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Abstract: Electromagnetic actuator systems composed of an induction servo motor (ISM) drive
system and a rice milling machine system have widely been used in agricultural applications. In
order to achieve a finer control performance, a witty control system using a revised recurrent Jacobi
polynomial neural network (RRJPNN) control and two remunerated controls with an altered bat
search algorithm (ABSA) method is proposed to control electromagnetic actuator systems. The
witty control system with finer learning capability can fulfill the RRJPNN control, which involves
an attunement law, two remunerated controls, which have two evaluation laws, and a dominator
control. Based on the Lyapunov stability principle, the attunement law in the RRJPNN control and
two evaluation laws in the two remunerated controls are derived. Moreover, the ABSA method can
acquire the adjustable learning rates to quicken convergence of weights. Finally, the proposed control
method exhibits a finer control performance that is confirmed by experimental results.

Keywords: bat search algorithm; Jacobi polynomial neural network; Lyapunov stability principle;
three-phase induction servo motor; rice milling machine system

1. Introduction

Compared to other three-phase motors, three-phase induction motors (IMs) are widely
used in many industrial and commerce applications due to their simple structures and easy
maintenance. In order to achieve better control performance, IMs have served as induction
servo motors (ISMs) via structural improvement and encoder installation. Therefore, ISMs
have been broadly applied to various servo fields such as computer numerical control
(CNC) machine tools and milling machines [1–4]. Li et al. [1] proposed a new intelligent
adaptive CNC system design for a milling machine by using the neural network controller
to achieve better control characteristics. Huang et al. [2] proposed an approach for cutting
the force control of CNC machines. This approach with a state estimator was executed
by using the observed variables and cutting force to achieve robust control. Recently,
the developed approach was applied to a milling machine center. Gomes and Sousa [3]
proposed the adaptive control of milling machine cutting force by using an artificial neural
network to obtain good results. Mikolajczyk [4] proposed a system of a numerical control
conventional milling machine with electromagnetic clutches by using VB6 special software
to control the machine with G-code. However, these control systems took a long time to
fulfill nonlinear disturbances so that they resulted in lower calculation efficiency. Thereby,
the aim of the proposed witty control system using a revised recurrent Jacobi polynomial
neural network (RRJPNN) control and two remunerated controls with altered bat search
algorithm (ABSA) and progressive weight pruning approaches for the ISM driving the
rice milling machine is to reduce computing time and to quicken convergence of weights.
Meanwhile, the proposed witty control system can increase machining efficiency and
control characteristics.

Due to their good learning capability, many neural networks (NNs) have been applied
in many linear and nonlinear systems, such as optimal hysteresis modelling methods
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of magnetic controlled shape memory alloys (MSMAs) [5], control of ionic electroactive
polymer actuators [6], predicting the driving force for a multicyclic driving experiment
of silicone/ethanol soft composite material actuators [7], and design of a 2-DOF ankle
exoskeleton with a bidirectional tendon-driving actuator and a polycentric structure [8].
These NNs take a long time to conduct training and learning of a system. In order to reduce
calculating time, some polynomial function NNs have been proposed for applications in
function approximation [9], dynamic control for continuously variable transmission [10],
approximation and estimation of nonlinear functions [11] and backstepping control of
synchronous reluctance motor (SynRM) drive systems [12]. As heuristic comprehension
methods were applied to adjust learning rates of weights, these NNs that were applied in
control systems resulted in slower convergence. Thereby, the proposed NN that is com-
bined with Jacobi polynomials [13] is a novel NN structure that has not yet been applied to
estimate, predict and control nonlinear systems. The feedforward Jacobi polynomial neural
network (FJPNN) [14] may not effectively approximate nonlinear dynamics because there
is no recurrent path. Therefore, many recurrent NNs have been applied in nonlinear system
identification [15], model predictive control for continuous pharmaceutical manufactur-
ing [16], estimation in the effective connectivity of electroencephalography [17] and visual
field prediction [18] because of higher accuracy and better identification. Due to it having
more advantages than the feedforward FJPNN, the RRJPNN control by adopting the ABSA
method with progressive weight pruning approach has not yet been used to control the
ISM driving the rice milling machine system in order to cut down computation complexity.

