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Abstract: Multiparameter optimization of complex electromechanical systems in a physical space is
a challenging task. CPS (Cyberphysical system) technology can speed up the solution of the problem
based on data interaction and collaborative optimization of physical space and cyberspace. This
paper proposed a general multiparameter optimization framework by combining physical process
simulation and clustering genetic algorithm for the CPS application. The utility of this approach is
demonstrated in the instance of automobile engine energy-saving in this paper. A 1.8-L turbocharged
GDI (gasoline direct injection) engine model was established and calibrated according to the test
data and physical entity. A joint simulation program combining CGA (Clustering Genetic Algorithm)
with the GDI engine simulation model was set up for the engine multiparameter optimization
and performance prediction in cyberspace; then, the influential mechanism of multiple factors on
engine energy-saving optimization was analyzed at 2000 RPM (Revolutions Per Minute) working
condition. A multiparameter optimization with clustering genetic algorithm was introduced for
multiparameter optimization among physical and digital data. The trade-off between fuel efficiency,
dynamic performance, and knock risk was discussed. The results demonstrated the effectiveness
of the proposed method and that it can contribute to develop a novel automotive engine control
strategy in the future.

Keywords: cyberphysical system; clustering genetic algorithm; multiparameter optimization; auto-
motive engine; energy-saving

1. Introduction

The CPS (Cyberphysical system) is a multidimensional complex system integrating
computation, communication, control, and physical elements that has become a cutting-
edge technology for the next generation of industrial applications [1]. It has become a
research hotspot in recent years for its explosive growth in the potential of numerous
application areas including agriculture, energy, healthcare, manufacturing transportation,
and smart environment. Plakhotnikov et al. applied the CPS to an automobile gas-filling
compressor station to improve their work and take advantage of all the capabilities of
cyberphysical systems [2]. Guo et al. proposed a systematic assessment of cyberphysical
security on the energy management system for connected and automated electric vehi-
cles [3]. How to integrate the information of physical space and cyberspace to achieve
an overall objective optimization is important to the CPS applications in the future. The
CPS theory and technology can improve complex systems’ operation performance such as
adaptability, autonomy, efficiency, functionality, reliability, and safety. For the automotive
industry, ICV (Intelligent and Connected Vehicle) has become an important development
trend. ICV is equipped with advanced on-board sensors, controllers, actuators, and other
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devices. Integrating modern communication and network technologies can realize intel-
ligent information exchange among passengers, vehicles, and roads. ICV has provided
an important platform for the application of CPS. Existing research has shown that the
concept of vehicular CPS has been circulating for some time but the studies of vehicular
CPS still need further refinement at the subsystems and components level. As early as
2010, Wang et al. made a conclusion that CPS will be the key to any successful construction
and deployment of AI (Artificial Intelligence)-based intelligent systems [4] and they have
taken almost 5 years to establish the parallel driving theory of intelligent cars based on
CPS [5]. In 2010, Fallah introduced the CPS named the cooperative vehicle safety system,
coupling the computing and communications aspects of the vehicular system with its
physical dynamics [6]. Wan et al. first proposed a multilayered context-aware architecture
based on CPS leading to an increasing evolutionary tendency in vehicular social network
developments [7]. With the development of V2X technology, the road traffic environment
has gradually become a larger cyberphysical world. Some new technologies based on
vehicular CPS also obtain the innovation breakthrough accordingly [8]. The above CPS
theoretical application research was aimed at the whole vehicle and even more macroscopic
dimensions of the intervehicle communication network. Referring to CPS theory, the
vehicle or its subsystems can also be essentially described as a complex CPS system that
uses digital and physical hybrid data for design, production, operation, and maintenance.
Some researchers have realized that CPS can be used to guide more studies in-depth at
the automotive subsystem level. For example, a CPS-based framework was proposed for
co-design-optimization of the physical plant parameters and controller variables for an
electric powertrain [9,10]. However, the automobile structure composed of thousands of
parts obtains a large number of complex data from physical space and information space,
which brings many challenges to the application of CPS. At present, CPS in the automotive
field has not been refined at the subsystem level, and often works in combination with
the whole vehicle and transportation system. This paper took the automobile engine as a
research object and attempted to provide a general CPS framework to solve its problems,
such as fuel efficiency, dynamic performance, and knock risk.

