angle and grasp width will be output. The prediction part consists
of two 3 ∗ 3 convolution kernels and up-sampling. The predictor predicts the center
position of the triangle by determining whether the location of the point can be grasped,
and the grasp angle and width predictor is used to refine the size and direction of the
triangle.

The prediction of grasping confidence value is a binary classification problem: we use
the softmax cross-entropy as the loss function. The grasping angle is a multi-object and
multi-classification problem: we use the sigmoid cross-entropy as the loss function. The
prediction of the grasping width is a regression problem, and we use the mean square error
function as the loss function.

Kullback–Leibler (KL) divergence can be used to measure the difference between two
distributions, which can be described as formula (4).

DKL(p ‖ q) =
n

∑
i=1

p(xi) log
(

p(xi)

q(xi)

)
(4)

where n is all the possibilities of the event, p is the label value, and q is the predicted value.
The smaller the value of DKL, the closer the q and p distribution are.

According to formula (4), we can get formula (5):

DKL(p ‖ q) =
n
∑

i=1
p(xi) log(p(xi))−

n
∑

i=1
p(xi) log(q(xi))

= −H(p(x)) +
[
−

n
∑

i=1
p(xi) log(q(xi))

] (5)

where −H(p(x)) represents the entropy of P.
Based on formula (5), we can get the cross entropy:

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi)) (6)
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Then, softmax cross-entropy can be described as the following formulas:

Sj =
eaj

∑ T
k=1eak

(7)

L = −
T

∑
j=1

yi log sj (8)

where L is the loss value and Sj is the j-th value of the softmax output vector S.
Sigmoid cross-entropy can be described as the following formula (9):

Z ∗ (− log(sigmoid(x))) + (1− Z) ∗ (− log(1− sigmoid(x)))
= Z ∗ (− log(1/(1 + exp(−x)))) + (1− Z) ∗ (− log(exp(−x)/(1 + exp(−x))))
= Z ∗ log(1 + exp(−x)) + (1− Z) ∗ (− log(exp(−x) + log(1 + exp(−x))))
= Z ∗ log(1 + exp(−x)) + (1− Z) ∗ (x + log(1 + exp(−x)))
= (1− Z) ∗ x + log(1 + exp(−x))
= x− x ∗ Z + log(1 + exp(−x))

(9)

where x is the predicted value and Z is the label value.
Mean square error function can be described as the following formula (10):

MSE
(
y, y′

)
=

∑ n
i=1

(
yi − y′i

)2

n
(10)

where yi is the label value and y′i is the predicted value.
In order to compare the accuracy of different SSP structures in grasping strategy, this

paper designed different structure and parameter experiments to systematically train the
model and comprehensively compare its performance, as shown in Table 1.

Table 1. Experimental parameters distribution.

SPP_Number 4 5

Dilated_rate1-2-3-4 1-2-4-6 1-3-5-7 1-3-6-9 1-6-12-18 1-2-3-4-5 1-2-4-6-8 1-3-5-7-9 1-3-6-9-12 1-6-12-18-24

4. Experiment
4.1. Introduction to Grasp Strategy

As shown in Figure 6, the triangle grasp representation with fixed orientation is
inspired by human grasping behavior. The human will first consider a reasonable grasping
position before determining the grasping posture of the hand. In the plane image, the
location of the grasping object is represented by pixel coordinates, and then the hand
posture in the grasping process is mapped to the grasping angle and the unfolding width
of the gripper. Therefore, a real and reasonable plane grasp representation should take
pixels as the core, including grasp angle and width. As shown in Figure 6a, the triangle
grasp strategy is expressed as:

G = (x, y, ω, θ, d) (11)

where (x, y) is the center coordinate of the height of the bottom edge of the triangle, ω
is the height of the triangle, θ is the angle between the height of the triangle and the
horizontal line, and d is the width of the bottom edge of the triangle. Compared with
the traditional rectangular grasping method [2–6], the triangular grasping representation
has two advantages: It has higher grasping stability on complex contour objects; Deeplab
algorithm can provide more accurate label and prediction accuracy.
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Figure 6. Schematic diagram of triangle grasp strategy (a) principle; (b) physical display [16].

