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Abstract: In this paper, an active disturbance rejection control is designed to improve the position
tracking performance of an electro-hydraulic actuation system in the presence of parametric uncer-
tainties, non-parametric uncertainties, and external disturbances as well. The disturbance observers
(Dos) are proposed to estimate not only the matched lumped uncertainties but also mismatched
disturbance. Without the velocity measurement, the unmeasurable angular velocity is robustly
calculated based on the high-order Levant’s exact differentiator. These disturbances and angular
velocity are integrated into the control design system based on the backstepping framework which
guarantees high-accuracy tracking performance. The system stability analysis is analyzed by using
the Lyapunov theory. Simulations based on an electro-hydraulic rotary actuator are conducted to
verify the effectiveness of the proposed control method.

Keywords: electro-hydraulic systems; state observer; disturbance observer; backstepping control

1. Introduction

Electro-hydraulic servo systems (EHSSs) have been widely employed for years in a
wide range of industrial applications such as load simulators [1], robot manipulators [2–6],
vehicle active suspension [7,8], and hydraulic press [9] due to their advantages of high
produced force/torque, high stiffness, high power-to-weight ratio, high load efficiency,
and fast and smooth response [10]. However, high-accuracy position tracking control of
electro-hydraulic systems is still challenging owing to highly nonlinear characteristics [11],
parametric uncertainties (i.e., significant changes in effective bulk modulus and viscosity
with temperature, etc.), unmodeled uncertainties, and external disturbances.

To deal with the nonlinearities of the electro-hydraulic systems, feedback lineariza-
tion methods such as full-state feedback linearization [12], input-output feedback lin-
earization [13], and partial input feedback linearization [14] were investigated under the
assumption that the exact model information is available. In [15], a modified feedback
linearization-based position control with supply pressure uncertainty was introduced to
improve the tracking performance; however, the parametric uncertainties have not been
fully considered in this work. In addition, the feedback linearization controller [16] was
proven to not be robust in modeling uncertainty and sensor noise due to the high-order
derivative terms in control inputs. Hence, to overcome the challenge of modeling uncer-
tainty, nonlinear robust control, such as sliding mode control (SMC), is proposed in several
studies [17–19]. The main advantage of SMC that it is well established, simple, and widely
applicable [20] to hydraulic servo systems. It has proven to be robust in modeling inaccura-
cies satisfied matching conditions. If the chosen switching gains of SMC are bigger than the
upper bound on the uncertainties, robust stabilization can be achieved [21]. However, in
practice, the upper bound is partly known or even completely unknown, so the switching
gains must be sufficiently large to suppress the influence of the uncertainties. The adoption

Actuators 2021, 10, 20. https://doi.org/10.3390/act10020020 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-4217-8275
https://orcid.org/0000-0002-8743-3591
https://orcid.org/0000-0002-7927-3348
https://doi.org/10.3390/act10020020
https://doi.org/10.3390/act10020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10020020
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/2076-0825/10/2/20?type=check_update&version=2


Actuators 2021, 10, 20 2 of 22

of high-gain feedback control and the sign function in the control law cause chattering
problems [22], resulting in insufficient control accuracy, high heat losses in electrical power
circuits, and high wear of moving mechanical parts [23]. Therefore, some modifications of
the SMC approach [24–27] were introduced to reduce these chattering effects, but there is a
tradeoff between tracking accuracy and chattering. Overall, the parametric uncertainties
have not been effectively treated in these works. To cope with the parametric uncertainties,
the methodology of adaptive control, which utilizes the adaptive mechanism to update
the system parameters in the control design, has been studied for the past decades [28,29].
Based on this adaption technique, the gains of the controller can be significantly reduced.
By merging adaptive control and robust control, nonlinear adaptive robust control (ARC)
approaches [30,31] have been introduced to obtain better performance. In these studies,
only bounded tracking performance can be achieved in the presence of mismatched and/or
matched disturbances. To obtain an asymptotic tracking performance, a robust integral
of the sign of the error (RISE)-based adaptive control [29] has been investigated where
unknown parameters are estimated via adaptive technique and all unmodeled uncertain-
ties are compensated by the RISE feedback. However, in this study, the disturbances
are assumed to be bounded up to the second-order derivative, therefore this assumption
might be restricted in some real applications. Generally, in the above-mentioned works,
although model uncertainties have been carefully considered, the influence of external
disturbances, i.e., torque/force while interacting with the environment, have not been fully
addressed. Therefore, to enhance the tracking performance these disturbances are needed
to be estimated and compensated in the control system design.

