
actuators

Article

Improved Control Scheduling Based on Learning to Prediction
Mechanism for Efficient Machine Maintenance in Smart Factory

Sehrish Malik 1 and DoHyeun Kim 2,*

����������
�������

Citation: Malik, S.; Kim, D.

Improved Control Scheduling Based

on Learning to Prediction Mechanism

for Efficient Machine Maintenance in

Smart Factory. Actuators 2021, 10, 27.

https://doi.org/10.3390/

act10020027

Academic Editor: Hicham Chaoui

Received: 12 December 2020

Accepted: 27 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Information and Communication Engineering, Kongju National University, Cheonan 331717,
Korea; serrym29@gmail.com

2 Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea
* Correspondence: kimdh@jejunu.ac.kr; Tel.: +82-64-754-3658

Abstract: The prediction mechanism is very crucial in a smart factory as they widely help in im-
proving the product quality and customer’s experience based on learnings from past trends. The
implementation of analytics tools to predict the production and consumer patterns plays a vital rule.
In this paper, we put our efforts to find integrated solutions for smart factory concerns by proposing
an efficient task management mechanism based on learning to scheduling in a smart factory. The
learning to prediction mechanism aims to predict the machine utilization for machines involved in
the smart factory, in order to efficiently use the machine resources. The prediction algorithm used
is artificial neural network (ANN) and the learning to prediction algorithm used is particle swarm
optimization (PSO). The proposed task management mechanism is evaluated based on multiple
scenario simulations and performance analysis. The comparisons analysis shows that proposed task
management system significantly improves the machine utilization rate and drastically drops the
tasks instances missing rate and tasks starvation rate.

Keywords: real-time tasks; task scheduling; smart factory; periodic tasks; event-driven tasks

1. Introduction

The virtual objects are contained in a virtual network, which replicates the physical
representation, dependencies and context of the physical world objects. The internet
of things (IoT) enabled smart factory solutions help achieving the real-time production
visualization with the identification of manufacturing objects. The technologies such as
radio frequency identification (RFID) are used to interpret the real-world object into smart
factory’s virtual objects along with their behaviors and interactions. The development
of such a system facilitates in the smart factory production process, intelligent decision
making and automated control process and other operations [1].

The smart machines participate in generating huge volumes of data known as big
data. Big data can be used and analyzed to aid the smart factory production. Artificial
intelligence (AI) and machine learning mechanisms are used to interpret the big data into
useful information to be applicable. The right use of big data can help a smart factory to
optimize the production by maximizing the production output, maximizing the machine
utilization, minimizing the energy consumption, minimizing the production cost and
minimizing the production time. The application of AI and machine learning into big
data can result into application scenarios such as predictive maintenance, fault detection,
product’s quality detection, production cost predictions, etc.

The smart factory has interconnected supply chains and autonomous control of ve-
hicles, machines and robots resulting in efficient production tasks management such as
getting shipments ready based on tracking of arrivals and departures and avoiding delays
with the help of self-driving vehicles and self-delivering robots. The goal of a smart factory
is to deliver smart solutions to the customers of a smart factory.

Actuators 2021, 10, 27. https://doi.org/10.3390/act10020027 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2312-4420
https://doi.org/10.3390/act10020027
https://doi.org/10.3390/act10020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10020027
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/2076-0825/10/2/27?type=check_update&version=1

Actuators 2021, 10, 27 2 of 17

Customers play a vital role in the smart factory. In order to assure the customers’
satisfaction and growth, it is very crucial for the smart factory to perform the production
process efficiently and effectively in real-time by meeting all constraints [2]. This task can
be performed with the help of following two factors set at the right place. The first is
the automated feedback of the production processes and second is the implementation of
analytics tools to accurately predict the production and consumers’ patterns [3]. Smart
factory control tasks scheduling can greatly benefit from the history learnings of customers’
patterns data, production processes data, and tasks completion data. Hence, the predictive
learning based scheduling is very crucial for the smart factory’s timely task management.
The contribution of this paper can be given as following.

• Enhancing the smart factory control tasks scheduling mechanisms by integrating the
learning to prediction module.

• Efficient tasks allocation, efficient tasks dispatching and efficient tasks scheduling; in
order to improve the overall productivity of the manufacturing process.

• Improved control task management based on the predictive learning module.

The rest of the paper is divided as follows. Section 2 presents the related works;
Section 3 presents the proposed learning to prediction based scheduling mechanism. In
Section 4, we provide the tasks modeling simulation of the proposed system. In Section 5, we
present the implementation setup. The results analysis is presented in Section 6; Section 7
concludes the paper with discussions.

2. Related Work

The prediction mechanism is very crucial in a smart factory as they widely help in
improving the product quality and customers experience based on learnings from past
trends. The implementation of analytics tools to predict the production and consumer
patterns plays a vital rule. Figure 1 shows the framework for the predictive manufacturing
system [3].

Actuators 2021, 10, x FOR PEER REVIEW 2 of 18

with the help of self-driving vehicles and self-delivering robots. The goal of a smart fac-
tory is to deliver smart solutions to the customers of a smart factory.

Customers play a vital role in the smart factory. In order to assure the customers’
satisfaction and growth, it is very crucial for the smart factory to perform the production
process efficiently and effectively in real-time by meeting all constraints [2]. This task can
be performed with the help of following two factors set at the right place. The first is the
automated feedback of the production processes and second is the implementation of an-
alytics tools to accurately predict the production and consumers’ patterns [3]. Smart fac-
tory control tasks scheduling can greatly benefit from the history learnings of customers’
patterns data, production processes data, and tasks completion data. Hence, the predictive
learning based scheduling is very crucial for the smart factory’s timely task management.
The contribution of this paper can be given as following.
• Enhancing the smart factory control tasks scheduling mechanisms by integrating the

learning to prediction module.
• Efficient tasks allocation, efficient tasks dispatching and efficient tasks scheduling; in

order to improve the overall productivity of the manufacturing process.
• Improved control task management based on the predictive learning module.

The rest of the paper is divided as follows. Section 2 presents the related works; Sec-
tion 3 presents the proposed learning to prediction based scheduling mechanism. In Sec-
tion 4, we provide the tasks modeling simulation of the proposed system. In Section 5, we
present the implementation setup. The results analysis is presented in Section 6; Section 7
concludes the paper with discussions.

2. Related Work
The prediction mechanism is very crucial in a smart factory as they widely help in

improving the product quality and customers experience based on learnings from past
trends. The implementation of analytics tools to predict the production and consumer pat-
terns plays a vital rule. Figure 1 shows the framework for the predictive manufacturing
system [3].

Figure 1. Predictive analytics in a smart factory [2].

Actuators 2021, 10, 27 3 of 17

Algorithms that focus on finding efficient and quick solutions (approximate solutions)
to a problem by forfeiting the accuracy and optimality are known as heuristic algorithms.
Algorithms that create a statistical or probability based model for the input data are known
as statistical algorithms. Table 1 shows the list of heuristic and statistical algorithms.

Table 1. Heuristic and statistical algorithms.

Heuristic Algorithms Statistical Algorithms

Artificial Neural Networks Linear/Logistic Regression
Support Vector Machines Naïve Bayes Classifier

Genetic Algorithms K Means Clustering
Swarm Intelligence Support Vector Machine

Simulated Annealing Markov chains
ARIMA

The prediction mechanism is used at multiple levels in the smart manufacturing. It is
used for performance predictions of the system [4]. Prediction approaches are also used
to predict the health conditions of smart factory tools such as a study in [5] uses artificial
neural networks (ANNs) based predictions, support vector machine based predictions
and random forests based predictions for the tool wear predictions in the smart manufac-
turing. One of the major roles of prediction approaches in the smart manufacturing is of
predictive maintenance [6]. Predictive maintenance refers to the timely predictions for the
smart factory’s equipment downtime and failure in order to improve the productivity and
minimize the production cost (Figure 2). The study in [7], presents a baseline predictive
maintenance solution, which consists of components such as a target device (TD), device
health index (DHI) and remaining-useful-life (RUL) predictive model. The system gets
related process data and target device data as input and outputs the device health index
and device’s remaining useful life indicating whether the device is in a safe state or risk
state.