4.2. Introduction of Datasets

The grasp datasets used in this paper is Cornell grasp dataset, which has 240 objects,
885 RGB images and depth images. Because the three finger grasp strategy in this paper
is quite different from the rectangular grasp strategy, this paper only uses the image data,
and the dataset relabeled by Wang Dexin et al. [17] is used for the training of the model (as
shown in Figure 7).
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Figure 7. Relabeled triangle grasp strategy.

Figure 7 shows some visualized label data. For the convenience of labeling, the
triangle is not labeled directly, but represented by a fixed length segment with direction
and endpoint. All points in the blue area are grasping points. A green line is drawn with
each grasping point as the end point and the included angle between the green line and
the horizontal line is the grasping angle. The length of the green line is half of the grasping
width. For cases where symmetrical grasping is not possible, only one green line is drawn,
and two green lines in opposite directions represent symmetrical grasping.

4.3. Experimental Environment

The training environment is the 64 bit of Ubuntu 18.04, which adopts the pytorch deep
learning framework. The hardware configuration is: core i9-9900x, RAM 128 GB, NVIDIA
GeForce RTX2080Ti*2.

5. Result and Discussion

This chapter will verify the improved grasp strategy generation algorithm proposed in
Chapter 3. Figure 5 shows the improved model structure, and the experimental parameters
are shown in Table 1. The pytorch framework was developed by the Facebook team and
opened source on GitHub in 2017. Pytorch has the advantages of simple framework, easy
to use, support for dynamic calculation graph and high memory utilization.

5.1. Training Process Analysis

There are few studies on triangular grasp strategy, and even less on the generation of
grasp strategy by improving deeplabV3+. Based on the above situation, this paper sets a
set of traditional solid convolution kernels ablation experiment as a baseline to facilitate
comparison with other experiments.
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It is found from the curves in Figure 8 that the loss value of the model decreases
gradually with the increase of the number of iterations, and there is no gradient explosion
or violent oscillation, which shows that the training of the model is normal. The overall
loss value is calculated as follows:

Train_loss = train_able_loss + train_angle_loss + train_width_loss (12)Actuators 2021, 10, x FOR PEER REVIEW 9 of 17 
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Figure 8. Experimental results of traditional solid convolution kernel (a) Overall loss curve; (b) Per-
formance curve on test set.

From the formula (12), it is found that the overall loss is composed of three parts:
confidence value loss, angle loss and width loss. The loss value of width is significantly
higher than the other two items. This is because the determination of grasp width needs to
convert the pixel width in the image into metric width, so there is a large error in model
training.

According to the 10 groups of parameter structures in Table 1, this paper makes a
systematic experiment on the model, and visualizes the training and test curves of the six
groups of models with the best performances, as shown in Figures 9 and 10. Figure 9 is the
model performance curve under four convolution kernels and it can be seen from the loss
curve that the training process of the model is relatively stable. By observing the prediction
curve (Figure 9b,d,f), it is found that the accuracy of the model is gradually increasing with
the increase of the number of iterations, which shows that the proposed model structure is
reasonable and there is no over-fitting. On the other hand, it is found that the coincidence
rate of IOU and grasp confidence value is not high, and the IOU value is gradually higher
than the grasp confidence value with the increase of iterations. This is because the grasp
confidence value is generated on the basis of IOU, so it is normal that it is slightly lower
than the IOU.
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Figure 9. Training and prediction curves of 4 convolution kernel: (a) loss curve with dilated rate of 1-2-3-4; (b) performance
prediction curve with dilated rate of 1-2-3-4; (c) loss curve with dilated rate of 1-2-4-6; (d) performance prediction curve
with dilated rate of 1-2-4-6; (e) loss curve with dilated rate of 1-3-6-9; (f) performance prediction curve with dilated rate of
1-3-6-9.
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Figure 10. Training and prediction curves of five convolution kernel (a) loss curve with dilated rate of 1-2-3-4-5; (b)
performance prediction curve with dilated rate of 1-2-3-4-5; (c) loss curve with dilated rate of 1-2-4-6-8; (d) performance
prediction curve with dilated rate of 1-2-4-6-8; (e) loss curve with dilated rate of 1-3-5-7-9; (f) performance prediction curve
with dilated rate of 1-3-5-7-9.