To deal with the effects of the external disturbances on the control system, disturbance
observers (DOs) have been investigated for years with the assumption that their derivatives
are bounded [32]. Typically, disturbance observers are broadened to estimate not only
the external disturbances but also the model uncertainties. Disturbance and uncertainty
are lumped in a generalized term, which is called lumped uncertainties/disturbances.
Active disturbance rejection control (ADRC) approaches have been introduced in recent
years with various structures to improve the system performance in the presence of dis-
turbances and unmodeled uncertainties such as high-gain disturbance observer [33,34],
sliding perturbation observer [35], uncertainty and disturbance estimator (UDE) [36,37],
sliding mode observer (SMO) for state and disturbance estimation [38], extended distur-
bance observer [9], adaptive high gain observer [39], and high-order disturbance observer
(DOB) [40]. Among them, extended state observers (ESOs) have been widely used in many
works [10,11,19,41–44] in recent years because they can estimate not only the unmeasurable
system states but also the external disturbances. For example, in [19], an extended state
observer (ESO)-based control for a hydraulic rotary actuator originated from [45] was
proposed to approximate angular velocity and matched disturbance by using an extended
state. In this paper, the mismatched disturbance was only attenuated by using a high-gain
ESO. The modification of ESO [19] was introduced in [10] by separating the original system
into two subsystems to obtain better performance in which the matched and mismatched
disturbances are simultaneously estimated. An integral sliding mode backstepping con-
troller based on ESO for the asymmetric electro-hydrostatic actuator was introduced in [44].
However, from the design of the ESO, one can observe that the disturbance estimation
performance depends on not only the physical disturbance in the real system but also
the unmeasurable state estimation which currently is estimated by the ESO. In contrast,
the state estimation of ESO is essentially based on Luenberger observer, which can be
improved by exact differentiators [46,47]. Hence, combining DOs and exact differentiators
is potential to produce a better disturbance estimation compared to the ESO.

Inspired by the aforementioned discussion, this paper proposes a novel active distur-
bance rejection control to improve the tracking performance of a hydraulic servo system.
In this paper, a highly accurate and robust Levant’s differentiator [48] is applied to exactly
calculate the angular velocity of the actuator. Based on that, two disturbance observers
(DOs) with the linear structure are proposed to estimate the matched and mismatched
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disturbances in the subsystems then the estimated disturbances are fed back into the con-
trol law. The DOs-based backstepping controller is proposed to attenuate the influence
of the disturbances, unmodeled uncertainties caused by weak modeling, and parameter
perturbations as well. The stability of the closed-loop system is proven using Lyapunov
theory. Simulations are conducted in comparison with other control approaches to show
the superiorities of the proposed control algorithm.

This paper is organized as follows: Section 2 presents the studied hydraulic system
model. The entire control system design including state observer, disturbance observers,
and backstepping control, and the system stability analysis are introduced in Section 3.
Section 4 contains the simulation results. The conclusion is provided in Section 5.

2. System Modeling

The valve-controlled electro-hydraulic system is illustrated in Figure 1. The hardware
configuration of the system is thoroughly depicted on the left-hand side of this figure. In
this system, the pressures of two chambers of the hydraulic actuator and the position of
the inertial load are measured by two pressure sensors and an encoder, respectively. The
information from these sensors is fed back to the controller to generate the control action.
The hydraulic circuit of the system is presented on the right-hand side of Figure 1.
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Figure 1. The hardware configuration and schematic diagram of the studied electro-hydraulic control
system.

To examine the system transparently, the total system can be divided into three
subsystems including the mechanical system, servo valve, and hydraulic system. In the
mechanical system, we study the motion dynamics of the actuator under the torque of the
actuator. Then, the model of the servo valve is thoroughly inspected. Finally, the hydraulic
system is also examined in detail. In both cases, the parametric uncertainties, unmodeled
uncertainties, and disturbances are carefully investigated.

2.1. Mechanical System Modeling

The motion dynamics of the inertial load is presented as follows

J
..
θ = Th − Ff

( .
θ
)
− Fd

(
θ,

.
θ, t
)

(1)

where Th is the torque generated by the hydraulic pressure difference between two cham-
bers A and B of the actuator; J and θ are the moment of inertia and the angular displacement
of the load, respectively; Ff (

.
θ) = B

.
θ is the modeled smooth friction dynamics with B is



Actuators 2021, 10, 20 4 of 22

the coefficient of the viscous friction; Fd(θ,
.
θ, t) represents the disturbances, parameter

variations, and unmodeled uncertainties.
The hydraulic torque of the actuator is computed as

Th = PLDm (2)

where the load pressure PL = P1 − P2 is the pressure difference between two chambers of
the actuator; P1 and P2 are the pressures at the chamber A and chamber B, respectively; Dm
represents the radian displacement of the actuator.

Substituting (2) into (1), one obtains

J
..
θ = PLDm − Ff

( .
θ
)
− Fd

(
θ,

.
θ, t
)

(3)

2.2. Servo-Valve Modeling

The dynamic behavior of a servo-valve includes many parameters. Thereby, some
of the parameters may only be known within some ranges, or even completely unknown.
However, based on the information about its step responses and/or frequency responses,
the servo-valve dynamics was approximated in a simple model for various control objec-
tives. In [49], the servo-valve dynamics model was estimated by a second-order transfer
function without loss of accuracy as follows:

..
xv + 2ζvωv

.
xv + ω2

vxv + fvsign
( .
xv
)
= ω2

vkvu (4)

where ωv is the natural frequency; ζv is the damping coefficient; kv represents the valve
coefficient; xv is the valve spool displacement; fv takes into account the valve hysteresis
and response sensitivity; u is the control input voltage applied to the valve, and sign(·) is
the standard signum function.