The paper is structured as follows: (1) The related works are introduced in Section 2.
The technical route of engine energy saving and the difficulty of multiparameter optimiza-
tion is discussed based on the related works. The significance of using multiparameter
optimization method based on CPS theory in the engine energy-saving field is described
briefly. (2) The multiparameter optimization framework of cyberphysical systems is ex-
pounded in Section 3. Referring to gasoline engine multiparameter optimization, we
propose an improved clustering genetic algorithm for multiparameter optimization among
physical and digital data. (3) The systematic optimization of full loads at an engine speed
of 2000 rpm is selected as a validation case and the results are discussed in Section 4. At
last, the conclusions are drawn in Section 5.

2. Related Works

Recently, air pollution reduction, energy conservation, and climate change mitigation
have been issues of global concern. More strict fuel consumption and emission control
policies will be enforced to internal combustion engine vehicles [11]. The CAFC (Corporate
Average Fuel Consumption) was limited to 5 L/100 km in 2020 and will be even lower in
the future. Turbocharged GDI (Gasoline Direct Injection) engines have become increasingly
popular in the used engines markets recently [12,13]. However, the compression ratios of
the turbocharged GDI engines are smaller than those of naturally aspirated engines, which
are penalized by knock risks [14]. Increasing the compression ratio of gasoline engines
has been considered as a way to obtain high combustion efficiency in the future. EGR
(Exhaust Gas Recirculation) is a promoting way not only for suppressing engine knock but
also for high efficiency and clean combustion. The potential has been shown in the latest
study of energy conservation and emission reduction with EGR in gasoline engines. For
example, the EGR-diluted clean combustion technology, named HEDGE (High Efficiency
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Dilute Gasoline Engine), has been under continuous research for 10 years so far. The
long-term project indicates that high EGR rate has great potential to increase fuel efficiency
and reduce emissions of spark ignition engines [15,16]. In China, Gong et al. presented
the experimental results of a GDI engine that showed the positive effects of EGR on
combustion and emission characteristics at low load and with different spark timings [17].
Shen et al. conducted an experimental investigation for comparing low- and high-pressure
exhaust gas recirculation fixed on a turbocharged GDI engine and their impacts on fuel
consumption, the combustion process, and pollutant emissions [18]. EGR reduces the
combustion rate, which makes stable combustion more difficult to achieve. Moreover, with
the fast development of EGR technology, EGR systems have been widely used in gasoline
engines, such as hot EGR and cold EGR, high-pressure loop EGR, and low-pressure loop
EGR; these EGR systems are commonly used by combining other technologies, leading
to more complicated issues and challenges for academic studies [19]. Besides, EGR has
potential for fuel consumption improvements of high-expansion-ratio cycle engines. The
pumping loss reduced for low-load condition and effective compression ratio increased for
high-load condition with the introduction of EGR gas were verified in a Toyota Atkinson
engine [20] and Miller engine [21]. However, both EGR and LIVC (Late Intake Valve
Closing) application need throttle valve, air fuel ratio, ignition timing, and other parameters
matching. It will cost a lot of manpower, material resources, and time if the traditional
method is applied to conduct bench testing and calibrate the complex parameters for
introducing new engine technology. Developing a multiparameter optimization method
based on CPS theory is meaningful for the EGR and LIVC strategy’s widespread application.
A new approach for GDI fuel economy improvement with EGR dilution and LIVC strategy
was expounded. The effects of EGR and LIVC on high GCR (Geometric compression ratio)
GDI engine fuel economy were studied, and a multiparameter optimization with clustering
genetic algorithm was introduced for automotive engine multiparameter optimization
among physical and digital data.