Figure 10 is the model performance curve under 5 convolution kernels, and the overall
loss curve is similar to Figure 9, which shows that there is no over-fitting phenomenon
with the increase of model complexity. With the increase of the number of iterations, the
prediction curve (Figure 10b,d,f) is also gradually increasing, but the overall accuracy is
similar to or even slightly insufficient with the structure of four convolution cores, which
indicates that the improvement of complexity does not further improve the performance of
the model. In addition, under the five convolution kernels, the coincidence degree of IOU
and grasping confidence value curve increases significantly, which shows that with the
increase of model complexity, the influence of IOU on grasping confidence value increases,
while the influence of other parameters decreases.

In order to more objectively evaluate the performance of the model under different
parameter structures, the important performance indicators are summarized in Table 2. It
can be seen from the data in the Table 2 that the loss values of the models under different
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data structures have little difference, but the specific analysis shows that the loss value of
1-3-5-7-9 is the smallest, because this structure has five parallel atrous convolution kernels,
the parameter interval is set reasonably and relatively prime. On the other hand, it is
found that the IOU and grasp value of the model on the test set are very close, because
the model has achieved good performance in IOU and grasp value after training. The
last two column of the Table 2 shows the prediction accuracy of the model on the test set,
which is the most important index to evaluate the performance of the model. It can be seen
that the performance of different models varies significantly and the parameter structure
with the best performance is 1-2-4-6, followed by 1-2-3-4-5 and 1-3-5-7-9. The 1-6-12-18
structure adopted by deeplabV3+ paper does not achieve good prediction performance,
which shows that this structure is not suitable for the prediction of grasp strategy, and also
shows the importance of this study.

Table 2. Performance comparison under different parameter structures.

Structure Loss Loss_Able Loss_Angle Loss_Width Valida
Tion_IOU

Validation
Graspable

Accuracy_
Image_Wise

Accuracy_
Object_Wise

1-2-3-4 0.01923 0.00184 0.00187 0.01552 0.97 0.920935 92.39% 90.25%
1-2-4-6 0.02021 0.00200 0.00202 0.01618 0.97 0.923298 97.83% 97.04%
1-3-6-9 0.02030 0.00198 0.00196 0.01636 0.97 0.928626 94.57% 93.27%

1-2-3-4-5 0.01995 0.00197 0.00195 0.01604 0.96 0.922368 95.65% 94.67%
1-2-4-6-8 0.01973 0.00187 0.00187 0.01600 0.96 0.927294 88.89% 86.76%
1-3-5-7-9 0.01918 0.00191 0.00192 0.01535 0.96 0.919595 95.65% 96.98%

1-6-12-18 [9] 0.02026 0.00201 0.00198 0.01627 0.95 0.919623 92.39% 92.05%

The SPP structure proposed by deeplab algorithm realizes excellent multi-scale infor-
mation grasp function by using parallel atrous convolution of different dilated rate. The
specific principle is as follows:

y[i] = ∑
k

x[i + r•k]ω[k] (13)

where r represents the stride of the input signal sampling, that is, the input x is convoluted
with the up-sampling filters obtained by inserting r-1 zeros along each spatial dimension
between two continuous filters.

By changing the dilated rate of atrous convolution, model can well control the recep-
tive field of the model and adjust the compactness of the model. From formula (6), it can
be seen that large or small dilated rate will affect the model’s ability to extract semantic
information, resulting in poor performance in the grasp strategy, which also explains the
reason why the 1-2-4-6 parameter structure has the best performance.

5.2. Visualization of Data

Figure 11a shows the grasp effect of the model on Cornell datasets, and it can be found
that since the triangular grasping strategy is more stable than the rectangular strategy, it
is considered a reasonable grasping option even when the grasping position is located at
the object edge away from the center of gravity, which greatly improves the generalization
performance. Figure 11b shows the prediction results of the model on the self-collected
datasets and it is found that the model has good generalization performance on different
datasets.