In a wide range of valve-controlled hydraulic applications, the valve dynamics are
always much more rapid than the dynamics of other components in the system. Moreover,
the hysteresis of the servo-valve is also neglected [3]. Therefore, the dynamics of the servo
valve can be ignored without performance degradation in the control systems. For the sake
of simplicity, the reduced model of the servo-valve can be presented as follows [19]:

xv = kvu (5)

where kv is the gain of the control voltage u and it can be calculated by using the specifica-
tion of the servo valve.

2.3. Hydraulic Actuator Modeling

Based on the definition of the effective bulk modulus, the load pressure dynamics can
be defined as [19]

Vt

4βe

.
PL = −Dm

.
θ − CtPL + QL + q(t) (6)

where Vt is the total control volume of the hydraulic motor; βe is the effective bulk modulus
of the hydraulic oil; Ct is the total coefficient of the overall internal leakage due to the
pressure difference between chambers of the actuator; q(t) is the lumped uncertainties
caused by complicated internal leakage, unmodelled pressure dynamics, and parameter
deviations; QL is the load flow.

The load flow QL is defined as

QL =
1
2
(Q1 + Q2) (7)
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with Q1 is the supplied flowrate to chamber A, i.e., forward chamber, and Q2 is the returned
flowrate from chamber B, i.e., reverse chamber. Moreover, the load flow can be computed
as follows:

QL = Cdwxv

√
1
ρ
(Ps − sign(xv)PL) (8)

where Cd is the discharge coefficient; w represents the spool valve area gradient; ρ is the
density of the oil; and Ps is the supply pressure.

Substituting (5) into (8), the load flow can be transformed into

QL = ktu
√
(Ps − sign(u)PL) (9)

where kt = Cdkvw
√

1/ρ is the total flow gain with respect to control voltage u.

2.4. System Modeling

The total system model is constructed by the mechanical system model (3), the hy-
draulic system model described by (6) and (9) which already consist of the servo-valve
model (5).

Define the state variables as [x1, x2, x3]
T =

[
θ,

.
θ, DmPL/J

]T
. Based on that, the state-

space representation of the studied system can be expressed as
.
x1 = x2.
x2 = x3 + ϕ1(x2) + d1(x, t)
.
x3 = ϕ2(x2, x3) + g(x3, u)u + d2(x, t)

(10)

where
ϕ1(x2) = − B

J x2

d1(x, t) = − Fd(x1,x2,t)
J

ϕ2(x2, x3) = − 4D2
m βe

JVt
x2 − 4βe

Vt
Ctx3

g(x3, u) = 4Dm βekt
JVt

√
Ps − J

Dm
x3sign(u)

d2(x, t) = 4Dm βe
JVt

q(t)

(11)

In the system model, two terms, d1(x, t), which is the acceleration disturbance, and
d2(x, t), which is the jerk disturbance, are the mismatched and matched lumped distur-
bances that take into account parametric uncertainties, unmodeled uncertainties, and
external disturbances. These terms will be estimated and then fed back to the controller
to compensate for their effects. The approximations of these terms are considered in the
process of the controller design phase thoroughly in the following section.

3. Controller Design

The proposed control scheme is designed to improve the tracking performance and
robustness with respect to the uncertainties of the hydraulic system. In this stage, nominal
system parameters are used to design the observers and the controller. The modeling errors
are lumped to the unmodeled terms d1 and d2 in the second and third equations of (10).
The proposed control system is demonstrated in Figure 2.
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In this control system, the state observer based on the Levant’s differentiator is de-
signed to accurately approximate the angular velocity of the inertial load. The output
of this observer is fed back to the controller and two disturbance observers as well. The
disturbance observers are constructed to estimate the lumped uncertainties d1 and d2, then
they are integrated in the control design step to compensate for their effects on the closed-
loop control system. The controller is synthesized by using the backstepping method,
which utilizes the measured states (the angular position and the pressures of chambers
of the actuator), estimated state (angular velocity) produced by state observer, and the
estimation of unmodeled uncertainties are generated by the disturbance observers. This
control algorithm guarantees globally bounded tracking performance in the presence of
the modeling error and unmodeled uncertainties.

Before the observer and controller design stage, some assumptions are given as the
following:

Assumption 1. The lumped disturbances are bounded and smooth enough, and their first-order
derivatives are bounded by known constants.

|d1| ≤ d∗1 ;
∣∣∣ .
d1

∣∣∣ ≤ .
d
∗
1

|d2| ≤ d∗2 ;
∣∣∣ .
d2

∣∣∣ ≤ .
d
∗
2

(12)

Assumption 2. The pressures P1 and P2 are both bounded by the supply pressurePs. The absolute
value of the load pressure is sufficiently smaller than Ps to guarantee the function g(x3, u) is far
away from zero.