3. Methodology

The development of CPS is facing great challenges from the theories and technologies
of network and physical systems. As the CPS system must be designed and integrated
based on existing physical system structures, no general theoretical framework has been
proposed, especially for the joint optimization of virtual and real interaction data in
multicomponent systems [22,23]. We attempt to propose a general CPS optimization
framework based on the complementarity of physical space and cyber space in Section 3.1.
Then, multiparameter optimization algorithm based on the framework for energy-saving
of the automotive engine is introduced in Section 3.2. The optimization objectives and
the algorithm verification combining the digital model and physical test are given in
Sections 3.3 and 3.4, respectively.

3.1. Framework

A general CPS framework combined with a multiparameter optimization algorithm
was established. The data flow chart of the CPS framework is shown in Figure 1.

In this paper, the physical prototype was defined as the study subject and the physical
space was defined as the surrounding environments and working conditions of the study
object. Digital prototype and cyberspace that exist on a computer and communication
network are the mapping and modeling of physical prototype and perceptual information
in physical space, respectively. In the process of the interaction between the study object and
the surrounding environment, Φpp represents the interface information set of the physical
space acting on the physical prototype and Φ’pp represents the interface information set
that the physical prototype feeds back to the physical space. Φcd and Φ’cd represent the
interactive information sets between digital prototype and cyberspace. The core problem in
our work is how to build the bridge between the physical prototype and digital prototype,
and how to use the interactive data between them and the cyberphysical space to establish
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the optimization algorithm and improve the performance of the study object. The problem
can be expressed as follows:

f → f (A, B, C, D), A ⊂ Φpp, B ⊂ Φ′pp, C ⊂ Φcd, D ⊂ Φ′cd (1)
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As f is a complex function of multidimensional variable spaces, it is necessary to
convert it into a series of modeling solutions based on concrete cases. A 1.8-L turbocharged
GDI engine was chosen as the study object in the case studied in this paper. The indoor
engine bench is selected as the physical space that includes an electrical dynamometer
system, fuel consumption measurement system, exhaust analyzer, and ECU of engine,
which is combined with ETAS ES690 equipment and a combustion analyzer developed
based on NI Compact-RIO system. The subset data of Φpp and Φ’pp were gathered by
the above equipment. The cyberspace and digital prototype engines were investigated
preliminarily by engine bench test data measuring and 1-D (1-Dimensional) simulation
modeling [24]. Then, the subset data of Φcd and Φ’cd were calculated.

In this case study, the function f can be introduced for energy saving. We aim to
increase the geometric compression ratio of the former engine from 9.6 to 11 by using
the multiparameter optimization framework of CPS. The comprehensive fuel economic
improvement strategy was drawn by the BSFC (Brake Specific Fuel Consumption) map
data and its control parameters analysis, such as ignition time, throttle percentage, knock
detection, and fuel enrichments. In the lower engine load conditions, the throttle percentage
was set below 5%, which leads to great pumping loss. The high engine loads under both
low and high speeds are detected as the knock-prone areas that have to be prevented by
spark retard and fuel enrichment to decrease combustion velocity and temperature. Hence,
the fuel consumptions in the knock areas are relatively high. Besides, the fuel enrichment
strategy was widely used in the upper-right region of the entire map, where it will lead to
high fuel consumption. In the medium speed and load area, the BSFC is relatively low but
the BSFC varying gradient is large. The pumping loss and combustion need to be improved
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for better fuel economy. Based on the above analysis, the strategy to improve fuel economy
of the engine can be drawn from the BSFC map, as shown in Figure 2. The methods for
improving fuel consumption are reducing pumping loss, fuel enrichment, and knock.
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The engine map in Figure 2 is based on the original engine test, and further analyzes
the performance improvement direction in combination with the basic theory of the engine.
In this paper, we select different loads of 2000 rpm for research, which is the most frequently
working speed of the engine. This method can obtain all optimization results, from low
load to high load, at one time. It can also be used for reference to other speeds, so similar
optimization work is not repeated.

EGR technology and LIVC for low effective compression ratio are two promising
ways for detonation suppression instead of fuel enrichment and ignition timing retards. In
order to study the combined effects of EGR and LIVC on energy-saving of the automotive
engine, the engine was studied as a typical calculation of the function f. The detail of the
CPS optimization algorithm will be expounded later.