Actuators 2021, 10, 328 12 of 16

Actuators 2021, 10, x FOR PEER REVIEW 12 of 17 
 

 

be seen that large or small dilated rate will affect the model’s ability to extract semantic 
information, resulting in poor performance in the grasp strategy, which also explains the 
reason why the 1-2-4-6 parameter structure has the best performance. 

5.2. Visualization of Data 
Figure 11a shows the grasp effect of the model on Cornell datasets, and it can be 

found that since the triangular grasping strategy is more stable than the rectangular strat-
egy, it is considered a reasonable grasping option even when the grasping position is lo-
cated at the object edge away from the center of gravity, which greatly improves the gen-
eralization performance. Figure 11b shows the prediction results of the model on the self-
collected datasets and it is found that the model has good generalization performance on 
different datasets. 

 

(a) 

 

(b) 

Figure 11. Visualization on different datasets: (a) Visualization on Cornell University datasets; (b) Visualization on self-
collected datasets. 

Because most of the current research on grasping strategy is aimed at the rectangular 
grasping strategy of two fingered dexterous hand, this paper selects the representative 
research results in this field for horizontal comparison with the results of triangle. It can 
be seen from the Table 3 that with the rapid development of the algorithm, the accuracy 
of the grasping strategy is getting higher and higher. Due to there are uncontrollable er-
rors between the prediction accuracy of the algorithm and the execution accuracy of the 
robot, only by obtaining high accuracy at the model level can the high accuracy of the 
robot be guaranteed to a certain extent, which also explains the importance of the accuracy 
of the algorithm. Further analysis shows that the existing grasp strategy research is mainly 
focus on the rectangular based on CNN, which is completely different from the triangle 
grasp strategy based on semantic segmentation proposed in this paper. Because the se-
mantic segmentation algorithm can accurately segment the object from the image and 
generate the grasp strategy, although the triangular grasp strategy is more complex than 

Figure 11. Visualization on different datasets: (a) Visualization on Cornell University datasets; (b) Visualization on
self-collected datasets.

Because most of the current research on grasping strategy is aimed at the rectangular
grasping strategy of two fingered dexterous hand, this paper selects the representative
research results in this field for horizontal comparison with the results of triangle. It can be
seen from the Table 3 that with the rapid development of the algorithm, the accuracy of
the grasping strategy is getting higher and higher. Due to there are uncontrollable errors
between the prediction accuracy of the algorithm and the execution accuracy of the robot,
only by obtaining high accuracy at the model level can the high accuracy of the robot be
guaranteed to a certain extent, which also explains the importance of the accuracy of the
algorithm. Further analysis shows that the existing grasp strategy research is mainly focus
on the rectangular based on CNN, which is completely different from the triangle grasp
strategy based on semantic segmentation proposed in this paper. Because the semantic
segmentation algorithm can accurately segment the object from the image and generate the
grasp strategy, although the triangular grasp strategy is more complex than the rectangular
grasp strategy, it still achieves advanced prediction performance. Table 3 show that the
method proposed in this paper is superior to the current mainstream methods in accuracy
and speed.
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Table 3. Performance comparison of different algorithms.

Author Year Representation Datasets Algorithm
Accuracy (%)

Speed (ms)
IW OW

Yun Jiang [18] 2011 Rectangle Self-made Two-step proces 60.5 58.3 5000

Ian Lenz [3] 2013 Rectangle Cornell grasp
dataset

A two-step cascaded
system 88.4 88.7 —

Joseph Redmon [6] 2015 Rectangle Cornell grasp
dataset

Single-stage
regression 88.0% 87.1% 76

Sulabh Kumra [7] 2017 Rectangle Cornell grasp
dataset ResNet-50 * 2 89.2 88.9 16

Di Guo [2] 2017 Rectangle Cornell grasp
dataset Hybrid architecture 93.2 89.1 —

Fu-Jen Chu [19] 2018 Rectangle Cornell grasp
dataset ResNet-50 96.5 96.1 20

YULIN XU [4] 2019
Oriented
diameter

circle

Cornell grasp
dataset GraspCNN 96.5% — 50

Douglas Morrison [5] 2020 Rectangle Cornell grasp
dataset GG-CNN 88.0% — 20

Wang Dexin [17] 2020 Triangle Cornell grasp
dataset SGDN 96.8% 92.3% 19

Ours 2021 Triangle Cornell grasp
dataset SSGP 97.83% 97.04% 19

* This represents the concatenation of the two ResNet-50 into a whole. Bold: This line is the accuracy of the model proposed in this paper.