Assumption 3. The function ϕ1(x2) is globally Lipschitz with respect to x2; ϕ2(x2, x3) is also
globally Lipschitz with respect to x2. There exist known constants c1, c2 such that:{

|ϕ1(x2)− ϕ1(x̂2)| ≤ c1 x̃2
|ϕ2(x2, x3)− ϕ2(x̂2, x3)| ≤ c2 x̃2

(13)

Assumption 4. The desired position trajectory θd(t) = x1d(t), its first-order and second-order
derivatives are bounded.
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Lemma 1. Consider the inequality

.
x(t) ≤ −σx(t) + υ (14)

with σ and υ are known positive constants.
The solution of equality defined by (14) satisfies the following inequality

lim
t→∞

(x(t)) ≤ υ

σ
(15)

Proof of Lemma 1: See Appendix A. �

3.1. State Observer Design

The state observer is designed to estimate the angular velocity of the inertial load
based on the information from the position sensor. In this paper, a second-order Levant’s
differentiator [46] is employed to estimate exactly and in a finite time the first-order
derivative of the position of the inertial load x1(t).

The second-order Levant’s differentiator is mathematically formulated as follows
.
y1 = v1; v1 = −λ1|y1 − x1|2/3sign(y1 − x1) + y2
.
y2 = v2; v2 = −λ2|y2 − v1|1/2sign(y2 − v1) + y3.
y3 = −λ3sign(y3 − v2)

(16)

where λ1, λ2, λ2 are the parameters of the differentiator that are positive constants. The
trade-off is as follows: the larger the parameters, the faster the convergence and the higher
sensitivity to input noises and the sampling step. The estimated angular velocity is defined
as

x̂2 = y2 (17)

The stability of this differentiator has been proven in previous works [48]. In the
steady-state condition, the estimation error x̃2 = x2 − x̂2 of the angular velocity and its
derivative satisfy the following equations:

|x̃2| ≤ α∣∣∣ .
x̃2

∣∣∣ ≤ β
(18)

where α is the arbitrary small positive constant depending on the selection of differentiator
parameters and β is a bounded constant that is defined as

β =
|x̃2max − x̃2min|

T
=

2α

T
(19)

with T being the sampling time.

3.2. Disturbance Observer Design

The disturbance observers are designed to estimate the lumped uncertainties of the
mechanical and hydraulic systems. Then, the estimated values are fed back to the control
law to compensate for their effects on the control system.

Consider the subsystem that is represented in the second equation of (10) as

.
x2 = x3 + ϕ1(x2) + d1 (20)
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The first disturbance observer is constructed to approximate the mismatched lumped
uncertainties in the mechanical system, which is depicted as{

d̂1 = z1 + l1 x̂2.
z1 = −l1d̂1 − l1(x3 + ϕ1(x̂2))

(21)

where z1 is an intermediary variable of the observer, l1 is the observer gain with l1 > 0.
Define the estimation error as ed1 = d1 − d̂1. The estimation error dynamics is calcu-

lated as
.
ed1 = −l1ed1 − l1 ϕ̃1 + l1

.
x̃2 +

.
d1 (22)

where
ϕ̃1 = ϕ1(x2)− ϕ1(x̂2) (23)

Theorem 1. Based on Assumptions 1 and 3, the disturbance observer (21) which utilizes the state
estimation (17) guarantees that the disturbance estimation error in (22) can be bounded in an
arbitrarily small region based on the selection of the DO gain.

Proof of Theorem 1: See Appendix B. �

Similarly, we consider the second subsystem to be defined as

.
x3 = ϕ2(x2, x3) + g(x3, u)u + d2(x, t) (24)

The second disturbance observer is designed to estimate the lumped uncertainties of
the subsystem defined as follows{

d̂2 = z2 + l2x3.
z2 = −l2d̂2 − l2[g(u, x3)u + ϕ2(x̂2, x3)]

(25)

where l2 is the disturbance observer gain with l2 is selected such that l2 > 0.
Define the estimation error ed2 = d2 − d̂2. The estimation error dynamics is computed

as
.
ed2 = −l2ed2 − l2 ϕ̃2 +

.
d2 (26)

where
ϕ̃2 = ϕ2(x2, x3)− ϕ1(x̂2, x3) (27)

Theorem 2. The disturbance observer (25) based on Assumptions 1 and 3, which utilizes the state
estimation (17), guarantees that the disturbance estimation error in (26) can be bounded in an
arbitrarily small region based on the selection of the DO gain.

Proof of Theorem 2: See Appendix C. �

Remark 1. The proposed DOBs are able to compensate for not only the external disturbances
but also model uncertainties caused by large parameter variations and weak modeling as long as
Assumption 1 is satisfied.

3.3. Backstepping Controller Design

The proposed controller is synthesized by using the recursive backstepping method
based on the measured states, estimated state, and approximated lumped uncertainties. The
design procedure is intuitive because the unmatched uncertainty in the second equation
and the matched uncertainty in the third equation of (10) have been completely estimated
in the previous sections.
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The state errors ei(i = 1, 2, 3) are defined as
e1 = x1 − x1d
e2 = x2 − x2d
e3 = x3 − x3d

(28)

where x1d is the desired position trajectory, x2d and x3d are the virtual control inputs. Based
on the estimated state and observed disturbances, the virtual control inputs are designed
to stabilize the subsystems as follows:{

x2d = −k1e1 +
.
x1d

x3d = −ϕ1(x̂2)− k1
(
x̂2 −

.
x1d
)
+

..
x1d − k2(x̂2 − x2d)− d̂1

(29)

where k1 and k2 are positive feedback gains. The virtual control function x3d is designed
for the virtual control input x3, such that the output tracking performance is ensured.

