
actuators

Article

An Active Fault-Tolerant Control for Robotic Manipulators
Using Adaptive Non-Singular Fast Terminal Sliding Mode
Control and Disturbance Observer

Van-Cuong Nguyen 1 , Phu-Nguyen Le 2 and Hee-Jun Kang 1,*

����������
�������

Citation: Nguyen, V.-C.; Le, P.-N.;

Kang, H.-J. An Active Fault-Tolerant

Control for Robotic Manipulators

Using Adaptive Non-Singular Fast

Terminal Sliding Mode Control and

Disturbance Observer. Actuators 2021,

10, 332. https://doi.org/10.3390/

act10120332

Academic Editors: Mohammed

Chadli, Mario Luca Fravolini, Gary

M. Bone and Eihab M. Abdel-Rahman

Received: 14 October 2021

Accepted: 14 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Korea;
nguyenvancuonguvpk@gmail.com

2 Department of Information Technology Specialization, FPT University, Hoa Lac High Tech Park,
Hanoi 10000, Vietnam; nguyenlp9@fe.edu.vn

* Correspondence: hjkang@ulsan.ac.kr; Tel.: +82-52-259-2207

Abstract: In this study, a fault-tolerant control (FTC) tactic using a sliding mode controller–observer
method for uncertain and faulty robotic manipulators is proposed. First, a finite-time disturbance
observer (DO) is proposed based on the sliding mode observer to approximate the lumped uncer-
tainties and faults (LUaF). The observer offers high precision, quick convergence, low chattering,
and finite-time convergence estimating information. Then, the estimated signal is employed to
construct an adaptive non-singular fast terminal sliding mode control law, in which an adaptive law
is employed to approximate the switching gain. This estimation helps the controller automatically
adapt to the LUaF. Consequently, the combination of the proposed controller–observer approach
delivers better qualities such as increased position tracking accuracy, reducing chattering effect,
providing finite-time convergence, and robustness against the effect of the LUaF. The Lyapunov
theory is employed to illustrate the robotic system’s stability and finite-time convergence. Finally,
simulations using a 2-DOF serial robotic manipulator verify the efficacy of the proposed method.

Keywords: disturbance observer; non-singular fast terminal sliding mode control; fault-tolerant
control; robot manipulators

1. Introduction

In industry, robotic manipulators are very popular. They have been employed in
many applications such as material handling, milling, painting welding, and roughing.
The greater the importance of robotic manipulators in industry, the greater interest in the
research field of control for robotic manipulators, which aims to make the robot tracks a
desired trajectory with the greatest tracking accuracy [1,2]. However, in both theory and
practice, robotic manipulators are difficult to control due to their characteristics. First,
the dynamic of robotic manipulators is highly nonlinear and complicated, including the
coupling effect. Furthermore, uncertainties in robot dynamics are also caused by payload
fluctuations, frictions, external disturbances, etc. Therefore, it is arduous or even impossible
to correctly identify the dynamics of robots. In some special cases, with the long-time
operation, unknown faults might happen. The faults could be actuator faults, sensor faults,
or process faults. They are big problems that have been challenged by many researchers.
A variety of approaches for dealing with both the impact of uncertainties and faults
have been presented in the current literature. The authors of [3–5] proposed methods to
estimate the dynamics uncertainties and faults independently. However, using two distinct
observers, on the other hand, makes the methods complex, requiring resources and time
for calculation. In this study, faults are regarded as extra uncertainties, and the overall
impacts of the system’s lumped uncertainties and faults (LUaF) are evaluated.