3.2. Optimization Algorithm

Genetic algorithm (GA) is an adaptive global random search optimization algorithm
proposed by John Holland of the University of Michigan to simulate the process of natural
selection, genetic variation, and population evolution in the biological world. The algorithm
puts forward the concepts of population, individual, fitness, and chromosome; classifies
and divides the data attributes of the research object; simulates Darwin evolution theory
and Mendel genetics theory; and puts forward the basic optimization method of selection
crossover mutation [25].

K-means algorithm is a clustering algorithm proposed in the 1950s, which is based on
the similarity criterion of the minimum square sum of the distance between sample data
points and clustering center points. With the rapid development of big data technology and
machine learning technology, the clustering algorithm has become an important algorithm
of machine learning and is widely used in the field of data mining and data analysis [26–28].

The genetic optimization is a widely used algorithm that applies the basic laws
of genetic inheritance of nature’s evolution processes in computer programming and
computational calculation. The clustering algorithm is an essential data mining and
machine learning method that plays an important role in analyzing big data. In this paper,
the clustering algorithm is integrated to analyze the producing data in the process of
the genetic optimization. Compared with the traditional genetic algorithms, the CGA
(clustering genetic algorithm) can obtain unsupervised classification optimum value for
different engine loads. The general process of optimization algorithm is shown in Figure 3.
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The idea of the CGA optimization procedure is as follows. There are four chromosomes
denoted according to parameters X1, X2, X3, X4. Together, they constitute the genome of
an individual that corresponds to the engine performance of different input parameters.
The population is represented as a set of individuals. When initializing a population for
CGA starting, 20 individuals are randomly generated, and each of them has different
value combinations of chromosomes. Each chromosome is encoded in 8-bit binary. Then,
the fitness function f of all the individuals is calculated by the engine model simulation,
which is covered in more detail in Section 3.3. The fitness value will be a judgment for the
next-generation population evolution. After comparing the effects of the active archive
nondominated sorting genetic algorithm adopted by Salata F. [29], we combined the three
types of operators named selection operator, crossover operator, and mutation operator
with different random sampling rates for new individuals’ evolution. For the execution
process of selection operator, the combined method of roulette selection with elite ranking
that ensures the selection probability of the excellent individuals and the diversity of
population, is used to select the individual for the next generation. In this regard, the
individuals are randomly selected as members of the next-generation population and
the individuals with bigger fitness function values are more prone to be selected as the
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member of the next-generation populations. The individuals that do not meet the limits
of KI = 0 will be eliminated and do not participate in the formation of the next generation
of the population. Secondly, some of the selected individuals will act as the parents and
produce new individuals by crossover operator that uses a probability method to select
chromosomes for binary bit-swapping. Thirdly, some of the selected individuals will act as
the mutants for mutation operator that uses randomizing methods to select chromosomes
variation. Then, the new generation population is eventually produced for population
evolution. In addition, as the MATLAB and GT-Power cosimulation takes a long time for
fitness value calculation, the unique method of MATLAB is used to eliminate the duplicated
individuals after mutation, which avoids repetitive calculation and has strong ability to
find the global optimization solution. New randomly generated individuals are added
to the next-generation populations for the duplicated individuals. The iteration times
of population evolution are set in 50 generations. During the iteration, the population
base consisting of historical populations is stored, and finally, the global optimization
and analysis are carried out by clustering analysis. The k-means clustering algorithm is
considered one of the most powerful and popular data mining algorithms [30]. Aiming
at the multidimensional data of the population database in this paper, we adopted the
k-means clustering algorithm for studying the distribution of population, which aims
to learn the influence of different parameters on the optimization goal under different
condition grouping at one time.

The comparison between the improved CGA and the traditional genetic algorithm is
as follows:

(1) Traditional genetic algorithm requires a strict fitness function to limit the population
range. The precise data label is required to classify the data. CGA has no limitation of
strict population range definition.

(2) Traditional genetic algorithm is an optimization method that only focuses on the final
results but lacks the analysis and statistics of data changes in the iterative process.
CGA facilitates the independent optimization analysis of the population and explores
the iterative rule.