The customary optimization algorithm is applied when solving the classic problem
of smaller dimensions that are not easily applicable in reality. The swarm intelligence
optimization algorithms (SIOAs) were discovered by adopting simulated natural biological
systems. Recently, many researchers have proposed the SIOAs, such as bat algorithm
(BA) [19], particle swarm optimization (PSO) [20], social learning optimization algorithm
(SLOA) [21], chicken swarm optimization algorithm (CSOA) [22] and ant colony algorithm
(ACO) [23]. Yang [24] first proposed the bat algorithm (BA), which is based on the swarm
intelligence heuristic search algorithm. Due to it having fewer parameters, powerful ro-
bustness, and a simple and easy implementation, BA has attracted more and more attention
in the search for a global optimal solution. The BA has been applied in multiobjective
function optimizations with a neural network model [19], economic operations [25] and
numerical optimizations [26]. However, the local search method by adopting BA has the
shortcoming of precocious convergence and does not perform well in the early search stage.
Therefore, the proposed altered bat search algorithm (ABSA) method is a novel method to
avoid precocious convergence. Moreover, a progressive weight pruning approach based on
the ABSA method is proposed to deal with nonconvex optimization problems. The ABSA
method with modified loudness and modified pulse rate is used to adjust two optimal
learning rates. Thereby, a novel fast-convergence algorithm applied to RRJPNN with
two learning rates by adopting the ABSA method with the progressive weight pruning
approach that is used to adjust two optimal learning rates and to quicken convergence of
weights is proposed in this paper. At last, some tested results show that the fine control
performances are confirmed by the proposed control method.

The organization of this research is as follows. Section 2 introduces some explana-
tions of the ISM driving the rice milling machine system. Section 3 advocates the witty
control system by adopting the RRJPNN control and two remunerated controls with ABSA.
Section 4 promotes the tests and experimental results for the ISM driving the rice milling
machine system. Section 5 presents the discussions and explanations of some experimental
results. Section 6 describes some conclusions.

2. Materials

The complete system consists of three subparts that are: the ISM and drive system,
the digital signal processor (DSP) control system and the rice milling machine system,
as below.
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2.1. System Description

The ISM and drive system consist of a mounted encoder three-phase ISM with a
rotor that adopts a high moment of inertia and low frictional coefficient, a rectifier, an LC
filter, an isolated circuit, a lockout-time circuit, a current sensing circuit, an analog-digital
conversion, and the voltage fed converter with 3-leg 6-switch transistor power devices.
The DSP control system is composed of a speed control, a proportional-integral (PI) current
control and an indirect field-oriented control (IFOC) [27–29]. The IFOC consists of a space-
vector pulse-width-modulation control, sin θt/ cos θt creation, a coordinate transformation
and an inverse coordinate transformation. The rice milling machine system is composed
of a feed chopper, milling room, main idler, idler 1, idler 2, chaff suction fan, jet fan, chaff
outlet, inlet chopper mouth, rice outlet, thickness adjustment lever, belt 1 and belt 2. The
arrangement of the ISM driving the rice milling machine system is shown in Figure 1.

Figure 1. Arrangement of the induction servo motor (ISM) driving the rice milling machine system.

2.2. System Model

The voltage equations in the three-phase ISM by using the simplified coordinate
frame transforms, from a-b-c to u-v, and the Clarke and Park transformations by using the
IFOC [27–29] can be represented by

wu = raqu − µt(Lvqv + Luvqu) +
d(Luqu + Luvqv)

dt
(1)

wv = raqv + µt(Luqu + Luvqv) +
d(Lvqv + Luvqu)

dt
(2)
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0 = rbqur + (µt − µu)(Luqur + Luvqvr) +
d(Lvqvr + Luvqur)

dt
(3)

0 = rbqvr + (µt − µu)(Lvqvr + Luvqur) +
d(Luqur + Luvqvr)

dt
(4)

where wu and wv are the u − v axis stator voltages. qu and qv are the u − v axis stator
currents. qur and qvr are the u− v axis rotor currents. Lu, Lv and Luv are the u− v axis
self-inductances and mutual inductance, respectively. ra and rb are the stator and equalized
rotor resistances. µv and µu are the mechanical and electrical angular speeds in the ISM.
µt is the electrical angular speed of synchronous flux [27]. The electromagnetic torque
Fa [28,29] in the ISM can be described as

Fv =
3Pt[ϕvqu − ϕuqv]

4
=

3Pt[Lvqvqu − Luquqv]

4
=

3Pt[Lv − Lu]

4
quqv (5)

where ϕu and ϕv are u− v axis flux linkages. Pt is the number of poles.
The ISM driving the rice milling machine system led to a more sluggish performance

of the system owing to a nonlinear uncertainty effect. The response of speed control
for the ISM driving the rice milling machine system resulted in poor performance. The
adumbration view of the ISM and the rice milling machine system is illustrated in Figure 2.