Fault-tolerant control (FTC) techniques have been developed to deal with the LUaF [6,7].
FTC techniques are broadly classified into two types: passive FTC (PFTC) [8,9] and active
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FTC (AFTC) [10–12]. A robust controller is built in the PFTC approach to manage the LUaF
without the need for feedback input from a disturbance observer (DO). Because the effects
of LUaF imposed on the typical controller of the PFTC are greater than those imposed on
the notional controller of the AFTC, the nominal controller of the PFTC has the need of
more resilience to eliminate the impacts of LUaF. By contrast, the AFTC is built using an
online DO technology. As the LUaF is appropriately estimated, the AFTC provides better
control effectiveness than the PFTC. As a result, the AFTC techniques are more suited for
industrial cases.

In the literature, many efforts have been given for FTC problem of robotic manip-
ulators, such as computed torque control [13,14], fuzzy logic control [15,16], adaptive
control [17,18], neural network control [19,20], and sliding mode control (SMC) [21–23].
Among them, the SMC is one of the most powerful robust controllers which can be used in
uncertainty nonlinear dynamic systems. In recent years, the SMC has been developed in a
wide range of area by many researchers due to its simple design procedure while providing
acceptable control performance. It also has the ability to solve the two main crucial challeng-
ing issues in control that are stability and robustness [24,25]. Although providing wonderful
control properties, some problems that reduce the applicability of the conventional SMC
still exist. These include the inability to ensure finite-time convergence and the chattering
phenomena, which is the high-frequency oscillation of the control input signal.

To guarantee the finite-time convergence of the tracking error, many efforts have been
made. In [26–28], the terminal SMC (TSMC) has been developed. As compared to the
traditional SMC, the TSMC has better precision and overcomes the finite-time convergence
problem; however, as a trade-off, its convergence time is slightly slower. In addition, the
singularity problems are appeared in some special cases. To resolve the two disadvantages,
the fast TSMC (FTSMC) [29–31] and the non-singular TSMC (NTSMC) [32,33] are used.
Unfortunately, the two controllers just solve the two problems separately. In order to get
rid of them simultaneously, the non-singular fast TSMC (NFTSMC) is proposed [34–38].
This controller has outstanding control features such as singularity removal, high tracking
precision, finite-time convergence, and durability to LUaF effects.

To decrease chattering caused by the adoption of a discontinuous reaching control
rule with a large and fixed gain, the fundamental concept is to employ an observer to
approximate the LUaF and then compensate for its impacts on the system. Using this
technique, a smaller switching gain can be set to deal with the impacts of the estimated
error rather than the effects of the LUaF. Therefore, the chattering phenomenon could be
reduced. In the present literature, many researchers have been focusing their efforts on
building an effective observer to estimate the LUaF [39–45], for example, neural network
(NN) observer [41,42], extended state observer (ESO) [43], and second-order sliding mode
observer (SOSMO) [44,45]. The NN observer has been frequently used due to its learning
capacity and high accuracy estimation. Nevertheless, the learning capability complicates the
system and necessitates a higher system configuration in order to employ online training
approaches, which raises the cost of equipment. The ESO is a simple technique for online
observation, which provides quite good approximation information. Thanks to the linear
characteristic of the observer element, which can strongly deal with perturbations that are
very far away from the origin, the convergence speed of the ESO is very high. However, the
overshoot phenomenon at the convergence stage reduces its application ability. By contrast,
the SOSMO has the ability to estimate the LUaF without the overshoot phenomenon as in
ESO, however, the convergence time is a little slower. In addition, a lowpass filter is needed
to reconstruct the estimated LUaF, which reduces its estimation accuracy.

From the motivation above, this study proposed a disturbance observer (DO) to ap-
proximate the LUaF of robotic manipulator system with high accuracy and fast convergence.
To attain high positional tracking accuracy and system stability under the impacts of the
LUaF, an FTC technique combining the adaptive NFTSMC and the suggested DO, named
A-NFTSMC-DO, is proposed. In the controller, an adaptive law is applied to estimate the
switching gain to help the controller automatically adapts with the LUaF. Therefore, the
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combination of proposed controller–observer technique provides high tracking precision,
fast convergence, less chattering effect, and finite-time convergence. The following are the
main contributions of this research:

(1) Proposing a DO to approximate the LUaF with high accuracy and fast convergence.
(2) Proposing an FTC technique for improving the tracking performance of the robot

manipulator while taking to account the overall impacts of the LUaF.
(3) Minimizing the phenomena of chattering in control input signals.
(4) Using the Lyapunov stability theory to demonstrate the system’s finite-time stability.