(3) The fitness function of traditional genetic algorithm often has a significant impact on
the optimization results. For example, in the process of energy-saving optimization of
EGR, LIVC, ignition advance angle, and other parameters, a multiparameter design
will not only affect the fuel consumption but also affect the torque. If the torque is
limited to a wide range in the fitness function, it will result in a comparison of BSFC
of different loads, which will affect the judgment of the optimal value. However, if
the torque is limited to a narrow range in the fitness function, the optimization of the
different torques requires repeated genetic algorithm calculations, which increases the
amount of calculation. CGA can realize the energy-saving optimization of different
loads and improve optimization efficiency in the process of continuous iterative
optimization. The optimization objective of CGA is to automatically obtain the lowest
BSFC under different loads by optimizing engine control parameters such as LIVC
angle, EGR, ignition advance angle, and air–fuel ratio, and avoid engine knocking.
If the traditional genetic algorithm is used, the fitness function should consider the
torque changes, and the BSFC for different torques has to be optimized for its own
genetic algorithm. The CGA optimization costs less time.

3.3. Optimization Objectives

The function f related to the model optimization objective can be changed into the
fitness function of genetic algorithm and the constraint conditions of the fitness function
according to the study object.

f= min
[

1
F(X1, X2, X3, X4)

]
(2)
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αmin ≤ X1 ≤ αmax
rmin ≤ X2 ≤ rmax
θmin ≤ X3 ≤ θmax
φmin ≤ X4 ≤ φmax

KI = 0

(3)

where the function F (X1, X2, X3, X4) is inversely related to the BSFC of the engine. X1 is
the value of LIVC angle that is among 16–66◦ABDC (After Bottom Dead Center) according
to the VVT (Variable Valve Timing) technology of the original engine. X2 is the value
of EGR rate r that is among 0–15% supported by LP-EGR (Low-Pressure Exhaust Gas
Recirculation) technology; X3 is the ignition advance angle and its range is −24–4 crank
angle ATDC (After Top Dead Centre). X4 is the air–fuel ratio and its optimization range is
12–15.7. The minimum target of the BSFC is the maximum value of the fitness function.
The value of the fitness function F can be calculated by the 1-D simulation engine code
modeled in GT-Power that will be introduced later. Besides, another variable named KI is
the knock index, which is proposed to characterize knock of gasoline engine. According to
the Kinetics-fit detonation model in GT-power, when the engine does not knock, the index
KI = 0.

3.4. Digital Model and Physical Test Verification

As shown in Figure 4, the whole architecture of the simulation and optimization
model consists of three parts: the CGA programmed in Matlab software, the interface
between Simulink software and GT-Power software, and the 1-D simulation model of the
engine coding in GT-Power. The model simulation working flow starts with the CGA as
the main program, the main program will call the Simulink interface to transfer EGR rate,
LIVC angles, air–fuel ratio and ignition advance angle to the 1-D simulation engine model
of GT-power for engine performance simulation. The Simulink interface returns the results
such as the BSFC and brake torque to the main program for fitness function calculation.
Finally, the Matlab program, Simulink interface, and GT-Power software run in a closed
cycle as an integrated simulation and optimization model.

The parameters of the engine are shown in Table 1.
The 1-D simulation engine model mainly includes the air intake system, turbocharge

system, throttle valve, intake manifold, combustion chamber, crankcase, exhaust manifold,
EGR system, TWC (Three Way Catalysts), exhaust muffler, etc. All of the geometry param-
eters of the components are measured from the engine, such as the intake and exhaust pipe
length and diameter, the piston stroke, the cylinder diameter, and the throttle valve length.
The EGR system model was set up according to a real EGR assembly of Borg warner, shown
in Figure 5. The EGR rate was controlled by PID (Proportion Integration Differentiation)
module in the base of mass-throttle percentage curves.

The other boundary parameters for different engine speeds were set up according to
the bench test data that are shown in Table 2.
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Table 1. Parameters of engine.