5.3. Application Verification
5.3.1. Platform Introduction

Figure 12 shows the hardware platform of the experiment: Figure 12a is a 6-DOF robot
for trajectory operation of object grasping; Figure 12b is a five-fingered dexterous hand, in
which the five fingers can be controlled independently. Therefore, the thumb, index finger
and middle finger are used as the actuator of the triangular grasping strategy; Figure 12c is
the depth camera, which is used for image acquisition and object positioning to provide
position information for the grasping of the dexterous hand.
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5.3.2. System Architecture

Robot object grasp involves a series of operations, such as image acquisition, model
loading, trajectory planning, and dexterous hand execution, so it is a relatively complete
recognition and control system. Figure 13 shows the experimental framework of this paper
in detail, and the picture in the upper left is the experimental environment. The system
is mainly composed of four parts: Firstly, the RGB and depth information of the image is
collected by the depth camera and uploaded to the ROS platform for processing; secondly,
the ROS platform gets the accurate position of the object based on the collected image, and
then predicts a reasonable grasp strategy based on the trained model; thirdly, ROS will
plan an appropriate trajectory for the robot to approach the object to be grasped; Finally,
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ROS sends grasping instructions to the dexterous hand to complete the grasping. The
whole process is scheduled by the ROS platform deployed on one computer, which has
good application value.
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5.3.3. Result Analysis

In this paper, 10 kinds of common objects (household objects) and five kinds of un-
common objects (adversarial objects) in life are used for 10 repeated grasping experiments
respectively to count the success rate (Figure 14). Common objects have regular shapes
and no obvious dents or protrusions on the surface (Figure 14a) and uncommon objects are
rare objects in life, with irregular shapes and obvious depressions or protrusions on the
surface (Figure 14b). Because the traditional two finger gripper has only two force points,
once the gripping position is selected at the dents or protrusions, the object will probably
slide down, resulting in grasping failure. Therefore, the research of two fingers grasping
are mostly common objects.

 

 
 

 

 
Actuators 2021, 10, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/actuators 

 

  
(a) (b) 

Figure 14. Objects to be grasped. (a) Common objects, (b) uncommon objects. Figure 14. Objects to be grasped. (a) Common objects, (b) uncommon objects.

The robot carried out a total of 150 grasps, of which 140 were successful, and the
success rate was 93.3%. The success rate on common objects were 95%, and the accuracy
rate on uncommon objects were 90%.

Figure 15 shows the objects to be grasped for the experiment and the actual grasping
effect. It is found that the three-fingered dexterous hand can grasp both common and
uncommon objects stably, which shows that the trained model has good generalization
performance. However, there are also grasping failure cases, which is mainly due to the
sliding after grasping caused by the smooth surface of the object and the unreasonable
grasping strategy predicted by the model. In order to further highlight the excellence of the
research of this paper, Table 4 comprehensively compares the experimental results of this
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paper with the existing research results. It is found that the triangle grasping method based
on semantic segmentation proposed in this paper has achieved advanced performance on
a variety of different objects.

Actuators 2021, 10, x FOR PEER REVIEW 15 of 17 
 

 

The robot carried out a total of 150 grasps, of which 140 were successful, and the 
success rate was 93.3%. The success rate on common objects were 95%, and the accuracy 
rate on uncommon objects were 90%. 

Figure 15 shows the objects to be grasped for the experiment and the actual grasping 
effect. It is found that the three-fingered dexterous hand can grasp both common and un-
common objects stably, which shows that the trained model has good generalization per-
formance. However, there are also grasping failure cases, which is mainly due to the slid-
ing after grasping caused by the smooth surface of the object and the unreasonable grasp-
ing strategy predicted by the model. In order to further highlight the excellence of the 
research of this paper, Table 4 comprehensively compares the experimental results of this 
paper with the existing research results. It is found that the triangle grasping method 
based on semantic segmentation proposed in this paper has achieved advanced perfor-
mance on a variety of different objects. 