Actuators 2021, 10, x FOR PEER REVIEW 3 of 18

Figure 1. Predictive analytics in a smart factory [2].

Algorithms that focus on finding efficient and quick solutions (approximate solutions)
to a problem by forfeiting the accuracy and optimality are known as heuristic algorithms.
Algorithms that create a statistical or probability based model for the input data are known
as statistical algorithms. Table 1 shows the list of heuristic and statistical algorithms.

Table 1. Heuristic and statistical algorithms.

Heuristic Algorithms Statistical Algorithms
Artificial Neural Networks Linear/Logistic Regression
Support Vector Machines Naïve Bayes Classifier

Genetic Algorithms K Means Clustering
Swarm Intelligence Support Vector Machine

Simulated Annealing Markov chains
 ARIMA

The prediction mechanism is used at multiple levels in the smart manufacturing. It
is used for performance predictions of the system [4]. Prediction approaches are also used
to predict the health conditions of smart factory tools such as a study in [5] uses artificial
neural networks (ANNs) based predictions, support vector machine based predictions
and random forests based predictions for the tool wear predictions in the smart manufac-
turing. One of the major roles of prediction approaches in the smart manufacturing is of
predictive maintenance [6]. Predictive maintenance refers to the timely predictions for the
smart factory’s equipment downtime and failure in order to improve the productivity and
minimize the production cost (Figure 2). The study in [7], presents a baseline predictive
maintenance solution, which consists of components such as a target device (TD), device
health index (DHI) and remaining-useful-life (RUL) predictive model. The system gets
related process data and target device data as input and outputs the device health index
and device’s remaining useful life indicating whether the device is in a safe state or risk
state.

Figure 2. Baseline predictive maintenance [6].

The work presented in [8] combines the baseline predictive scheme with a cyber-
physical agent and adds an advanced manufacturing based on a cloud of things to imple-
ment a system that provides factory-wide equipment maintenance with hundreds of ma-
chines active in the smart factory. The goal is to provide a factory-wide predictive mainte-
nance system. The study presented in [9] also proposes a cloud based predictive mainte-
nance solution to aid the smart factory production.

After skimming the related works on smart factory scheduling, we can divide the
scheduling solutions in smart factory as optimized scheduling, dynamic scheduling, dis-
tributed scheduling and learning based scheduling. In optimized scheduling, an objective

Figure 2. Baseline predictive maintenance [6].

The work presented in [8] combines the baseline predictive scheme with a cyber-
physical agent and adds an advanced manufacturing based on a cloud of things to im-
plement a system that provides factory-wide equipment maintenance with hundreds of
machines active in the smart factory. The goal is to provide a factory-wide predictive
maintenance system. The study presented in [9] also proposes a cloud based predictive
maintenance solution to aid the smart factory production.

After skimming the related works on smart factory scheduling, we can divide the
scheduling solutions in smart factory as optimized scheduling, dynamic scheduling, dis-
tributed scheduling and learning based scheduling. In optimized scheduling, an objective
function to optimize the resources is implemented where at one end the optimizer strug-
gles to maximize the production output and at the other end it aims to minimize the cost
oriented resources. The objective function defined for optimization module varies based

Actuators 2021, 10, 27 4 of 17

on the smart factory scenario in hand. In dynamic scheduling, the system is enabled to
deal with the variations in the production process by rearranging the existing resources. In
distributed scheduling, the production process is chained to different machines/cores in
a coordinated manner. In learning based scheduling, the production process is benefited
from the learning modules such as predictive learning module or optimization leaning
modules. The learning modules aim to improve the system with each new iteration based
on learnings from the system’s history data and decisions. The category of self-aware/self-
adaptive scheduling systems and reinforcement learning based scheduling systems also
come under the learning based scheduling category. Many prediction mechanisms focused
on task completion, time management, self-adaptive task scheduling, task replication,
low-power task scheduling, etc., presented in other related studies [10–32]. In Table 2, we
present a comparison analysis of the related scheduling works based on defined categories.

Table 2. Comparison analysis of scheduling related works.

Ref. Optimized
Scheduling

Dynamic
Scheduling

Distributed
Scheduling

Learning Based
Scheduling

[10] X X
[11] X X
[12] X
[13] X
[14] X X
[15] X
[16] X
[17] X
[18] X X
[19] X X
[20] X
[21] X X
[22] X
[23] X
[24] X X
[25] X X
[26] X X
[27] X X
[28] X X X
[29] X X
[30] X X
[31] X
[32] X X

X represents the application of targeted field in the given reference.

Predictive learning is one of the most vital aspects of the production chain in a smart
factory. In this work, we proposed a predictive learning module for improving control
tasks scheduling. The proposed module can be integrated with an existing scheduling
tasks scheme to improve its performance, as presented in the performance analysis section.

3. Proposed Learning to the Optimization Mechanism

In this section, we present the prediction and learning to prediction mechanism for
scheduling in a smart factory.

3.1. Neural Networks for Prediction

The computational model (named as threshold logic) proposed in 1943 by McCulloch
and Pitts led to the research of artificial intelligence-based neural networks [33]. Artificial
neural networks started to flourish once the processing power of computers increased
dramatically, as computation power was one of the key issues faced in the progress of
ANNs at the initial stages [34].

Actuators 2021, 10, 27 5 of 17

Biologically inspired ANNs are known to produce most accurate prediction results [35].
ANN learning has two operational modes of training and testing, the system has a set of
inputs, weights associated with the inputs, hidden layers and a number of outputs. In
training, the neuron learns to decide whether to fire an output for a specific pattern or not,
while in the testing mode the accuracy of the learned model is determined.

The structure of a three-layer neural network is shown in the Figure 3, where we
have five inputs, six hidden layers and three outputs. The working of a simple neuron can
be explained by Equation (1) [36], whereby a typical neuron computes the output in the
following manner:

ak = f(
n

∑
i=0

wki xi) (1)

where, ak is the output of kth neuron. x1, x2, . . . , xn are the inputs to the neuron. x0 input is
bias (bk) assigning it a + 1 value, with wk0 = bk = 1. wk1, wk2, . . . , wkn are the
weights associated to each input. f is the activation function, which incorporates flex-
ibility in the neural networks.

Actuators 2021, 10, x FOR PEER REVIEW 5 of 18

In this section, we present the prediction and learning to prediction mechanism for
scheduling in a smart factory.

3.1. Neural Networks for Prediction
The computational model (named as threshold logic) proposed in 1943 by McCulloch

and Pitts led to the research of artificial intelligence-based neural networks [33]. Artificial
neural networks started to flourish once the processing power of computers increased
dramatically, as computation power was one of the key issues faced in the progress of
ANNs at the initial stages [34].

Biologically inspired ANNs are known to produce most accurate prediction results [35].
ANN learning has two operational modes of training and testing, the system has a set of
inputs, weights associated with the inputs, hidden layers and a number of outputs. In
training, the neuron learns to decide whether to fire an output for a specific pattern or not,
while in the testing mode the accuracy of the learned model is determined.

The structure of a three-layer neural network is shown in the Figure 3, where we have
five inputs, six hidden layers and three outputs. The working of a simple neuron can be
explained by Equation (1) [36], whereby a typical neuron computes the output in the fol-
lowing manner:

a୩ = f(෍ w୩౟x୧)୬
୧ୀ଴ (1)

where, a୩ is the output of kth neuron. xଵ , xଶ, . . . , x୬ are the inputs to the neuron. x଴ input is bias (b୩) assigning it a + 1 value, with w୩଴ = b୩ = 1. wk1, wk2, …, wkn are the
weights associated to each input. f is the activation function, which incorporates flexibility
in the neural networks.

Figure 3. Neural network (NN) layers.