Engine Parameters Value

Displayed volume 1.8 L
Stroke 84.1 mm
Bore 82.5 mm

Connecting Rod 146 mm
Compression ratio 9.6

Power Max. (kW/rpm) 118/5000
Torque Max. (N·m/rpm) 250/2000

Number of valves 4 (2 intake, 2 exhaust)
Injection GDI

Fuel Gasoline #96 of Chinese Standard
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Table 2. The boundary parameters for different engine speeds.

Speed/rpm 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

A/F 15.2 14.5 14.3 14.0 13.4 13.0 12.4 11.9 11.9 11.9 12.1
Atmospheric

pressure/MPa 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Temperature/◦C 20 20 20 20 20 20 20 20 20 20 20
Ignition angle/◦CA −7.5 −13.3 −4 −1 6.2 9.2 10.8 13.0 15.5 18.6 23.7

Intake mass/g/s 19.0 41.9 65.0 65.7 79.3 91.6 103.3 120. 126.7 131.8 130.9
IVO/◦CA −22 −22 −15.7 −12.5 −12 −9 −0.3 4.5 8.3 9.5 9.7

Throttle percentage/% 100 100 100 100 100 100 100 100 100 100 100

A heat transfer model named WoschniGT that closely emulates the classical Woschni
correlation without swirl was included to calculate the heat transfer coefficient for the heat
exchange of the cylinder wall. A predictive combustion model named SITurb was chosen
to simulate the combustion process. SITurb takes into account the cylinder’s geometry,
spark-timing, air motion, and fuel properties. The mass entrainment rate into the flame
front and the burn rate are governed by the following three equations:
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dMe

dt = ρu Ae(ST + SL)

dMb
dt = (Me−Mb)

τ

τ = λ
SL

(4)

where Me = entrained mass of the unburned mixture, t = time, ρu = unburned density,
Ae = entrainment surface area at the edge of the flame front, ST = turbulent flame speed,
SL = laminar flame speed, Mb = burned mass, τ = time constant, λ = Taylor microscale
length. The model will be calibrated by adjusting FGWM (Flame Kernel Growth Multiplier)
for the effects of turbulence intensity, TFSM (Turbulent Flame Speed Multiplier) for the
calculation of turbulent flame speed, and TLSM (Taylor Length Scale Multiplier) for the
Taylor microscale length. Besides, a knock model named Kinetics-Fit was added to SITurb
model for knock intensity prediction. The knock model was calibrated by the ignition
timing retard for full loads. The total engine mode of GT-Power was calibrated and verified
by the engine bench test data at WOT (Wide Open Throttle) of various engine speeds.
The bench test rigs including electrical dynamometer system, fuel consumption measure-
ment system, exhaust analyzer, engine ECU combined with ETAS ES690 equipment, and
combustion analyzer developed based on the NI CompactRIO system was introduced
in our previous conference paper [22]. The errors of air mass flow, BSFC, brake torque,
brake power, and exhaust temperature are less than 5%, as shown in Figure 6. Hence, the
calibrated simulation model of the engine can used as the digital prototype for producing
cyberspace data.
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4. Results

After 50 genetic algorithm iterations, a population base of 1000 individuals including
different LIVC, EGR rate, ignition timing, and air–fuel ratio chromosomes was generated.
The distribution of the population against the BSFC and torque are shown in Figure 7.
The band of BSFC changes widely for different LIVC, EGR rate, ignition timing, and air–
fuel ratio parameters, which shows the necessity of multiparameter optimization, and
the individuals gathering towards the low BSFC direction indicate that GA has a good
convergence for fuel economy optimization. The band of torque also changes widely for
different chromosome parameters, which indicates that the engine load can be controlled
by EGR and LIVC strategy. However, the conclusion cannot be made that the EGR and
LIVC strategy can replace throttle valve control entirely; at least, the BSFC outcome by
the two-load control methods should be compared. Besides, it is not fair for the BSFC
comparison among different loads; so, the clustering algorithm was used for further
BSFC analysis.
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Figure 7. Population distribution.

In order to further analyze the optimal BSFC of different loads, eight different load
conditions were classified automatically by clustering algorithm. The clustering centers
correspond to the different torque levels that represent different loads. As shown in Table 3,
the individuals were classified for each different torque level. The statistical numbers for
different loads show that the individuals were mainly distributed in the medium loads.
Too low or too high load clusters contain fewer individuals. The effects of the individual
distribution on BSFC are discussed in next step.