The actual control input u is designed to stabilize the whole system, which is defined
as

u =
1

g(x3, u)

(
−ϕ2(x̂2, x3)−

.
x3d − k3(x3 − x3d)− d̂2

)
(30)

The state error dynamics of the augmented system is given by
.
e1 = −k1e1 + e2.
e2 = −k2e2 + e3 + ϕ̃1 + (k1 + k2)x̃2 + ed1.
e3 = −k3e3 + ϕ̃2 + ed2

(31)

Theorem 3. Based on Assumption 1, 2, and 3, the control laws in (29) and (30), which employs
the estimated state in (17) and the estimation values of disturbances in (21) and (25) guarantee
the ultimately uniformly bounded tracking performance of the system (10) under the presence of
uncertain nonlinearities and external disturbances.

Proof of Theorem 3: See Appendix D. �

4. Simulation Results
4.1. Simulation Setup

In this section, numerical simulations are conducted to verify the superior effectiveness
of the proposed algorithm. The simulations were performed on MATLAB/Simulink 2019b,
using Runge-Kuta solver with a fixed step size T = 10−3s as shown in Figure 3.

The system parameters of the hydraulic system [19] are listed in the following Table 1.

Table 1. The hydraulic system parameters.

Parameter Value Parameter Value

J(kg ·m2) 0.2 B(N ·m · s · rad−1) 90
Dm(m3 · rad−1) 5.8× 10−5 βe(Pa) 7× 108

Ct(m3 · s−1 · Pa−1) 1× 10−12 kt(m3 · s−1 ·V−1 ·
Pa−1/2)

1.1969× 10−8

Ps(Pa) 107 Vt(m3) 1.16× 10−4
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In practice, the output signal of the controller needs to be in a determined range.
Generally, the voltage of the input signal u applied to a servo-valve is bounded in a range
from −10V ÷ 10V, therefore, in this case, we have to use a saturation function as follows:

u(t) =


uc(t) if −10 ≤ uc(t) ≤ 10V
−10 if uc(t) < −10V
10 if uc(t) > 10V

(32)

where uc is the output of the controller.

4.2. Controllers for Comparison

To illustrate the superiority of the proposed control law, some controllers are com-
pared.

The proposed disturbance observers (21) and (25) in combination with the exact
differentiator (16) are employed in the backstepping controller (30). The parameters of the
two disturbance observers and the state observer are l1 = 450, l2 = 450, λ1 = 5, λ2 = 10,
and λ3 = 10, respectively.

ESOBC: This is the extended state observer-based backstepping control in [19]. The
extended state observer was introduced as

.
x̂ = A0 x̂ + Φ(x̂) + G(u, x̂)u + H(x1 − x̂1) (33)

in which H =
[

4ω0 6ω2
0 4ω3

0 ω4
0
]T is the observer gain matrix with ω0 = 450.

2-ESOBC: This is the two extended state observer-based backstepping control. The
two state observers [10,44] were investigated as

.
x̂1 = x2 + 3ωe1(x1 − x̂1).
x̂2 = x3 + ϕ1(x̂2) + x̂e1 + 3ω2

e1(x1 − x̂1).
x̂e1 = ω3

e1(x1 − x̂1){ .
x̂3 = g(x3, u)u + ϕ2(x̂2, x3) + 2ωe1(x3 − x̂3).
x̂e2 = ω2

e2(x3 − x̂3)

(34)

where ωe1, ωe2 are the observer gains with ωe1 = 450 and ωe2 = 450.



Actuators 2021, 10, 20 11 of 22

UDEBC: This is the unknown disturbance estimation-based backstepping control. The
disturbance observer [50] is designed as follows: d̂1 =

( .
x̂2 − x3 − ϕ1(x̂2)

)
× q1

d̂2 =
( .

x̂3 − g(x3, u)u− ϕ2(x̂2, x3)
)
× q2

(35)

where q1 and q2 are low-pass filters which are chosen based on the dynamics of the
considered system. The structure of these filters is first-order transfer function as

qi =
1

Tis + 1
(i = 1, 2) (36)

with T1 and T2 being manually tuned to achieve the sufficiently accurate estimation of d1
and d2. The larger Ti, the better noise filtering but the higher lag on the filtered signal and
vice versa. The values of T1 and T2 are chosen as T1 = T2 = 0.01.

The controller gains are given by k1 = 450, k2 = 350, and k3 = 100 in all cases.
To measure the effectiveness of each control approach, three performance indexes were

employed i.e., the maximum, average, and standard deviation of the tracking errors [19].
These indexes are defined as follows:

(a) Maximal absolute value of tracking errors is used to evaluate the tracking accuracy,
which is represented as

Me = max
i=1,...,N

{|e1(i)|} (37)

where N is the number of recorded digital signals.
(b) Average tracking error is defined as

µe =
1
N

N

∑
i=1
|e1(i)| (38)

(c) Standard deviation performance index is defined as

σe =

√√√√ 1
N

N

∑
1
[|e1(i)| − µe]

2 (39)

4.3. Numerical Simulation

In this case study, the desired trajectory of the inertial load and the matched, mis-
matched disturbances are applied to the system as follows:

x1d(t) = 45
(
1− cos

(
π
2 t
))(

1− e−t) (degree) (40)

d1(t) =
{

0 t < 20s
1500 sin(π(t− 20)) otherwise

(
rad · s−2) (41)

d2(t) =
{

0 t < 40s
106 sin(π(t− 40)) otherwise

(
rad · s−3) (42)

where the magnitudes of d1(t) and d2(t) are chosen based on the system specifications
and the operation conditions of the real systems. These disturbances are intentionally
injected into the considered system to verify the effectiveness of two proposed disturbance
observers in improving the tracking performance of the proposed control system.