The prediction model as shown in Figure 4 has nine inputs, six hidden layers and
two output layers. The system takes tasks data of the time stamp, execution time, deadline
time, start time, finish time, time budget, machine ID, machine load and machine capacity
as input. The data is first preprocessed and then passed onto the training module where
training is done based on ANN with six hidden layers. The output is prediction accuracy
computed for the task status prediction and machine utilization prediction.

Figure 3. Neural network (NN) layers.

The prediction model as shown in Figure 4 has nine inputs, six hidden layers and two
output layers. The system takes tasks data of the time stamp, execution time, deadline
time, start time, finish time, time budget, machine ID, machine load and machine capacity
as input. The data is first preprocessed and then passed onto the training module where
training is done based on ANN with six hidden layers. The output is prediction accuracy
computed for the task status prediction and machine utilization prediction.

Actuators 2021, 10, 27 6 of 17
Actuators 2021, 10, x FOR PEER REVIEW 6 of 18

Figure 4. Prediction model using artificial neural networks (ANNs).

3.2. Learning to Prediction Mechanism Based Control Tasks Scheduling
In this section, we describe the learning to prediction mechanism for smart factory

tasks scheduling and management.
In learning to prediction, the ANN prediction algorithm’s weights are learned using

PSO (Particle Swarm Optimization) algorithm, which is an optimization algorithm. Figure
5 shows the learning to prediction configurations. Initially the input is given to the ANN
learning module based on six hidden layers. The PSO algorithm is applied at ANN learn-
ing iterations for learning ANN weights. PSO algorithm takes the neural networks in
ANN iterations and struggles to optimize the neural weights to achieve the high accuracy.

Figure 4. Prediction model using artificial neural networks (ANNs).

3.2. Learning to Prediction Mechanism Based Control Tasks Scheduling

In this section, we describe the learning to prediction mechanism for smart factory
tasks scheduling and management.

In learning to prediction, the ANN prediction algorithm’s weights are learned using
PSO (Particle Swarm Optimization) algorithm, which is an optimization algorithm. Figure 5
shows the learning to prediction configurations. Initially the input is given to the ANN
learning module based on six hidden layers. The PSO algorithm is applied at ANN learning
iterations for learning ANN weights. PSO algorithm takes the neural networks in ANN
iterations and struggles to optimize the neural weights to achieve the high accuracy.

The learning algorithm used to learn ANN weights is an optimization algorithm
named as particle swarm optimization (PSO). In PSO, a number of particles populations
(typically between 12 and 20 numbers of particles) are generated. Each particle in the PSO
population contains two parameters as particle position (present) and particle velocity (v).
Initially the particle velocity and positions are initialized. In PSO iteration, the particle
velocity and position are updated (Equations (2) and (3)). Each particle maintains two
values local best as Pbest, and global best as Gbest. The Pbest is the particles own best
position achieved, and the Gbest is the global best values achieved by any particle in the
population. Each particle position represents the ANN weights and the Gbest is the best
weights found by PSO.

v = v + c1 × rand × (pbest − present) + c2 × rand × (gbest − present) (2)

present = present + v (3)

We used the two variations of PSO named as regeneration based PSO (R-PSO) and
velocity boost PSO (VB-PSO) [37]. The R-PSO involves a regeneration threshold (RT). In R-
PSO if no improvement in the Gbest is seen after a number of iterations, define by RT, then

Actuators 2021, 10, 27 7 of 17

particles found in close clusters are regenerated to new random locations; in order to fasten
the solution search process. The distance between particles is examined (Equation (4)) and
particles found relatively closed are regenerated to new random positions. In VB-PSO, a
velocity boost threshold is maintained as VBT, and if no progress in the value of particle’s
Pbest is observed until reaching VBT then particle’s velocity is boosted using the velocity
change equation with new inertia weight proposed for VB-PSO (Equation (5)).

Inter Particle Distance (IPD) = c × NumParticles (4)

New Inertia Weight = c1 +
Rand()

3
(5)

where, IPD is the minimum distance threshold between two particles and c is a constant
value for limiting IPD set as 0.15. The value for c1 = 0.801.

Actuators 2021, 10, x FOR PEER REVIEW 7 of 18

Figure 5. Learning to prediction model based on ANN.

The learning algorithm used to learn ANN weights is an optimization algorithm
named as particle swarm optimization (PSO). In PSO, a number of particles populations
(typically between 12 and 20 numbers of particles) are generated. Each particle in the PSO
population contains two parameters as particle position (present) and particle velocity (v).
Initially the particle velocity and positions are initialized. In PSO iteration, the particle
velocity and position are updated (Equations (2) and (3)). Each particle maintains two
values local best as Pbest, and global best as Gbest. The Pbest is the particles own best
position achieved, and the Gbest is the global best values achieved by any particle in the
population. Each particle position represents the ANN weights and the Gbest is the best
weights found by PSO. ݒ = ݒ + ܿ૚ × ݀݊ܽݎ × ݐݏܾ݁݌) − (ݐ݊݁ݏ݁ݎ݌ + ܿ૛ × ݀݊ܽݎ × ݐݏܾ݁݃) − ݐ݊݁ݏ݁ݎ݌(2) (ݐ݊݁ݏ݁ݎ݌ = ݐ݊݁ݏ݁ݎ݌ + (3) ݒ

We used the two variations of PSO named as regeneration based PSO (R-PSO) and ve-
locity boost PSO (VB-PSO) [37]. The R-PSO involves a regeneration threshold (RT). In R-PSO
if no improvement in the Gbest is seen after a number of iterations, define by RT, then particles
found in close clusters are regenerated to new random locations; in order to fasten the solution
search process. The distance between particles is examined (Equation (4)) and particles found
relatively closed are regenerated to new random positions. In VB-PSO, a velocity boost
threshold is maintained as VBT, and if no progress in the value of particle’s Pbest is observed
until reaching VBT then particle’s velocity is boosted using the velocity change equation
with new inertia weight proposed for VB-PSO (Equation (5)).

Figure 5. Learning to prediction model based on ANN.

The prediction results are passed onto the scheduler, where the FEF (fair emergency
first) [38] scheduling algorithm is implemented for control tasks execution. The overall
flow of the system is shown in the Figure 6. In FEF, first the scheduler extracts the tasks
arriving at the system based on arrival times. If the current task is an urgent event driven
task, it is executed right away. If the task is a normal event driven task, then urgency
measure (UM) is checked to see whether the machine slot can be used for any low priority
starving tasks or not. If not, then the current task is executed or else the starving task is
given the slot. Next, the priority periodic task is checked, where failure measure (FM)

Actuators 2021, 10, 27 8 of 17

is checked to see if the priority periodic tasks can wait and slot can be allocated to the
starving low priority task or not.

Actuators 2021, 10, x FOR PEER REVIEW 8 of 18

(ܦܲܫ) ݁ܿ݊ܽݐݏ݅ܦ ݈݁ܿ݅ݐݎܽܲ ݎ݁ݐ݊ܫ = ܿ × ݐℎܹ݃݅݁ ܽ݅ݐݎ݁݊ܫ ݓ݁ܰ(4) ݏ݈݁ܿ݅ݐݎܽܲ݉ݑܰ = ܿ1 + ܴܽ݊݀()3 (5)

where, ܦܲܫ is the minimum distance threshold between two particles and ܿ is a constant
value for limiting ܦܲܫ set as 0.15. The value for ܿ1 = 0.801.

The prediction results are passed onto the scheduler, where the FEF (fair emergency
first) [38] scheduling algorithm is implemented for control tasks execution. The overall
flow of the system is shown in the Figure 6. In FEF, first the scheduler extracts the tasks
arriving at the system based on arrival times. If the current task is an urgent event driven
task, it is executed right away. If the task is a normal event driven task, then urgency
measure (UM) is checked to see whether the machine slot can be used for any low priority
starving tasks or not. If not, then the current task is executed or else the starving task is
given the slot. Next, the priority periodic task is checked, where failure measure (FM) is
checked to see if the priority periodic tasks can wait and slot can be allocated to the starv-
ing low priority task or not.

Figure 6. Control tasks scheduling based on learning to prediction.