The following is the structure of the research. Section 2 follows the introduction by
presenting the dynamic equation of a serial robotic manipulator. Section 3 then depicts
the suggested architecture of the DO. In Section 4, the A-NFTSMC-DO is designed to
obtain a minimal tracking error. In Section 5, the simulations of the proposed algorithm are
executed on a 2-DOF serial robotic manipulator. Finally, Section 6 gives some conclusions.

2. System Modeling and Problem Formulation

The following is a description of a serial robotic manipulator with a dynamic equation
in Lagrangian form:

D(q)
..
q + V

(
q,

.
q
) .
q + G(q) + Fr

( .
q
)
+ τd = τ (1)

where q,
.
q,

..
q are the n× 1 vectors that represent robot joint angular positions, velocities,

and accelerations, respectively; D(q) is the n× n matrix of inertia, which is symmetric,
bounded, and positive definite; V

(
q,

.
q
)

is the n× n matrix of the Coriolis and centripetal
forces; τ is the n× 1 vector of the control input torques; and G(q), Fr

( .
q
)
, and τd are the

n× 1 vector of the gravitational forces, friction, and disturbance, respectively.
Equation (1) can be transformed to the form below:

..
q = H

(
q,

.
q
)
+ D−1(q)τ + ∆

(
q,

.
q
)

(2)

where H
(
q,

.
q
)
= D−1(q)

[
−V

(
q,

.
q
) .
q− G(q)

]
and ∆

(
q,

.
q
)
= D−1(q)

[
−Fr

( .
q
)
− τd

]
repre-

sent the uncertainty terms.
Faults in a system have been growing much more common in current industrial

applications as they get more sophisticated, particularly under the state of enduring
implementation. As a result, this article supposes that the robot system operates under the
impact of faults. In these cases, the robot dynamic Equation (2) can be rewritten as

..
q = H

(
q,

.
q
)
+ D−1(q)τ + ∆

(
q,

.
q
)
+ Φ

(
q,

.
q, t
)

(3)

where Φ
(
q,

.
q, t
)
= ϕ

(
t− Tf

)
Ψ
(
q,

.
q, t
)

represents the unknown faults. Tf is occurrence

time and the term ϕ
(

t− Tf

)
= diag

{
ϕ1

(
t− Tf

)
, ϕ2

(
t− Tf

)
, . . . , ϕn

(
t− Tf

)}
denotes

the time profile of faults with ϕi

(
t− Tf

)
=

{
0 i f t ≤ Tf

1− e−ςi(t−Tf ) i f t ≥ Tf
, ςi > 0 denotes

the evolution rate of faults.

Remark 1. In robotic manipulator systems, the unknown faults can be actuator faults, sensor
faults, and process faults. In this paper, the effects of actuator faults in the system are considered.
Therefore, the fault functions Ψ

(
q,

.
q, t
)

are defined as faults that occur at the actuator.

Basically, the robotic system (3) is reconstructed in state space as

.
x1 = x2.
x2 = H(x) + D−1(x1)u + ζ(x, t)

(4)

where x1 = q, x2 =
.
q, x =

[
x1

T x2
T
]T, u = τ, and ζ(x, t) = ∆

(
q,

.
q
)
+ Φ(t) denotes the LUaF.
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The main purpose of this study is to design an FTC scheme for the robotic manipulator
such that the robot can track the desired trajectory under the effect of the LUaF with minimal
tracking error. The FTC scheme is constructed according to the assumptions as follows.

Assumption 1. The desired trajectory is bounded and is a twice continuously differentiable function
respect to time.