The desired trajectory is designed based on the sinusoidal-like function (40) to guaran-
tee that it is smooth enough. To compare the tracking performance of the aforementioned
control approaches, the mismatched (41) and matched disturbance functions (42) are
injected into the system from the first 20th second and 40th second, respectively.
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The tracking errors and tracking performances of four considered controllers are
shown in Figures 4 and 5, respectively. The maximum, average, and standard devia-
tions of tracking errors in the steady-state phase are illustrated in Tables 2–4 in detail,
correspondingly.
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Table 2. The maximal absolute values of tracking error in the steady-state phase.

Control Approach
Me (Deg)

No Disturbance Mismatched
Disturbance

Mismatched/Matched
Disturbances

Proposed Controller 0.0045 0.0093 0.0521
ESOBC Controller 0.0045 0.0500 0.2860

2-ESOBC Controller 0.0045 0.0123 0.0895
UDEBC Controller 0.0057 0.0236 0.1572
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Table 3. The average tracking errors in the steady-state phase.

Control Approach
µe (Deg)

No Disturbance Mismatched
Disturbance

Mismatched/Matched
Disturbances

Proposed Controller 0.0030 0.0048 0.0331
ESOBC Controller 0.0030 0.0219 0.1728

2-ESOBC Controller 0.0030 0.0065 0.0584
UDEBC Controller 0.0038 0.0131 0.0997

Table 4. The standard deviation of tracking errors in the steady-state phase.

Control Approach
σe (Deg)

No Disturbance Mismatched
Disturbance

Mismatched/Matched
Disturbances

Proposed Controller 0.0014 0.0030 0.0151
ESOBC Controller 0.0014 0.0189 0.1698

2-ESOBC Controller 0.0014 0.0038 0.0254
UDEBC Controller 0.0018 0.0068 0.0469

In the absence of mismatched and matched disturbances in the first 20 s, the tracking
performance and tracking error plots are roughly similar. The maximal absolute values
of tracking errors of the proposed controller, ESOBC, and 2-ESOBC are 0.0045 degrees,
whereas that of the UDEDC is slightly bigger with 0.0057 degrees.

In the presence of the mismatched lumped disturbance from the 20th second, the
maximal value of tracking errors of the system with the ESOBC is significantly higher
than other controllers with 0.05 degrees, because this mismatched term is only suppressed
by using high gain feedback while this disturbance is estimated and compensated in
other methods, while that of UDEBC is 0.0236 degrees. It can be seen from Table 2 that
the tracking errors of the 2-ESOBC and proposed controller are better than the ESOBC
and UDEBC, since the angular velocity and matched disturbance are approximated more
precisely. In this case, the maximal absolute values of tracking errors of 2-ESOBC and
the proposed method are 0.0123 degrees and 0.0093 degrees, respectively. This indicates
that the proposed control approach achieves a better tracking performance than other
approaches.

In the worst case, i.e., both mismatched and matched disturbances occur in the
system from the 40th second, the tracking performances of all controllers deteriorate
considerably. However, similar to the previous situation, it also illustrates the effectiveness
of the proposed controller compared to the remaining controllers in the presence of both
mismatched/matched uncertainties and external disturbances. In this case, the tracking
performance of ESOBC and UDEBC is seriously deteriorated due to the effects of heavy
disturbance with the maximum absolute values of the tracking errors being 0.2860 and
0.1572 degrees, respectively. Meanwhile, the maximal absolute value of tracking errors
of 2-ESOBC is 0.08695 degrees, and the proposed controller has the most outstanding
feature with this value is 0.0521 degrees under the effects of both mismatched and matched
disturbances.

In addition, to evaluate the tracking performance of the compared methods in terms
of smooth tracking performance, the average and standard deviation of tracking errors
can be used. From Tables 3 and 4, it can be observed that the average tracking error and
standard deviation indexes of the proposed control algorithm are considerably smaller
than other control approaches in the presence of mismatched and matched disturbances.
They illustrate that the smoother tracking performance is achieved by the proposed method
in comparison with others.

As above analysis, in the steady-state condition, the proposed controller achieves the
best tracking performance in terms of steady-state tracking errors compared with other
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control methods, since the angular velocity of the actuator is estimated more accurately
by employing Levant’s differentiator, and the matched/mismatched disturbances are
also approximated then fed back to the controller to compensate for the effects of these
disturbances on the control system.