4. Input Tasks Modeling and Simulation for Smart Factory
In this subsection we present the tasks simulation and performance analysis for the

candy box factory use case scenario.

4.1. Candy Box Factory
The execution time for sensing tasks was set to be 20 milliseconds (ms) and the pri-

ority was set to be normal periodic tasks. The execution time for system tasks was set to
be 300 milliseconds (ms) and the priority for the order placement task was set to be an
urgent event driven task and the priority for the inference rule execution task was set to
be a priority periodic task. The execution times for all the control tasks were set to be 520
milliseconds (ms) and the priorities for environmental conditions control actuator (heater,
chiller, humidifier and dehumidifier) were set to be urgent event driven. The priorities for
control tasks of manufacturing machines (AM1, AM2, AM3, AM4, PM1, PM2, PM3 and
PM4) were set based on the priority set at customers’ order time and deadline. It can be
either a normal event driven or urgent event driven task.

The candy box factory scenario has three main types of tasks as sensing tasks, system
tasks and control tasks. In sensing tasks, we have three tasks as temperature sensing task,

Figure 6. Control tasks scheduling based on learning to prediction.

4. Input Tasks Modeling and Simulation for Smart Factory

In this subsection we present the tasks simulation and performance analysis for the
candy box factory use case scenario.

4.1. Candy Box Factory

The execution time for sensing tasks was set to be 20 milliseconds (ms) and the
priority was set to be normal periodic tasks. The execution time for system tasks was
set to be 300 milliseconds (ms) and the priority for the order placement task was set to
be an urgent event driven task and the priority for the inference rule execution task was
set to be a priority periodic task. The execution times for all the control tasks were set to
be 520 milliseconds (ms) and the priorities for environmental conditions control actuator
(heater, chiller, humidifier and dehumidifier) were set to be urgent event driven. The
priorities for control tasks of manufacturing machines (AM1, AM2, AM3, AM4, PM1, PM2,
PM3 and PM4) were set based on the priority set at customers’ order time and deadline. It
can be either a normal event driven or urgent event driven task.

The candy box factory scenario has three main types of tasks as sensing tasks, system
tasks and control tasks. In sensing tasks, we have three tasks as temperature sensing task,
humidity sensing task and occupancy sensing task. In system tasks we have two main
tasks as the order placement system task and inference rule execution task. In control
tasks we have four actuator control tasks as the heater control task, chiller control task,
humidifier control task and dehumidifier control task. Additionally, in the control task for
each machine is the control AM1 task, control AM2 task, control AM3 task, control AM4
task, control PM1, control PM2 task, control PM3 task and control PM4 task.

4.2. Simulated Tasks Dataset

In this subsection, we present the input tasks modeling for simulated tasks dataset.
The input tasks for simulated tasks dataset were randomly generated based on user inputs
and system thresholds to generate tasks set to be simulated. The tasks generated had initial
parameters as tasks ID, execution time and deadline and machine ID. Next the system
computed the tasks parameters as the start time, finish time and time budget time based
on initially generated parameters.

Actuators 2021, 10, 27 9 of 17

At first, the number of tasks to be generated was taken as input from the user. Next
the tasks generation interval was taken as input from the user. The generated tasks were
sensing tasks with different sensing intervals as 5 s, 10 s, 15 s, 20 s, 30 s, 40 s and 60 s. For
each task, task id were generated, arrival time was the time at which the task arrived at the
system, next the execution times were randomly generated between a given range, task
deadline were generated between the given threshold of being greater than zero and less
than the tasks deadline, machine id was initialized as zero and later set to the scheduled
machine, start times were set to the scheduled start times at machine, finish time was set to
the scheduled finish time at machine.

In the first step for tasks generation, the sensing tasks were generated based on the
initial parameters for task id, execution time and deadline and machine id. In the next
step the tasks parameter values generation function for start times assignment, finish
time assignment and time budget assignment were called where these parameters were
initialized. Using these parameters, the tasks were ready to be run at the scheduler at their
scheduled time following scheduling mechanism. In parallel to tasks scheduling at the
scheduler, the scheduler kept maintaining the history logs with tasks detailed parameters
and additional parameters of task completion status, total number tasks at each machine
with machine id, processing capacity of each machine with machine id and total processing
capacity required by each machine based on current load.

4.3. Machine Cluster Dataset

In this section, we used the Google cloud task scheduling dataset [39] for the simula-
tions and performance evaluations of our system. The dataset compromised of 500 sets of
tasks instances executed at multiple machines.

The dataset had two main data as machine data and tasks data. Each task comprised
of multiple jobs and included jobs data. The machine data had two main tables as machine
events table and machine attributes table. The machine events table contained timestamp,
machine ID, event type, platform ID, machine processing capacity and machine memory
capacity. Machine attributes table contained the timestamp, machine ID and attribute
name, value and deletion status. The tasks data had the tasks events table, tasks constraints
table and jobs events table. The jobs events table contained the time stamp, missing
information, job ID, event type, user name, scheduling class and job name. The tasks event
table contained the timestamp, missing information, job ID, task index for job, machine ID,
event type, scheduling class, priority, resources for CPU, RAM and memory and machine
constraints. The tasks constraints table contained the timestamp job ID, task index, attribute
name and value.

5. Implementation Environment

We used python for implementing the core programming logic of the task scheduling
algorithms. The development environment for the system is shown in Table 3.

Table 3. Development environment.

System Component Value

Operating System Windows
CPU Intel ® Core ™ i5-4570 CPU at 3.20 GHz

Primary Memory 8 GB
Platform Eclipse Java Photon
Libraries Drools

Programming Language (Scheduler) Python 3

6. Performance Analysis

In this we present the simulation and performance analysis. In Section 6.1, we present
the simulations and performance analysis for the candy box factory tasks dataset. In
Section 6.2, we present the simulations and performance analysis for the simulated tasks

Actuators 2021, 10, 27 10 of 17

dataset. In Section 6.3, we present the simulations analysis for the machine cluster tasks
dataset.

6.1. Simulations and Performance Analysis of Candy Box Factory

Figure 7 presents the prediction accuracy comparisons using the ANN prediction
algorithm and PSO based ANN (PSO-ANN) prediction algorithm. The results show a
significant improvement in terms of minimized number of epochs and increased prediction
accuracy. The maximum prediction accuracy achieved using ANN was 99.02% in 600 it-
erations and the maximum prediction accuracy achieved using PSO-NN was 99.39% in
700 iterations. At 600 iterations, the PSO-NN gets to the prediction accuracy of 99.27%,
which was still greater than ANN at 600 iterations.

Actuators 2021, 10, x FOR PEER REVIEW 10 of 18

We used python for implementing the core programming logic of the task scheduling
algorithms. The development environment for the system is shown in Table 3.

Table 3. Development environment.

System Component Value
Operating System Windows

CPU Intel ® Core ™ i5-4570 CPU at 3.20 GHz
Primary Memory 8 GB

Platform Eclipse Java Photon
Libraries Drools

Programming Language (Scheduler) Python 3

6. Performance Analysis
In this we present the simulation and performance analysis. In Section 6.1, we present

the simulations and performance analysis for the candy box factory tasks dataset. In Sec-
tion 6.2, we present the simulations and performance analysis for the simulated tasks da-
taset. In Section 6.3, we present the simulations analysis for the machine cluster tasks da-
taset.

6.1. Simulations and Performance Analysis of Candy Box Factory
Figure 7 presents the prediction accuracy comparisons using the ANN prediction al-

gorithm and PSO based ANN (PSO-ANN) prediction algorithm. The results show a sig-
nificant improvement in terms of minimized number of epochs and increased prediction
accuracy. The maximum prediction accuracy achieved using ANN was 99.02% in 600 it-
erations and the maximum prediction accuracy achieved using PSO-NN was 99.39% in
700 iterations. At 600 iterations, the PSO-NN gets to the prediction accuracy of 99.27%,
which was still greater than ANN at 600 iterations.