Assumption 2. The LUaF is bounded as

|ζ(x, t)| ≤ δ (5)

where δ is a positive constant.

3. Estimation Scheme
3.1. Design of Disturbance Observer

The DO is developed to be used with the robot manipulator system (4) as
.
x̂2 = H(x) + D−1(x1)u + ζ̂

ζ̂ = k1|x2 − x̂2|1/2sign(x2 − x̂2) + p1(x2 − x̂2) + z
.
z = k2sign(x2 − x̂2) + p2(x2 − x̂2)

(6)

where x̂2 is the estimator of the true state x2, and ki, pi, i = 1, 2 represent the observer gains.
By subtracting (6) from (4), we can obtain

.
x̃2 = ζ − ζ̂

ζ̂ = k1|x̃2|1/2sign(x̃2) + p1(x̃2) + z
.
z = k2sign(x̃2) + p2(x̃2)

(7)

where x̃2 = x2 − x̂2 represents the state estimation errors.
Equation (7) can be rewritten as

.
x̃2 = −k1|x̃2|1/2sign(x̃2)− p1(x̃2) + z + ζ
.
z = −k2sign(x̃2)− p2(x̃2)

(8)

Theorem 1. For the robotic system given in (4), if the DO is designed as (6) with suitable chosen
observer gains, then the system is stable and the estimation error

.
x̃2 in (8) will converge to zero

in finite-time.

Proof of Theorem 1. (see Appendix A). �

3.2. The LUaF Reconstruction

After the convergence time, the predicted states, x̂2, will approach the real states after
the convergence time, x2; thus, the estimation error (7) becomes

.
x̃2 = ζ − ζ̂ ≡ 0 (9)

Therefore, the estimation of the LUaF can be reconstructed as

ζ = ζ̂ = k1|x̃2|1/2sign(x̃2) + p1(x̃2) + z
.
z = k2sign(x̃2) + p2(x̃2)

(10)

Remark 2. Thanks to the characteristic of linear terms, the proposed DO can obtain higher
convergence speed compared to the SOSMO. This excellent property will be confirmed in the
simulation part.
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Remark 3. As shown in (10), the resulting signal is made up of an integral operator; thus, the
estimated information of the suggested DO may be rebuilt directly without filtration. As a result,
this observer produces a more accurate estimation signal with less chattering than the SOSMO. In
the following part, this estimation information will be used to build the FTC technique.

4. Design of Controller
4.1. The DO-Based NFTSMC

We define the position tracking and velocity errors as

e = x1 − xd.
e = x2 −

.
xd

(11)

where xd, and
.
xd are the desired trajectories and velocities, respectively.

An NFTSM function is chosen as in [46]:

σ =
.
e +

∫
κ1|e|β1 sign(e) + κ2

∣∣ .
e
∣∣β2 sign(

.
e) + κ3e + κ4e3 (12)

where constants κ1, κ2, κ3, κ4 are positive constants and β1, β2 can be selected as

β1 = (1− ε, 1), ε ∈ (0, 1)
β2 = 2β1

1+β1

(13)

The control law is designed as follows:

u = −D(x1)
(
ueq + uc + usw

)
(14)

ueq = H(x) + κ1|e|β1 sign(e) + κ2
∣∣ .
e
∣∣β2 sign(

.
e) + κ3e + κ4e3 − ..

xd (15)

uc = ζ̂(x, t) = k1|x̃2|1/2sign(x̃2) + p1(x̃2) + z
.
z = k2sign(x̃2) + p2(x̃2)

(16)

The switching control law, usw, is employed to compensate for the estimation errors
as follows:

usw = (K + µ)sign(σ) (17)

where µ is a small positive constant and K denotes the switching gain, which is bounded
as K ≥ |d(x, t)| with d(x, t) = ζ(x, t)− ζ̂(x, t) represents the estimation error.