The estimation error of the angular velocity is depicted in Figure 6. It is immediately
apparent that the angular velocity of the actuator is approximated by using the Levant’s
differentiator much more exactly than using ESO [48]. It also can be seen from this figure,
the estimation error of the 2ESOBC is much better than the ESOBC. In the occurrence of
mismatched disturbance from the 20th second to 40th second, the velocity estimation errors
of ESOBC and 2-ESOBC increase significantly, whereas that of the proposed controller
remains unchanged. This error of ESOBC continues to enlarge dramatically under the
influence of the matched disturbance in the last 20 s on the control system. Hence, the
tracking performance of ESOBC deteriorates markedly under the presence of matched
disturbance. An interesting point is observed that compared to the ESOBC, the angular
velocity estimation in the 2-ESOBC is better since the pressure information is measured
and fed back to the mismatched ESO which estimates the mismatched disturbance and
also cancels its effect on the angular velocity estimation. In addition, based on the Lev-
ant’s differentiator, the angular velocity estimation in the proposed controller is the best
compared to those in the remaining controllers because this estimation is independent
of the system model and uncertainties/disturbances. Hence, it contributes to the best
tracking performance in the above discussion as well as the best matched and mismatched
disturbances estimations in the next section of the proposed controller compared to those
of the remaining controllers.
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The estimation and estimation errors of mismatched disturbance are illustrated in
Figures 7 and 8. As shown in Figure 8, it is clearly seen that although the UDEBC can
estimate the mismatched disturbance, the estimation error is considerably bigger than
2-ESOBC and the proposed method. From Table 5, it can be observed that while the
maximal absolute value of the mismatched estimation error of UDEBC is 47.2756 rad · s−2,
those of 2-ESOBC and the proposed approach are 20.4977 rad · s−2 and 16.3231 rad ·
s−2, respectively. The results show that the proposed controller is able to estimate the
mismatched disturbance the most accurately in comparison with UDEBC and 2-ESOBC.
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Table 5. The maximal absolute value of estimation errors of mismatched and matched disturbances.

Control Approach Maximal Value of Estimation Error

Mismatched Disturbance
(rad·s−2)

Matched Disturbances
(rad·s−3)

Proposed Controller 16.3231 1.1843× 104

ESOBC Controller 8.5159× 105

2-ESOBC Controller 20.4977 2.1428× 104

UDEBC Controller 47.2756 3.2072× 104

The estimation and estimation errors of matched disturbance are illustrated in
Figures 9 and 10. In Figure 10, the proposed disturbance observer is able to estimate
more accurately the matched disturbance compared with other methods. It is worth not-
ing that the matched disturbance estimation of the ESOBC and 2-ESOBC are affected by
the mismatched disturbance due to the coupling problem between state and disturbance
estimation. This leads the estimation errors even in the absence of matched disturbances,
and hence, they degrade the tracking performance of the control system. Furthermore, the
ESOBC uses high-gain feedback to suppress the matched disturbance, but in the case of
heavy disturbance, this method cannot work well.
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The maximal absolute values of matched disturbance of the estimation error are
illustrated in Table 5. As can be seen from this table, the maximal absolute values of
estimation error of ESOBC, UDEBC are 8.5159 × 105 rad · s−3 and 3.2072 × 104 rad · s−3,
respectively, whereas these values of 2-ESOBC and the proposed method are 2.1428 × 104

rad · s−3 and 1.1843 × 104 rad · s−3, respectively.
The control action and load pressures are shown in Figures 11 and 12, respectively.

Due to the same desired position trajectory and similar tracking performances, all four
controllers generate the equivalent profiles of control input. It can be seen that in the
presence of matched disturbance in the last 20 s, the value of control input increases
significantly to compensate the effect of this uncertainty. The load pressure also changes to
guarantee the tracking performance of the control system in the presence of mismatched
and/or matched disturbances, and hence, the shapes of load pressures are also quite
similar.
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5. Conclusions

In this paper, a novel backstepping controller based on Levant’s differentiator-based
disturbance observers has been proposed for a hydraulic servo-system. In this work, the
angular velocity of the actuator is exactly estimated by employing the exact robust Levant’s
differentiator. Lumped matched and mismatched disturbances are simultaneously consid-
ered and by using new DOs that approximate not only the uncertain nonlinearities but
also the external disturbances. Based on that, the novel nonlinear controller is synthesized
using the systematic backstepping method. The closed-loop system stability is completely
proven using Lyapunov theory, which shows that the proposed controller guarantees a
better tracking performance in the presence of time-varying uncertainties and external
disturbances compared with other approaches. Comparative simulation results are at-
tained to demonstrate the effectiveness of the proposed method. Future works include
applying advanced nonlinear disturbance observers to improve the tracking performance
and experiment validation on the real hydraulic system.
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Appendix A

Multiplying both sides of (14) by eσt, one obtains

eσt .
x(t) + σeσtx(t) ≤ υeσt (A1)

Taking the integral of them, the following inequality holds

eσtx(t)− x(0) ≤
t∫

0

υeστdτ (A2)

Finally, (A2) becomes

x(t) ≤ e−σtx(0) +
υ

σ
− υ

σ
e−σt (A3)

From (A3), when t goes to infinity, x(t) is bounded by

x(t) ≤ υ

σ
(A4)

This completes the proof of the lemma.