Figure 7. Prediction accuracy comparisons for ANN and particle swarm optimization (PSO)-NN
for the candy box factory.

In Figure 8, we present the comparisons of prediction accuracy based on PSO based
ANN along with the variations of PSO based ANN as R-PSO-NN and VB-PSO-NN. The
results show the prediction accuracy of R-PSO-NN and VB-PSO-NN is further improved
from PSO-NN. In candy box factory predictions, VB-PSO-NN gives maximum prediction
accuracy with the least number of iterations. The VB-PSO-NN performance is followed by

Figure 7. Prediction accuracy comparisons for ANN and particle swarm optimization (PSO)-NN for
the candy box factory.

In Figure 8, we present the comparisons of prediction accuracy based on PSO based
ANN along with the variations of PSO based ANN as R-PSO-NN and VB-PSO-NN. The
results show the prediction accuracy of R-PSO-NN and VB-PSO-NN is further improved
from PSO-NN. In candy box factory predictions, VB-PSO-NN gives maximum prediction
accuracy with the least number of iterations. The VB-PSO-NN performance is followed
by R-PSO-NN, which gave slightly less prediction accuracy. The maximum prediction
accuracy achieved using PSO-NN was 99.39% in 700 iterations while the maximum predic-
tion accuracy achieved using R-PSO-NN was 99.53% in 700 iterations and the maximum
prediction accuracy achieved using VB-PSO-NN was 99.53% in 500 iterations.

In Figure 9, we present the comparisons of basic FEF with the learned prediction FEF
with an aim to demonstrate the effect of learning to prediction in the scheduling algorithm.
The comparisons were performed on the candy box factory data. The results show the
percentage of task starvation rate and average instances missing rate in the simulations. It
can be clearly observed that learned predictive FEF had a smaller number of starved tasks
rate and a smaller number of tasks instances missing rate. The FEF scheduling algorithm
had around 22.12% of tasks starved and 29.75% of tasks instances missed whereas the
learned predictive FEF scheduling had around 8% of tasks starved and 16% of tasks
instances missed. The learning of prediction module in learning to scheduling mechanism
increased the overall performance of the scheduler as it enabled the scheduler to make
informed and learned decisions.

Actuators 2021, 10, 27 11 of 17

Actuators 2021, 10, x FOR PEER REVIEW 11 of 18

R-PSO-NN, which gave slightly less prediction accuracy. The maximum prediction accu-
racy achieved using PSO-NN was 99.39% in 700 iterations while the maximum prediction
accuracy achieved using R-PSO-NN was 99.53% in 700 iterations and the maximum pre-
diction accuracy achieved using VB-PSO-NN was 99.53% in 500 iterations.

Figure 8. Prediction accuracy comparisons for regeneration based PSO (R-PSO)-NN and velocity
boost PSO (VB-PSO)-NN for the candy box factory.

In Figure 9, we present the comparisons of basic FEF with the learned prediction FEF
with an aim to demonstrate the effect of learning to prediction in the scheduling algo-
rithm. The comparisons were performed on the candy box factory data. The results show
the percentage of task starvation rate and average instances missing rate in the simula-
tions. It can be clearly observed that learned predictive FEF had a smaller number of
starved tasks rate and a smaller number of tasks instances missing rate. The FEF schedul-
ing algorithm had around 22.12% of tasks starved and 29.75% of tasks instances missed
whereas the learned predictive FEF scheduling had around 8% of tasks starved and 16%
of tasks instances missed. The learning of prediction module in learning to scheduling
mechanism increased the overall performance of the scheduler as it enabled the scheduler
to make informed and learned decisions.

Figure 8. Prediction accuracy comparisons for regeneration based PSO (R-PSO)-NN and velocity
boost PSO (VB-PSO)-NN for the candy box factory.

Actuators 2021, 10, x FOR PEER REVIEW 12 of 18

(a) (b)

Figure 9. Proposed scheduling comparisons with prediction and without prediction for the candy box factory: (a) average
instances missing rate in percentage and (b) average task starvation rate in percentage.

In Figure 10, we present the comparisons among predictive FEF scheduling and
learned predictive FEF scheduling. The graph shows the tasks average response times at the
y-axis and test iterations at the x-axis. A significant decrease in the tasks’ response time is
observed with the addition of learning of module. The average response time for tasks set
using predictive FEF scheduling was 2191.39 milliseconds and the average response time
for tasks set using learned predictive FEF scheduling was 1954.13 milliseconds.

Figure 10. Response time comparisons with and without learned prediction for the candy box fac-
tory.

6.2. Simulations and Performance Analysis of Simulated Tasks Dataset
Next, we compared the prediction accuracy results with prediction learning based

on the proposed variations of the PSO algorithm as R-PSO and VB-PSO. The Figure 11

0%

5%

10%

15%

20%

25%

30%

Average Instances Missing
Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

0%

5%

10%

15%

20%

25%

Task Starvation Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

Figure 9. Proposed scheduling comparisons with prediction and without prediction for the candy box factory: (a) average
instances missing rate in percentage and (b) average task starvation rate in percentage.

In Figure 10, we present the comparisons among predictive FEF scheduling and
learned predictive FEF scheduling. The graph shows the tasks average response times at
the y-axis and test iterations at the x-axis. A significant decrease in the tasks’ response time
is observed with the addition of learning of module. The average response time for tasks
set using predictive FEF scheduling was 2191.39 milliseconds and the average response
time for tasks set using learned predictive FEF scheduling was 1954.13 milliseconds.

Actuators 2021, 10, 27 12 of 17

Actuators 2021, 10, x FOR PEER REVIEW 12 of 18

(a) (b)

Figure 9. Proposed scheduling comparisons with prediction and without prediction for the candy box factory: (a) average
instances missing rate in percentage and (b) average task starvation rate in percentage.

In Figure 10, we present the comparisons among predictive FEF scheduling and
learned predictive FEF scheduling. The graph shows the tasks average response times at the
y-axis and test iterations at the x-axis. A significant decrease in the tasks’ response time is
observed with the addition of learning of module. The average response time for tasks set
using predictive FEF scheduling was 2191.39 milliseconds and the average response time
for tasks set using learned predictive FEF scheduling was 1954.13 milliseconds.

Figure 10. Response time comparisons with and without learned prediction for the candy box fac-
tory.

6.2. Simulations and Performance Analysis of Simulated Tasks Dataset
Next, we compared the prediction accuracy results with prediction learning based

on the proposed variations of the PSO algorithm as R-PSO and VB-PSO. The Figure 11

0%

5%

10%

15%

20%

25%

30%

Average Instances Missing
Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

0%

5%

10%

15%

20%

25%

Task Starvation Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

Figure 10. Response time comparisons with and without learned prediction for the candy box factory.

6.2. Simulations and Performance Analysis of Simulated Tasks Dataset

Next, we compared the prediction accuracy results with prediction learning based
on the proposed variations of the PSO algorithm as R-PSO and VB-PSO. The Figure 11
shows the output results for learned prediction with optimized weights of ANN based
on PSO and its variations ad R-PSO and VB-PSO. The results show that R-PSO and VB-
PSO, both achieved higher accuracy within less iterations in comparison to the PSO so
both variations were considered fruitful improvements in PSO. In comparing R-PSO and
VB-PSO, we can observe that initially R-PSO-NN achieved higher prediction accuracy
than VB-PSO but within the next 100 iterations the VB-PSO-NN’s prediction accuracy shot
higher and stayed at 99.54% from 200 iterations onwards. Whereas, though R-PSO-NN took
600 iterations to achieve prediction accuracy of 99.51% and reached 99.69% of prediction
accuracy 700 iterations and gave higher prediction accuracy eventually.