Figure 8 shows the BSFC distribution of the corresponding populations at each torque
level. As the torque increases, the distribution bandwidth of BSFC becomes narrower. At
the same time, the population of each torque level are globally optimization-sequenced,
the lowest BSFC points can be obtained, and the curve of lowest BSFC can be obtained by
polynomial fitting. The curve indicates that the BSFC decreases with the increase in torque.
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Table 3. The clustering table of iteratively optimized population by genetic algorithm.

Operating Point Statistical Number The Clustering Center/N·m EGR Rate

1 91 55 14.6%
2 253 97.1 13.6%
3 190 120.9 15%
4 158 150 14.5%
5 166 177.6 15%
6 69 206.6 5%
7 33 247.5 7%
8 45 305.7 2.6%
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Figure 8. The results of clustering optimization.

The optimum chromosomes for the lowest BSFC at different loads are shown in
Figure 9. The percentage values in the figure are the values of the optimum chromosomes
divided by the maximum value of the chromosomes, excepting an ignition timing of 24.
The EGR rates corresponding to the lowest BSFC at different loads are 14.6%, 13.6%, 15%,
14.5%, 15%, 5%, 7%, 2.6%. The LIVC angles corresponding to the lowest BSFC at different
loads are 61.9◦CA, 55.4◦CA, 42.6◦CA, 27.3◦CA, 17.9◦CA, 27.1◦CA, 17.1◦CA, and 20.5◦CA
ABDC. The basic rule can be drawn that the optimal EGR rates and LIVC angles decrease
as the torque increases. The air–fuel ratio corresponding to the lowest BSFC at different
loads are getting near to theoretical air–fuel ratio of 14.7. However, the ignition timing
retards closely to TDC time in high or low loads, and the ignition timing is advanced in
medium loads.



Actuators 2021, 10, 330 14 of 18
Actuators 2021, 10, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. The optimum chromosomes for the lowest BSFC. 

Figure 10 is a comparison of the engine load characteristics curves at 2000 rpm be-
tween the original GDI engine and EHGE (EGR dilution coupled with high-expansion-
ratio GDI engine) optimum result. The BSFC of EHGE was higher than the BSFC of the 
original engine at the working conditions below 150 N‧m. However, the BSFC of EHGE at 
the working conditions above 150 N‧m dropped significantly below the BSFC of the orig-
inal engine. A maximum decline point leads to a 13% improvement to the BSFC of the 
original engine. The results indicated that EGR coupled with LIVC can be used to improve 
fuel economy at medium and high loads. 

 
Figure 10. The contrast of load characteristics between the original engine and EGR dilution coupled 
with high-expansion-ratio gasoline engine. 
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Figure 10 is a comparison of the engine load characteristics curves at 2000 rpm between
the original GDI engine and EHGE (EGR dilution coupled with high-expansion-ratio GDI
engine) optimum result. The BSFC of EHGE was higher than the BSFC of the original
engine at the working conditions below 150 N·m. However, the BSFC of EHGE at the
working conditions above 150 N·m dropped significantly below the BSFC of the original
engine. A maximum decline point leads to a 13% improvement to the BSFC of the original
engine. The results indicated that EGR coupled with LIVC can be used to improve fuel
economy at medium and high loads.
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An ideal high-expansion-ratio thermodynamic cycle (Atkinson cycle) realized by
LIVC strategy in this paper is compared with the traditional Otto cycle, as shown in
Figure 11. As shown in the figure, 1–2–3–4–1 is Atkinson cycle and 1–2–3–4–1 is Otto cycle,
where 1–2 is adiabatic compression process, 2–3 is constant volume heating process, 3–4 is
adiabatic expansion process, 4–1 is constant pressure exothermic process, 1–2 is adiabatic
compression process, and 4–1 is constant volume exothermic process in Otto cycle.
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The theoretical thermal efficiency of the high-expansion-ratio gasoline engine derived
from the first law of thermodynamics is calculated as follows:

ηi =
q1 − q2

q1
(5)

where q1 is the circulating heat absorption, corresponding to the constant volume heating
process 2–3, and q2 is the circulating heat release, corresponding to the constant pressure
heat release process 4–1. The calculation formulas for these are as follows:{

q1 = Cv(T3 − T2)

q2 = Cp(T4 − T1)
(6)

where Cv is the specific heat capacity at constant volume; Cp is the specific heat capacity at
constant pressure; T1, T2, T3, and T4 are the temperatures of corresponding points 1–2–3–4;
and the following relationship is satisfied.