 
Figure 15. Object to be grasped (left) and successfully grasp sample (right). 

Table 4. Comparison of robot grasping experimental results. 

Author 
Accuracy on  

Common Objects 
(%) 

Accuracy on  
Uncommon  
Objects (%) 

Overall Accuracy 
(%) 

Two/Three Fingers Year 

Ian Lenz [3] 89 (89/100) - 89 Two fingers (rectangle) 2015 
Pinto Lerrel [20] 73 (109/150) - 73 Two fingers (rectangle) 2015 
Na Yong-Ho [21] 72 69 70.5 Two fingers (rectangle) 2017 
Chu Fu-Jen [19] 89 (89/100) - 89 Two fingers (rectangle) 2018 

Morrison [5] 92 (110/120) 84 (67/80) 88.5 Two fingers (rectangle) 2019 
Shang Weiwei [22] 92 (276/300) - 92 Five fingers (rectangle) 2020 

Ours 95 (95/100) 90 (45/50) 93.3 Three fingers (triangle) 2021 

Aiming at the problem of low stability of the traditional rectangular grasp strategy, 
a triangle grasp strategy based on deeplabV3+ semantic segmentation algorithm is pro-
posed, trained on Cornell grasp dataset and tested on self-collected dataset. Then, the 
trained model is deployed on the robot platform for application verification. 

6. Conclusions 
Accurate and reasonable grasp strategy is the premise to achieve object grasp, so it 

has important research significance. This paper studies the triangle grasp strategy based 
on deeplabV3+ semantic segmentation algorithm. Through theoretical analysis and exper-
imental verification, it is found that when the SPP structure is changed to 1-2-4-6, the 
model can achieve 97.83% and 97.04% optimal performance on image_wise and ob-
ject_wise, respectively, and compared with the traditional rectangular grasp strategy, it 

Figure 15. Object to be grasped (left) and successfully grasp sample (right).

Table 4. Comparison of robot grasping experimental results.

Author Accuracy on
Common Objects (%)

Accuracy on
Uncommon Objects

(%)

Overall Accuracy
(%) Two/Three Fingers Year

Ian Lenz [3] 89 (89/100) - 89 Two fingers (rectangle) 2015
Pinto Lerrel [20] 73 (109/150) - 73 Two fingers (rectangle) 2015
Na Yong-Ho [21] 72 69 70.5 Two fingers (rectangle) 2017
Chu Fu-Jen [19] 89 (89/100) - 89 Two fingers (rectangle) 2018

Morrison [5] 92 (110/120) 84 (67/80) 88.5 Two fingers (rectangle) 2019
Shang Weiwei [22] 92 (276/300) - 92 Five fingers (rectangle) 2020

Ours 95 (95/100) 90 (45/50) 93.3 Three fingers (triangle) 2021

Aiming at the problem of low stability of the traditional rectangular grasp strategy, a
triangle grasp strategy based on deeplabV3+ semantic segmentation algorithm is proposed,
trained on Cornell grasp dataset and tested on self-collected dataset. Then, the trained
model is deployed on the robot platform for application verification.

6. Conclusions

Accurate and reasonable grasp strategy is the premise to achieve object grasp, so
it has important research significance. This paper studies the triangle grasp strategy
based on deeplabV3+ semantic segmentation algorithm. Through theoretical analysis
and experimental verification, it is found that when the SPP structure is changed to 1-2-
4-6, the model can achieve 97.83% and 97.04% optimal performance on image_wise and
object_wise, respectively, and compared with the traditional rectangular grasp strategy,
it not only improves the grasp stability, but also achieves the leading performance in
prediction accuracy. This paper broadens the direction for the research of robot grasping
and makes a useful exploration.

Object grasping is a complex system engineering, which includes not only the grasping
strategy, but also the prediction of grasping posture. Therefore, this paper will proceed
from the perspective of depth image and 3D point cloud to carry out three-dimensional
reconstruction of the object, and then realize the study of multi-grasp posture. The grasping
strategy and grasping posture are integrated to further improve the success rate and
stability of grasping.
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