Actuators 2021, 10, x FOR PEER REVIEW 13 of 18

shows the output results for learned prediction with optimized weights of ANN based on
PSO and its variations ad R-PSO and VB-PSO. The results show that R-PSO and VB-PSO,
both achieved higher accuracy within less iterations in comparison to the PSO so both
variations were considered fruitful improvements in PSO. In comparing R-PSO and VB-
PSO, we can observe that initially R-PSO-NN achieved higher prediction accuracy than
VB-PSO but within the next 100 iterations the VB-PSO-NN’s prediction accuracy shot
higher and stayed at 99.54% from 200 iterations onwards. Whereas, though R-PSO-NN
took 600 iterations to achieve prediction accuracy of 99.51% and reached 99.69% of pre-
diction accuracy 700 iterations and gave higher prediction accuracy eventually.

Figure 11. Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in the
simulated tasks dataset.

In Figure 12, we present the comparison of baseline FEF with learned prediction FEF with
the aim to demonstrate the effect of learning to prediction in the scheduling algorithm. The
figure shows the results for the tasks starvation rate and average instances missing rate. We
can observe that the learned predictive FEF reduced the tasks starvation rate and also reduced
the average instances missing rate. The average instances missing rate for predictive FEF
scheduling 33.49% and that for learned predictive and optimized hybrid scheduling was 19%.
The tasks starvation rate for predictive FEF scheduling 25% and that for learned predictive
and optimized hybrid scheduling was 9.19%. The learned predictive FEF decreased the tasks
starvation rate with wisely allocating the free machine slots. Hence, the learning to prediction
module increased the overall performance of the scheduler.

Figure 11. Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in the
simulated tasks dataset.

Actuators 2021, 10, 27 13 of 17

In Figure 12, we present the comparison of baseline FEF with learned prediction FEF
with the aim to demonstrate the effect of learning to prediction in the scheduling algorithm.
The figure shows the results for the tasks starvation rate and average instances missing
rate. We can observe that the learned predictive FEF reduced the tasks starvation rate and
also reduced the average instances missing rate. The average instances missing rate for
predictive FEF scheduling 33.49% and that for learned predictive and optimized hybrid
scheduling was 19%. The tasks starvation rate for predictive FEF scheduling 25% and that
for learned predictive and optimized hybrid scheduling was 9.19%. The learned predictive
FEF decreased the tasks starvation rate with wisely allocating the free machine slots. Hence,
the learning to prediction module increased the overall performance of the scheduler.

Actuators 2021, 10, x FOR PEER REVIEW 14 of 18

(a) (b)

Figure 12. Comparisons for learned predictive fair emergency first (FEF) and basic FEF scheduling for the simulated tasks
dataset: (a) average instances missing rate in percentage and (b) average tasks starvation rate in percentage.

6.3. Simulations and Performance Analysis of the Machine Cluster Data
First of all, the machine cluster data was used to train the prediction model. The pre-

dictions were made using ANNs where ANNs’ weights were tuned using PSO variations.
In the Figure 13 below, we show the prediction accuracy achieved and comparisons of the
accuracy among implementations of PSO based ANN predictions, R-PSO based ANN pre-
dictions and VB-PSO based ANN predictions. In the graph, we observe that VB-PSO
achieved the highest prediction accuracy within the least number of epochs, whereas
though R-PSO-NN also achieved the same accuracy as VB-PSO-NN but with a higher
number of epochs. The prediction accuracy of 98.42% was achieved by R-PSO-NN in 800
iterations while VB-PSO-NN achieved the same within 300 iterations.

Figure 13. Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in the
machine cluster dataset.

Figure 12. Comparisons for learned predictive fair emergency first (FEF) and basic FEF scheduling for the simulated tasks
dataset: (a) average instances missing rate in percentage and (b) average tasks starvation rate in percentage.

6.3. Simulations and Performance Analysis of the Machine Cluster Data

First of all, the machine cluster data was used to train the prediction model. The pre-
dictions were made using ANNs where ANNs’ weights were tuned using PSO variations.
In the Figure 13 below, we show the prediction accuracy achieved and comparisons of
the accuracy among implementations of PSO based ANN predictions, R-PSO based ANN
predictions and VB-PSO based ANN predictions. In the graph, we observe that VB-PSO
achieved the highest prediction accuracy within the least number of epochs, whereas
though R-PSO-NN also achieved the same accuracy as VB-PSO-NN but with a higher
number of epochs. The prediction accuracy of 98.42% was achieved by R-PSO-NN in
800 iterations while VB-PSO-NN achieved the same within 300 iterations.

Actuators 2021, 10, 27 14 of 17

Actuators 2021, 10, x FOR PEER REVIEW 14 of 18

(a) (b)

Figure 12. Comparisons for learned predictive fair emergency first (FEF) and basic FEF scheduling for the simulated tasks
dataset: (a) average instances missing rate in percentage and (b) average tasks starvation rate in percentage.

6.3. Simulations and Performance Analysis of the Machine Cluster Data
First of all, the machine cluster data was used to train the prediction model. The pre-

dictions were made using ANNs where ANNs’ weights were tuned using PSO variations.
In the Figure 13 below, we show the prediction accuracy achieved and comparisons of the
accuracy among implementations of PSO based ANN predictions, R-PSO based ANN pre-
dictions and VB-PSO based ANN predictions. In the graph, we observe that VB-PSO
achieved the highest prediction accuracy within the least number of epochs, whereas
though R-PSO-NN also achieved the same accuracy as VB-PSO-NN but with a higher
number of epochs. The prediction accuracy of 98.42% was achieved by R-PSO-NN in 800
iterations while VB-PSO-NN achieved the same within 300 iterations.

Figure 13. Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in the
machine cluster dataset.
Figure 13. Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in the
machine cluster dataset.

In Figure 14, we present the comparison of basic FEF scheduling and learned predic-
tion FEF scheduling. The learned predictive FEF scheduling had an addition prediction
module based on ANN, which was learned using PSO. The learned prediction enhanced
the scheduling performance using history data learning and optimization of prediction
results using PSO to tune ANN’s weights. Hence, we can observe in the graph that learned
predictive FEF had less number of tasks starved and less number of instances missed in
comparison to basic FEF scheduling. The average instances missing rate for basic FEF
scheduling was 24% and for learned predictive FEF scheduling was 11%. The average
tasks starvation rate for basic FEF scheduling was 18.28% and for learned predictive FEF
scheduling was 5.35%.

Actuators 2021, 10, x FOR PEER REVIEW 15 of 18

In Figure 14, we present the comparison of basic FEF scheduling and learned predic-
tion FEF scheduling. The learned predictive FEF scheduling had an addition prediction
module based on ANN, which was learned using PSO. The learned prediction enhanced
the scheduling performance using history data learning and optimization of prediction
results using PSO to tune ANN’s weights. Hence, we can observe in the graph that learned
predictive FEF had less number of tasks starved and less number of instances missed in
comparison to basic FEF scheduling. The average instances missing rate for basic FEF
scheduling was 24% and for learned predictive FEF scheduling was 11%. The average
tasks starvation rate for basic FEF scheduling was 18.28% and for learned predictive FEF
scheduling was 5.35%.

(a) (b)

Figure 14. Comparisons for learned predictive FEF and basic FEF scheduling in the machine cluster dataset: (a) average
instances missing rate in percentage and (b) average tasks starvation rate in percentage.

7. Discussion
The learning to prediction mechanism predicts the tasks execution status and ma-

chine utilization under a given load of the machines/tasks based on history decisions. The
variations of PSO are used in the learning to prediction mechanism as VB-PSO-NN and
R-PSO-NN. In the learning to optimization mechanism, an objective function was pro-
posed for enhancing machine utilization and to seek the optimal results based on PSO
algorithm. Additionally, we used the proposed improved variations of PSO (VB-PSO and
R-PSO) in the optimization module. We further implemented the ANN learning based
VB-PSO and R-PSO; where ANN was used to tune the PSO particles’ positions for effi-
ciently finding optimal solution.