Figure 2. Adumbration view of the ISM and the rice milling machine system.

Considering that the power loss and sliding loss were insignificant, two dynamic
equations with simplified kinematics of the rice milling machine system are described
as [30–32]:

Fv = fa
dµv

dt
+ gaµv + φbµbFd/µv + fc

dµv

dt
+ gcµv (6)

Fd = fd
dµb
dt

+ gdµb + fb
dµb
dt

+ gbµb + Fl
b(Rvb, Fvb, Fvl , gb) (7)

where Fv, Fd and Fb1 are the electromagnetic torque of the ISM, the output torque of idler 2
and the output torque of the main idler, respectively. fa, fc, fd and fb are the four moments
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of inertia in the ISM, in idler 2, in the main idler and in idler 1, respectively. gv, gc, gd and gb
are the four viscid frictional coefficients in the ISM, in idler 2, in the main idler and in idler
1, respectively. φb is the transposition ratios regarding idler 2 and the main idler for the
rice milling machine system. Fl

b(Rvb, Fvb, Fvl , gb) is the nonlinear coalescence disturbances
function including rolling force Rvb, wind force Fvb, and braking force Fvl . µv and µb are
the speed in idler 2 and the speed in the main idler. Then, the torque equation can be
transformed from the main idler to idler 2 by use of a transformed ratio. The modeling
of the rice milling machine can be simplified by omitted sliding losses of two belts; thus,
the dynamic equation in the ISM driving the rice milling machine system including the
coalescence torque from Equations (6) and (7) can be expressed as

fr
dµv

dt
+ grµv + (∆Fa + Fb1) + Ft(F1c, F2c, F3c) = Fv (8)

Fb1 =
φbµb[( fd + fb)

dµb
dt + (gd + gb)µb + Fl

b(uvb, Fvb, Fvl , gb)]

µv
(9)

∆Fa = ∆ fr
dµv

dt
+ ∆grµv (10)

where gr = ga + gc and fr = fa + fc are the coalescence viscid friction coefficient and the
coalescence moment of inertia including the main idler and the ISM. ∆Fa + Fb1 is the huge
comprehensive coalescence disturbances and parameter variations. Ft(F1c, F2c, F3c) is the
coalescence torque [27] including coulomb friction torque F3c, Stribeck effect torque F2c and
adding load torque F1c. Fb1 represents the comprehensive coalescence disturbances. ∆Fa
represents the comprehensive parameter variations.

The DSP control system with current control and IFOC can fulfill a speed control, an
IFOC and a proportional-integral (PI) current control. The IFOC consists of a space-vector
pulse-width-modulation control, sin θt/ cos θt, creation, a coordinate transformation and
an inverse coordinate transformation. The control gains of the PI current control are the
proportional gain of 19.2 and the integral gain of 8.3 by using the heuristic method [33–35]
to obtain a finer dynamic response. The drive system was operated under comprehensive
coalescence disturbances and comprehensive parameter variations by adopting the DSP
control system in this research.

3. Methods

In order to design the control structure, the dynamic equation of Equation (8) is
modified as

dµv

dt
= hvµv + hw(∆Fa + Fb1 + Fe) + hxlv (11)

where ∆Fa + Fb1 + Fe represents the comprehensive coalescence disturbances. hv = −gr f−1
r

is a friendly ratio constant and |hvµv| ≤ Rv(µv) is assumed to be bounded with functional-
bounded value Rv(µv). hw = − f−1

r is a friendly constant concerning the coalescence
moment of inertia and |hwFo| ≤ Rb is assumed to be bounded. hx = f−1

r is a friendly
constant concerning the coalescence moment of inertia and hx ≤ Rc is assumed to be
bounded. Rb and Rc are two friendly values. lv = Fv is the electromagnetic torque of the
ISM. The speed difference sa is as follows.

sa = µ∗ − µv (12)

If the comprehensive coalescence disturbances and the comprehensive parameter
variations are favorable and affectionate, the excellent control law can be rewritten by

l∗v =
dµ∗

hxdt
+

cv sa

hx
− hvµv

hx
− hw(∆Fa + Fb1 + Fe)

hx
(13)
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where cv is a positive control gain. Equation (12) and l∗v = lv are substituted into Equation (11),
so the error equation can be rewritten by

dsa

dt
+ cvsa = 0 (14)

The system will track the wished state value at t→ ∞ and sa(t)→ 0 . Neverthe-
less, the control system will exhibit a sluggish tracking response under the occurrence
of uncertainty. Thereby, the proposed witty control system using an RRJPNN control
and two remunerated controls with ABSA shown in Figure 3 were developed to control
the ISM driving the rice milling machine system in order to enhance the speed of the
tracking response.