Theorem 2. For the uncertain and faulty robotic manipulator described in (4), if the proposed
control law is designed as in (14)–(17) and the NFTSM function is selected as in (12), then the
stability and finite-time convergence of the system are guaranteed.

Proof of Theorem 2. (see Appendix B). �

Remark 4. The switching gain, K, is dependent on the accuracy of the observer. In the next section,
an adaptive NFTSMC will be proposed to help the controller automatically adapts with the LUaF.

4.2. The DO-Based Adaptive NFTSMC

An adaptive NFTSMC law is suggested as

u = −D(x1)
(
ueq + uc + uasw

)
(18)

ueq = H(x) + κ1|e|β1 sign(e) + κ2
∣∣ .
e
∣∣β2 sign(

.
e) + κ3e + κ4e3 − ..

xd (19)

uc = ζ̂(x, t) = k1|x̃2|1/2sign(x̃2) + p1(x̃2) + z
.
z = k2sign(x̃2) + p2(x̃2)

(20)
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uasw =
(
K̂ + µ

)
sign(σ) (21)

where K̂ is the estimator of the ideal switching gain, K∗, and is updated by the following
adaptive law:

.
K̂ = ρ|σ| (22)

where ρ > 0 is the adaptation gain.

Theorem 3. For the uncertain and faulty robotic manipulator described in (4), if the proposed
DO-based adaptive NFTSMC law is designed as in (18)–(21) and the NFTSM function is selected
as in (12), then the stability and finite-time convergence of the system are guaranteed.

Proof of Theorem 3. (see Appendix C). �

Remark 5. Generally, the sliding motion only can archive in ideal condition, thus, the switching
gain K in (22) keeps increasing continuously. This problem is well known as the “parameter drift
problem”. To solve this problem, the following adaptive law can be utilized:

.
K̂ =

{
ρ|σ|, i f |σ| ≥ ε
0, else

(23)

where ε is a sufficiently small constant.

The structure of the proposed FTC strategy is described in Figure 1.

Figure 1. Structure of the proposed FTC strategy.

5. Numerical Simulations

Computer simulations on a 2-DOF robotic manipulator are used to show the utility of
the suggested controller-observer approach. The 2-DOF model is illustrated in Figure 2,
and its dynamic model is described below.
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Figure 2. Configuration of the 2-DOF robotic manipulator.

Inertia term:

D(q) =
[

D11 D12
D21 D22

]
where

D11 = m1r1
2 + m2(l2

1 + r2
2 + 2l1r2cos(q)) + I1 + I2

D12 = D21 = m1r2
2 + m2r2l1cos(q) + I2

D22 = m2r2
2 + I2

Coriolis and centripetal term:

V(q,
.
q) =

[
−2m2l1r2sin(q)

.
q1

.
q2 −m2l1r2sin(q2)

.
q2

2

m2l1r2sin(q2)
.
q1

2

]

Gravitational term:

G(q) =

[
m1gr1 cos(q1) + m2g(l1 cos(q1) + r2 cos(q1 + q2))

m2r2g cos(q1 + q2)

]

The parameters of the 2-DOF robot are given as in Table 1.

Table 1. Parameters of the 2-link robot manipulator.

Parameters Values

m1, m2 1.5, 1.3 (kg)
l1, l2 1, 0.8 (m)
r1, r2 0.5, 0.4 (m)
I1, I2 1, 0.8 (kgm2)

All simulations in this work are carried out using MATLAB/Simulink and the sam-
pling time is 10−3 s.
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The desired trajectories of robot are assumed as

xd =

[
1.05 cos(πt/6)− 1

1.2 sin(πt/7 + π/2)− 1

]
The friction and disturbance are, respectively, assumed as

Fr
( .
q
)
=

[
1.9 cos

(
2

.
q1
)

0.53 sin
( .
q2 + π/3

) ]
τd =

[
1.2 sin(3q1 + π/2)− cos(t)
−1.14 cos(2q2) + 0.5 sin(t)