The simulations were performed under overloaded tasks load at the machines to ex-
amine worst case scenarios. In the simulations, as the tasks grow more than the total ma-
chine capacity, some of the tasks’ instances must drop out. The PSO based ANN predic-
tions gives higher accuracy and the modification proposed for PSO improve the perfor-
mance of PSO in the prediction module. In the performance analysis for the candy box
factory tasks dataset, we observe that prediction accuracy achieved by PSO-NN was
99.39% in 700 iterations while the prediction accuracy achieved by R-PSO-NN was 99.53
in 700 iterations and the prediction accuracy achieved by VB-PSO-NN was 99.53% in 500
iterations. In the performance analysis for the simulated tasks dataset, we observe that
prediction accuracy achieved by PSO-NN was 99.42% in 800 iterations while the predic-

Figure 14. Comparisons for learned predictive FEF and basic FEF scheduling in the machine cluster dataset: (a) average
instances missing rate in percentage and (b) average tasks starvation rate in percentage.

Actuators 2021, 10, 27 15 of 17

7. Discussion

The learning to prediction mechanism predicts the tasks execution status and machine
utilization under a given load of the machines/tasks based on history decisions. The
variations of PSO are used in the learning to prediction mechanism as VB-PSO-NN and
R-PSO-NN. In the learning to optimization mechanism, an objective function was proposed
for enhancing machine utilization and to seek the optimal results based on PSO algorithm.
Additionally, we used the proposed improved variations of PSO (VB-PSO and R-PSO) in
the optimization module. We further implemented the ANN learning based VB-PSO and
R-PSO; where ANN was used to tune the PSO particles’ positions for efficiently finding
optimal solution.

The simulations were performed under overloaded tasks load at the machines to
examine worst case scenarios. In the simulations, as the tasks grow more than the total
machine capacity, some of the tasks’ instances must drop out. The PSO based ANN
predictions gives higher accuracy and the modification proposed for PSO improve the
performance of PSO in the prediction module. In the performance analysis for the candy
box factory tasks dataset, we observe that prediction accuracy achieved by PSO-NN was
99.39% in 700 iterations while the prediction accuracy achieved by R-PSO-NN was 99.53
in 700 iterations and the prediction accuracy achieved by VB-PSO-NN was 99.53% in
500 iterations. In the performance analysis for the simulated tasks dataset, we observe that
prediction accuracy achieved by PSO-NN was 99.42% in 800 iterations while the prediction
accuracy achieved by R-PSO-NN was 99.69 in 700 iterations and the prediction accuracy
achieved by VB-PSO-NN was 99.54% in 200 iterations. In the performance analysis for the
machine cluster tasks dataset, we observe that prediction accuracy achieved by PSO-NN
was 98.21% in 800 iterations while the prediction accuracy achieved by R-PSO-NN was
98.42% in 800 iterations and the prediction accuracy achieved by VB-PSO-NN was 98.42%
in 300 iterations.

In the comparisons’ analysis for the candy box factory, we observed the following im-
provements. The learned predictive FEF scheduling in comparison to basic FEF scheduling
scheme shows an average of 50% reduction in the tasks starvation rate and an average of
63.64% reduction in the tasks instances missing rate. In the comparisons’ analysis for the
simulated tasks dataset, we observed the following improvements. The learned predictive
FEF scheduling in comparison to the basic FEF scheduling scheme shows an average of
77.78% reduction in the tasks starvation rate and an average of 78.26% reduction in the
tasks instances missing rate. In the comparisons’ analysis for the machine cluster tasks
dataset, we observed the following improvements. The learned predictive FEF scheduling
in comparison to basic FEF scheduling scheme showed an average of 72.23% reduction in
the tasks starvation rate and an average of 54.17% reduction in the tasks instances missing
rate. Overall, we observe that the learned predictive FEF scheduling in comparison to basic
FEF scheduling scheme showed an average of 72.23% reduction in the tasks starvation rate
and an average of 54.17% reduction in the tasks instances missing rate.

In future directions, alternative prediction mechanisms can be adopted and tested for
the prediction learning module. A comparison analysis of various prediction algorithms
to highlight the best performing prediction algorithms can be a useful study for future
implementation frameworks.

Author Contributions: Data curation, S.M.; Formal analysis, S.M.; Funding acquisition, D.K.; Inves-
tigation, S.M.; Methodology, S.M.; Resources, D.K.; Software, S.M.; Supervision, D.K.; Validation,
S.M.; Visualization, S.M.; Writing—original draft, S.M.; Writing—review and editing, S.M. and D.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education(2018R1D1A1A09082919), and this
research was supported by Energy Cloud R&D Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387).

Institutional Review Board Statement: Not applicable.

Actuators 2021, 10, 27 16 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: The data for google cluster data can be downloaded from https:
//github.com/google/cluster-data/blob/master/ClusterData2011_2.md.

Acknowledgments: Any correspondence related to this paper should be addressed to DoHyeun
Kim.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Industry 4.0: The Fourth Industrial Revolution. Available online: http://www.lgcnsblog.com/features/industry-4-0-the-

fourth-industrial-revolution-with-it-and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs (accessed on 14
December 2020).

2. Nauck, D.; Ruta, D.; Spott, M.; Azvine, B. Predictive Customer Analytics and Real-Time Business Intelligence. In Service Chain
Management; Voudouris, C., Lesaint, D., Owusu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 205–214.

3. Saldivar, A.A.F.; Goh, C.; Chen, W.N.; Li, Y. Self-organizing tool for smart design with predictive customer needs and wants to
realize Industry 4.0. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada,
24–29 July 2016; pp. 5317–5324.

4. Kang, Y.S.; Park, I.H.; Youm, S. Performance prediction of a MongoDB-based traceability system in smart factory supply chains.
Sensors 2016, 16, 2126. [CrossRef] [PubMed]

5. Wu, D.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S. A comparative study on machine learning algorithms for smart
manufacturing: Tool wear prediction using random forests. J. Manuf. Sci. Eng. 2017, 139, 071018. [CrossRef]

6. Yan, J.; Meng, Y.; Lu, L.; Li, L. Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for
predictive maintenance. IEEE Access 2017, 5, 23484–23491. [CrossRef]

7. Hsieh, Y.S.; Cheng, F.T.; Huang, H.C.; Wang, C.R.; Wang, S.C.; Yang, H.C. VM-based baseline predictive maintenance scheme.
IEEE Trans. Semicond. Manuf. 2012, 26, 132–144. [CrossRef]

8. Chiu, Y.C.; Cheng, F.T.; Huang, H.C. Developing a factory-wide intelligent predictive maintenance system based on Industry 4.0.
J. Chin. Inst. Eng. 2017, 40, 562–571. [CrossRef]

9. Wang, J.; Zhang, L.; Duan, L.; Gao, R.X. A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. J.
Intell. Manuf. 2017, 28, 1125–1137. [CrossRef]

10. Li, J.; Ma, X.; Singh, K.; Schulz, M.; de Supinski, B.R.; McKee, S.A. Machine learning based online performance prediction for
runtime parallelization and task scheduling. In Proceedings of the 2009 IEEE International Symposium on Performance Analysis
of Systems and Software, Boston, MA, USA, 26–28 April 2009; pp. 89–100.

11. Kong, X.; Lin, C.; Jiang, Y.; Yan, W.; Chu, X. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction. J.
Netw. Comput. Appl. 2011, 34, 1068–1077. [CrossRef]

12. Wang, L.; Von Laszewski, G.; Huang, F.; Dayal, J.; Frulani, T.; Fox, G. Task scheduling with ANN-based temperature prediction in
a data center: A simulation-based study. Eng. Comput. 2011, 27, 381–391. [CrossRef]

13. Daly, D.M.; Franaszek, P.A.; Lastras-Montano, L.A.; International Business Machines Corp. Prediction Based Priority Scheduling.
U.S. Patent 8,185,899, 22 May 2012.

14. Jiang, B.; Ravindran, B.; Cho, H. Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor
networks. IEEE Trans. Mob. Comput. 2012, 12, 735–747. [CrossRef]

15. Goryachev, A.; Kozhevnikov, S.; Kolbova, E.; Kuznetsov, O.; Simonova, E.; Skobelev, P.; Tsarev, A.; Shepilov, Y. ‘Smart Factory’:
Intelligent system for workshop resource allocation, scheduling, optimization and controlling in real time. In Advanced Materials
Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 630, pp. 508–513.