Appendix B

The Lyapunov candidate function is chosen as

Vd1 =
1
2

e2
d1 (A5)

Combining the error dynamics in (22) and (13), the time derivative of (A5) can be
obtained as

.
Vd1 = −l1e2

d1 − l1ed1 ϕ̃1 + l1ed1
.
x̃2 + ed1

.
d1

≤ −
(

l1 − l1c1
2γ2

1
− l1

2γ2
1
− 1

2

)
e2

d1 +
1
2
(
l1c1γ2

1 + l1γ2
1
)

β2 + 1
2

( .
d
∗
1

)2 (A6)

Define a set of known constants as

λ1 = l1 − l1c1
2γ2

1
− l1

2γ2
1
− 1

2

ξ1 = 1
2
(
l1c1γ2

1 + l1γ2
1
)

β2 + 1
2

( .
d
∗
1

)2 (A7)

where constants l1, and γ1 are chosen such that λ1 is positive.
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Based on Assumption 1 and (18), (A6) is transformed into

.
Vd1 ≤ −λ1e2

d1 + ξ1 (A8)

From (A5) and (A8), we obtain

.
Vd1 ≤ −2λ1Vd1 + ξ1 (A9)

Based on Lemma 1, and (A9), the function Vd1 is bounded by

Vd1(t) ≤
ξ1

2λ1
(A10)

It is clearly seen that the larger observer gain l1 is, the smaller estimation error ed1 will
be. Hence, Theorem 1 is completely proven.

Appendix C

The Lyapunov candidate function is chosen as

Vd2 =
1
2

e2
d2 (A11)

The time derivative of Vd2 is computed as

.
Vd2 = −l2e2

d2 − l2ed2 ϕ̃2 + ed2
.
d2

≤ −
(

l2 − l2c2
2γ2

2
− 1

2

)
e2

d2 +
1
2 l2c2γ2

2 x̃2
2 +

1
2

( .
d
∗
2

)2 (A12)

Define a set of known constants as

λ2 = l2 − l2c2
2γ2

2
− 1

2

ξ2 = 1
2 l2c2γ2

2 x̃2
2 +

1
2

( .
d
∗
2

)2 (A13)

where constants l2 and γ2 are chosen such that λ2 is positive.
Based-on Assumption 1, and (18), (A12) is transformed into

.
Vd2 ≤ −λ2e2

d2 + ξ2 (A14)

Combination (A11) and (A14), we obtain

.
Vd2 ≤ −2λ2Vd2 + ξ2 (A15)

Based on Lemma 1, and (A15), Vd2 is bounded by

Vd2 ≤
ξ2

2λ2
(A16)

It is clearly seen that the larger observer gain l2 is, the smaller estimation error ed2 will
be. Hence, Theorem 2 is completely proven.

Appendix D

Controller stability analysis is performed by using Lyapunov theory with the Lya-
punov candidate function as

Vc =
1
2

e2
1 +

1
2

e2
2 +

1
2

e2
3 (A17)
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Combining (18), (22), (26), and (31), the time derivative of Vc can be obtained as

.
Vc = −k1e2

1− k2e2
2− k3e2

3 + e1e2 + e2e3 + e2 ϕ̃1 +(k1 + k2)e2 x̃2 + e2ed1 + e3 ϕ̃2 + e3ed2 (A18)

Using (12), (13) in Assumption 2 and Assumption 3, the time derivative of Vc (A18) is
bounded by

.
Vc = −k1e2

1 − k2e2
2 − k3e2

3 + e1e2 + e2e3 + e2 ϕ̃1 + (k1 + k2)
( e2

ε

)
(εx̃2) + e2ed1 + e3 ϕ̃2 + e3ed2

≤ −
(

k1 − 1
2

)
e2

1 −
(

k2 − k1+k2
2ε2 − 2

)
e2

2 −
(
k3 − 3

2
)
e2

3 +
1
2 ϕ̃2

1 +
1
2 ϕ̃2

2+

+ (k1+k2)
2 ε2 x̃2

2 +
1
2 e2

d1 +
1
2 e2

d2
(A19)

The inequality (A19) can be rewritten in the following form

.
Vc ≤ −η1e2

1 − η2e2
2 − η3e2

3 + ψ (A20)

with ε is a known constant, and

η1 = k1 − 1
2 ; η2 = k2 − k1+k2

2ε2 − 2

η3 = k3 − 3
2 ; ψ = 1

2 ϕ̃2
1 +

1
2 ϕ̃2

2 +
(k1+k2)

2 ε2 x̃2
2 +

1
2 e2

d1 +
1
2 e2

d2

(A21)

From (A20), Lemma 1, Theorem 1, and Theorem 2, Vc(t) is bounded by

Vc(t) ≤ V(0) exp(−τt) +
ψ

τ
[1− exp(−τt)] (A22)

where τ = 2×min{η1, η2, η3}.
When t goes to infinity, one obtains Vc will stay in a bounded region defined as

Vc ≤ ψ/τ. Therefore, a bounded tracking performance is achieved as follows:

|e1| ≤
√

2ψ

τ
(A23)

From (A21), (A22), and (A23), when the control gains k1, k2, and k3 increase, the
tracking error will decrease.

This completes the proof of Theorem 3.
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