]
The fault is assumed to occur to joint 1 at Tf = 15 s and occur to joint 2 at Tf = 20 s

Ψ
(
q,

.
q, t
)
=

[
−3.5q1

2 + 2.5 sin(q2) + 6.1 cos(
.
q1) + 4.5

.
q2 + 2 sin(2t/π)

7.5q1 + 6.2 cos(q2) + 8.3 sin(2
.
q1) + 11.2

.
q2 + 3.5 cos(t/π)

]
The simulation is divided into two parts. First, a comparison of the proposed DO,

the SOSMO [44], the ESO [43], and the DO in [47] is performed. Second, the tracking
performance of the proposed A-NFTSMC-DO will be compared with the conventional
SMC and the NFTSMC to show its superior control properties.

The parameters of the observer and controller are shown in the Table 2.

Table 2. The values of the controller/observer’s parameters.

Controller/Observer
Methods Parameters Values

DO k1, k2 8, 18
p1, p2 10, 10

SMC c, δ 4, 16

NFTSMC

κ1, κ2
κ3, κ4
β1, β2

δ

14, 10
10, 5

1/2, 2/3
16

Adaptive method ρ, ε 0.2, 0.001

For the first part, the result of the comparison is presented in Figures 3 and 4. Figure 3
shows the estimation results of LUaF estimation among four observers. Figure 4 shows
the estimation error at each joint. As shown in the result, the ESO (the blue solid line)
provides fast estimation result, however, the overshoot phenomenon at the convergence
stage is the main disadvantage of the ESO. By contrast, the SOSMO (the green solid line)
provides estimation result without the overshoot phenomenon as in ESO, however, the
convergence time is a little slower. In addition, a low-pass filter is needed to reconstruct
the estimated LUaF. In terms of estimation accuracy, both the ESO and SOSMO provide
quite good estimation result in normal operation condition; however, when faults occur,
the estimation errors become larger. The proposed DO (the red solid line) provides the
LUaF estimation with a faster convergence speed compared to the SOSMO due to the
linear characteristic of the observer elements. Compared to the ESO, the proposed DO
eliminates the overshoot phenomenon. In addition, it achieves the highest estimation
accuracy among three observers in both before and after faults occur. Moreover, the LUaF
can be reconstructed directly without the need of a low-pass filter. Compared to the
DO in [47], the proposed DO obtains almost the same estimation accuracy, however, the
estimation speed is faster.
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Figure 3. The estimation of LUaF among four observers.

Figure 4. The LUaF estimation error at each joint.

In the second part, in order to show the effectiveness of the proposed A-NFTSMC-
DO method, its control performance will be compared with the two controllers: the
conventional SMC and the NFTSMC. The results are shown in Figures 5–7. Figures 5 and 6
show the robot end-effector tracking and the joint tracking error among three controllers.
As in the results, the SMC provides acceptable tracking performance. However, compared
to others, its tracking error (the blue solid line) has the lowest accuracy. In addition, in
terms of convergence speed, the conventional SMC takes a longer time for convergence. On
the other hand, the NFTSMC (the green solid line) offers both higher tracking accuracy and
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faster convergence compared to the SMC. The proposed FTC method (the red solid line)
offers the tracking error with the same convergence speed as the NFTSMC, meanwhile, it
provides the highest tracking accuracy compared to others. Figure 7 shows the comparison
of control input torque. As a result of the LUaF compensation, the switching gain parameter
of the control law is now extremely small. Therefore, as we can see, the suggested A-
NFTSMC-DO delivers reduced chattering control input torque. Furthermore, because of
better characteristics of the adaptive law, the suggested controller can automatically adjust
with the LUaF. The estimated value of the sliding gain is shown in Figure 8.

Figure 5. Robot end-effector tracking.

Figure 6. Tracking error at each joint.
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Figure 7. Control input at each joint.

Figure 8. Estimation of sliding gain.