T2
T1

=
(

V1
V2

)K−1
= εK−1

T3
T4

=
(

V4
V3

)K−1
= ρK−1

T1
T4

= V1
V4

= ε
ρ

(7)

where K is the adiabatic index; ε is the actual compression ratio; ρ is the actual expansion
ratio; and V1, V2, V3, and V4 are the volumes of corresponding points 1–2–3–4, where
V2 = V3.

Substituting into Equation (5), we can obtain the following equation:

ηi = 1−
Cp

Cv
.

[
1−

T1(
T4
T1
− 1)

T2(
T3
T2
− 1)

]
= 1− γ

ρ− ε

ρK − εK = 1− γ
1

εK−1

(
λ− 1

λK − 1

)
(8)
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where γ is adiabatic index or specific heat ratio, γ =
Cp
Cv

and λ is the ratio of actual

expansion ratio to actual compression ratio, λ = ρ
ε = V4

V1
.

The introduction of EGR is conducive to improving the specific heat capacity and
the thermal efficiency, while LIVC is conducive to improving the actual expansion ratio
(realized by increasing the geometric compression ratio) and reduce the actual compression
ratio so as to improve the compression ratio. However, the introduction of EGR will
prolong the combustion duration and affect the combustion stability. LIVC leads to intake
backflow and intake efficiency reduction. This will affect the fuel economy in the actual
engine working process. Therefore, it is also necessary to calibrate and correct the control
parameters such as air–fuel ratio and ignition time. EGR, LIVC, ignition time, and air–fuel
ratio are nonlinear, complex relationships that restrict each other, which is why the cluster
genetic algorithm is introduced to carry out multiparameter optimization.

Results indicated that the multiparameter optimization including the ignition timing,
air–fuel ratio, EGR, and LIVC has a very important effect on engine fuel economic perfor-
mance. Using CGA and engine model simulation can determine the optimum combination
of parameters for different loads efficiently and explain the conflicting results of different
studies of EGR and LIVC strategy. The comparison of the minimum BSFC at different
torque level shows that EGR rate and LIVC for the optimal BSFC decrease as the torque
increases. EGR and LIVC strategy has potential to control the engine load instead of throttle
valve. The comparison of the engine load characteristics curves between the original GDI
engine and EHGE shows that EGR coupled with LIVC can be used to improve the fuel
economy at medium and high loads. The maximum reduction in BSFC is almost 13% in
contrast with the original engine. However, the BSFC at low loads controlled by EGR
and LIVC are higher than that being controlled by throttle valve. Future work will be
considered to study joint control by EGR, LIVC, and throttle valve.

5. Conclusions

In this paper, a general CPS framework combined with a multiparameter optimization
algorithm was established. A multiparameter optimization simulation model combined
with CGA programming and 1D engine simulation model were set up for improving the
energy conservation potential of EGR gasoline engine.

The energy conservation effects of EGR dilution coupled with high-expansion-ratio
thermodynamic cycle were investigated in virtual space. Thereafter, 1000 individuals with
different chromosomes were iteratively optimized and automatically classified. The best
individuals at different loads were screened. The optimal BSFC and corresponding control
parameters were obtained for real, physical engine performance improvement and control
optimization. The results demonstrated the effectiveness of the proposed method and can
contribute to develop a novel automotive engine control strategy in the future.

The case study gives the research direction of CPS application at the vehicle subsystem
level. In the future, high-performance computers may be used as CPS controllers in
automobiles for subsystem components dynamic control based on the digital data and
physical data of the vehicle Cyberphysical system.
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