16. Sokolov, B.; Ivanov, D. Integrated scheduling of material flows and information services in industry 4.0 supply networks.
IFACPapersOnLine 2015, 48, 1533–1538. [CrossRef]

17. Zhang, D.; Liu, Y.; Li, J.; Xue, C.J.; Li, X.; Wang, Y.; Yang, H. Solar power prediction assisted intra-task scheduling for nonvolatile
sensor nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 724–737. [CrossRef]

18. Kück, M.; Ehm, J.; Freitag, M.; Frazzon, E.M.; Pimentel, R. A datadriven simulation-based optimisation approach for adaptive
scheduling and control of dynamic manufacturing systems. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch,
Switzerland, 2016; Volume 1140, pp. 449–456.

19. Ivanov, D.; Dolgui, A.; Sokolov, B.; Werner, F.; Ivanova, M. A dynamic model and an algorithm for short-term supply chain
scheduling in the smart factory industry 4.0. Int. J. Prod. Res. 2016, 54, 386–402. [CrossRef]

20. Zeng, F.; Zhang, R.; Cheng, X.; Yang, L. Channel prediction based scheduling for data dissemination in VANETs. IEEE Commun.
Lett. 2017, 21, 1409–1412. [CrossRef]

21. Jules, G.; Saadat, M. Agent cooperation mechanism for decentralized manufacturing scheduling. IEEE Trans. Syst. Man Cybern.
Syst. 2017, 47, 3351–3362. [CrossRef]

22. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog computing for energy-aware load balancing and scheduling in smart
factory. IEEE Trans. Ind. Informat. 2018, 14, 4548–4556. [CrossRef]

https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
http://www.lgcnsblog.com/features/industry-4-0-the-fourth-industrial-revolution-with-it-and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs
http://www.lgcnsblog.com/features/industry-4-0-the-fourth-industrial-revolution-with-it-and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs
http://doi.org/10.3390/s16122126
http://www.ncbi.nlm.nih.gov/pubmed/27983654
http://doi.org/10.1115/1.4036350
http://doi.org/10.1109/ACCESS.2017.2765544
http://doi.org/10.1109/TSM.2012.2218837
http://doi.org/10.1080/02533839.2017.1362357
http://doi.org/10.1007/s10845-015-1066-0
http://doi.org/10.1016/j.jnca.2010.06.001
http://doi.org/10.1007/s00366-011-0211-4
http://doi.org/10.1109/TMC.2012.44
http://doi.org/10.1016/j.ifacol.2015.06.304
http://doi.org/10.1109/TCAD.2016.2527710
http://doi.org/10.1080/00207543.2014.999958
http://doi.org/10.1109/LCOMM.2017.2676766
http://doi.org/10.1109/TSMC.2016.2578879
http://doi.org/10.1109/TII.2018.2818932

Actuators 2021, 10, 27 17 of 17

23. Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Industrial IoT data scheduling based on hierarchical fog computing: A key for
enabling smart factory. IEEE Trans. Ind. Informat. 2018, 14, 4590–4602. [CrossRef]

24. Shiue, Y.-R.; Lee, K.-C.; Su, C.-T. Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind.
Eng. 2018, 125, 604–614. [CrossRef]

25. Leusin, M.; Frazzon, E.; Maldonado, M.U.; Kück, M.; Freitag, M. Solving the job-shop scheduling problem in the industry 4.0 era.
Technologies 2018, 6, 107. [CrossRef]

26. Fu, Y.; Ding, J.; Wang, H.; Wang, J. Two-objective stochastic flowshop scheduling with deteriorating and learning effect in industry
4.0- based manufacturing system. Appl. Soft Comput. 2018, 68, 847–855. [CrossRef]

27. Ortíz, M.A.; Betancourt, L.E.; Negrete, K.P.; de Felice, F.; Petrillo, A. Dispatching algorithm for production programming of
flexible job-shop systems in the smart factory industry. Ann. Oper. Res. 2018, 264, 409–433. [CrossRef]

28. Zhao, S.; Dziurzanski, P.; Przewozniczek, M.; Komarnicki, M.; Indrusiak, L.S. Cloud-based dynamic distributed optimisation of
integrated process planning and scheduling in smart factories. Proc. Genet. Evol. Comput. Conf. 2019, 1381–1389. [CrossRef]

29. Kousi, N.; Koukas, S.; Michalos, G.; Makris, S. Scheduling of smart intra—Factory material supply operations using mobile robots.
Int. J. Prod. Res. 2019, 57, 801–814. [CrossRef]

30. Wan, J.; Yang, J.; Wang, S.; Li, D.; Li, P.; Xia, M. Cross-network fusion and scheduling for heterogeneous networks in smart factory.
IEEE Trans. Ind. Informat. 2020, 16, 6059–6068. [CrossRef]

31. Leng, J.; Jiang, P.; Xu, K.; Liu, Q.; Zhao, J.L.; Bian, Y.; Shi, R. Makerchain: A blockchain with chemical signature for self-organizing
process in social manufacturing. J. Clean. Prod. 2019, 234, 767–778. [CrossRef]

32. Leng, J.; Yan, D.; Liu, Q.; Xu, K.; Zhao, J.L.; Shi, R.; Wei, L.; Zhang, D.; Chen, X. ManuChain: Combining permissioned blockchain
with a holistic optimization model as bi-level intelligence for smart manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50,
182–192. [CrossRef]

33. McCulloch, W.; Walter, P. A Logical Calculus of Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

34. Minsky, M.; Papert, S. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 1969.
35. Artificial Neural Networks as Models of Neural Information Processing|Frontiers Research Topic. Available online: https:

//www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing (accessed
on 30 March 2018).

36. Artificial Neuron Output. Available online: https://en.wikipedia.org/wiki/Artificial_neuron (accessed on 4 May 2018).
37. Malik, S.; Kim, D. Prediction-learning algorithm for efficient energy consumption in smart buildings based on particle regeneration

and velocity boost in particle swarm optimization neural networks. Energies 2018, 11, 1289. [CrossRef]
38. Malik, S.; Ahmad, S.; Ullah, I.; Park, D.H.; Kim, D. An Adaptive Emergency First Intelligent Scheduling Algorithm for Efficient

Task Management and Scheduling in Hybrid of Hard Real-Time and Soft Real-Time Embedded IoT Systems. Sustainability 2019,
11, 2192. [CrossRef]

39. Reiss, C.; Wilkes, J.; Hellerstein, J.L. Google Cluster-Usage Traces: Format+ Schema; White Paper; Google Inc.: Mountain View, CA,
USA, 2011; pp. 1–14.

http://doi.org/10.1109/TII.2018.2843802
http://doi.org/10.1016/j.cie.2018.03.039
http://doi.org/10.3390/technologies6040107
http://doi.org/10.1016/j.asoc.2017.12.009
http://doi.org/10.1007/s10479-017-2678-x
http://doi.org/10.1145/3321707.3321826
http://doi.org/10.1080/00207543.2018.1483587
http://doi.org/10.1109/TII.2019.2952669
http://doi.org/10.1016/j.jclepro.2019.06.265
http://doi.org/10.1109/TSMC.2019.2930418
http://doi.org/10.1007/BF02478259
https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing
https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing
https://en.wikipedia.org/wiki/Artificial_neuron
http://doi.org/10.3390/en11051289
http://doi.org/10.3390/su11082192

	Introduction
	Related Work
	Proposed Learning to the Optimization Mechanism
	Neural Networks for Prediction
	Learning to Prediction Mechanism Based Control Tasks Scheduling

	Input Tasks Modeling and Simulation for Smart Factory
	Candy Box Factory
	Simulated Tasks Dataset
	Machine Cluster Dataset

	Implementation Environment
	Performance Analysis
	Simulations and Performance Analysis of Candy Box Factory
	Simulations and Performance Analysis of Simulated Tasks Dataset
	Simulations and Performance Analysis of the Machine Cluster Data

	Discussion
	References