6. Conclusions

In this study, an FTC strategy using an A-NFTSMC based on a DO for uncertain and
faulty robotic manipulators is proposed. The suggested observer demonstrated its capacity
to estimate the LUaF with excellent accuracy, rapid convergence, and almost no chattering.
They will then be used to compensate for the impacts on the system, which improves the
tracking performance of the suggested FTC technique. The suggested FTC technique has
advanced control characteristics of high positioning tracking accuracy with quick finite-
time convergence, chattering phenomena minimization, and LUaF robustness. The use of
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Lyapunov theory ensures system stability and finite-time convergence. The efficacy of the
suggested method has been confirmed by computer simulation on a 2-DOF robot.
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Appendix A

Proof of Theorem 1. A suitable Lyapunov function is selected as

V(x) = 2k2|x2|+ p2x2
2 +

1
2

z2 +
1
2

(
k1|x2|1/2sign(x2) + p1x2 − z

)2
(A1)

The Lyapunov function (A1) can be written as a quadratic form V(x) = ξTΠξ where

ξ =

 |x2|1/2sign(x2)
x2
z

, and Π = 1
2

 (
4k2 + k1

2) k1 p1 −k1
k1 p1

(
2p2 + p1

2) −p1
−k1 −p1 2

.

The time derivative of the Lyapunov function is calculated as

.
V = − 1

|x2|1/2 ξTΩ1ξ − ξTΩ2ξ + ωT
1 ξ +

1

|x2|1/2 ωT
2 ξ (A2)

where

Ω1 = k1
2

 (
2k2 + k1

2) 0 −k1
0

(
2p2 + 5p1

2) −3p1
−k1 −3p1 1

,

Ω2 = p1

 (
k2 + 2k1

2) 0 0
0

(
p2 + p1

2) −p1
0 −p1 1

,

ωT
1 =

[
k1

(
3p1

2 ζ
)

,
(

p1
2 + 2p2

)
ζ,−p1ζ

]
,

ωT
2 = ζ

[(
2k2 +

k2
1

2

)
0 − k1

2

]
Using the similar process as in the proof of Theorem 5 in [45], it can be concluded that

the system is stable, and the estimation error
.
x̃2 in (8) will approach to zero in finite-time.

Accordingly, Theorem 1 is clearly illustrated. �

Appendix B

Proof of Theorem 2. Taking the derivative of the sliding function (12) with respect to time,
we obtain
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.
σ =

..
e + κ1|e|β1 sign(e) + κ2

∣∣ .
e
∣∣β2 sign(

.
e) + κ3e + κ4e3

=
.
x2 −

..
xd + κ1|e|β1 sign(e) + κ2

∣∣ .
e
∣∣β2 sign(

.
e) + κ3e + κ4e3

= − ..
xd + H(x) + D−1(x1)u + ζ(x, t) + κ1|e|β1 sign(e) + κ2

∣∣ .
e
∣∣β2 sign(

.
e) + κ3e + κ4e3

(A3)

Inserting the control laws (14)–(17) into (A3) yields

.
σ = −(K + µ)sign(σ) + d(x, t) (A4)

A candidate Lyapunov function is chosen as

L1 =
1
2

σTσ (A5)

Taking the derivative of the Lyapunov function (A5) and substituting the result from
(A4), we obtain

.
L1 = σT .

σ

= σT(−(K + µ)sign(σ) + d(x, t))
= −(K + µ)|σ|+ d(x, t)σ ≤ −µ|σ| < 0, ∀σ 6= 0

(A6)

Therefore, the Theorem 2 is successfully proven. �

Appendix C

Proof of Theorem 3. The candidate Lyapunov function is chosen as

L2 =
1
2

σTσ +
1
2k

K̃TK̃ (A7)

where K̃ = K̂− K∗.
Using the similar process as in the proof of Theorem 2, the Theorem 3 is successfully

proven. �
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