Figure 3. Control frame of witty control system.

The adopted control system is given by

lv = lx + ly + lz + lw (15)
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We can use the differential equation of (11), then we can substitute Equations (8) and
(12) into this equation. The error equation can be rewritten by

dsa

dt
= l∗v hx − lxhx − lyhx − lzhx − lwhx − cvsa (16)

where lx is the RRJPNN control that acts as the main tracking controller to impersonate the
excellent control rule. ly is the dominator control that will act in the appropriate region. lz
and lw are two remunerated controls that acts as two remunerated controllers to repay the
difference between the excellent control and the RRJPNN control. Then, the three-layer
RRJPNN, which is shown in Figure 4, consists of the forehead, center and readward layers.
All the informations of all layers are as follows.

Figure 4. Constitution of the revised recurrent Jacobi polynomial neural network (RRJPNN).

The input and the output informations in the forehead layer are shown below.

b1
r = ∏

t
a1

r (K) ρ1
rt(K) d3

t (K− 1) d1
r (K− 1),d1

r (K) = y1
r (b

1
r ) = b1

r , r = 1, 2 (17)

The input and the output informations in the center layer are shown below.

b 2
s =

2

∑
r=1

d1
r (K) + χd2

s (K− 1), d2
s (K) = y2

s (b
2
s ) = P(α,β)

s (b2
s ), s = 0, 1, · · · , m− 1 (18)

The input and the output informations in the readward layer are shown below.

b 3
t =

m−1

∑
s=0

ρ2
ts(K) d 2

s (K),d
3
t (K) = y3

t (b
3
t ) = b3

t , t = 1 (19)

where Π and Σ are the multiplication and summation symbols. a1
2 = sa(1− z−1) = ∆sa

and a1
1 = µ ∗ −µv = sa are the speed difference alteration and the speed difference. m,

χ and K are the number of nodes of the center layer, the recurrent gain of the center
layer and the iteration number, respectively. ρ1

rt(K) and ρ2
ts(K) are the recurrent weight

between the readward layer and the forehead layer, and the conjoined weight between
the center layer and the readward layer. y1

r , y2
s and y3

t are the three linear activation
functions in the forehead, center and readward layers, respectively. d1

r (K), d2
s (K) and

d3
t (K) are the information of three outputs of nodes in the forehead, center and readward
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layers, respectively. P(α,β)
s (b) is the Jacobi polynomial function [13,14] with −1 < x < 1

adopted as the activation function in the center layer—i.e., y2
s = P(α,β)

s (b). P(α,β)
0 (b) = 1,

P(α,β)
1 (b) = (α + 1)(α + β + 2)(b− 1)/2 and P(α,β)

2 (b) = 0.5(α + 1)(α + 2) + 0.5(α + 2)(α +

β + 3)(b− 1) + 0.125(α + β + 3)(α + β + 4)(b− 1)2 are the 0-, 1- and 2-order Jacobi poly-
nomial functions, respectively. The Jacobi polynomial function with the recurrence rela-
tion [13,14] is as below (2s + α + β− 1){(2s + α + β)(2s + α + β− 2) + α2− β2}P(α,β)

s−1 (b)−
2(s + α− 1)(s + β− 1)(2s + α + β)P(α.β)

s−2 (b) = 2s(s + α + β)(2s + α + β− 2)P(α,β)
s (b). The

output information in the readward layer can be rewritten as d3
t (K) = lx. The RRJPNN

control is thus described by
d3

t (K) = lx = CTD (20)

where D =
[

d2
0 · · · d2

m−1
] T and C =

[
ρ2

10 · · · ρ2
1, m−1

] T
are the input informa-

tion and weight vectors in the readward layer.
The dominator control ly can be represented by

ly =
1
hx

[

∣∣∣∣dµv

dt

∣∣∣∣+ |cvsa|+ Rv(µv) + Rb]sgn(sahx) (21)

The dominator control will act in the appropriate region if the RRJPNN control cannot
be guaranteed.

To fulfill the remunerated mechanism, a minimum difference λ can be described as

λ = (lx − l∗x)− (lx − l∗v ) (22)

where l∗x = d∗t = (C∗)TD is the excellent control rule of the RRJPNN control; C∗ is the
excellent weight vector; |λ| < γ < δ, δ + ((Rv(µv) + Rb + |dµv/dt|+ |cvsa|)/hx) > 0 and
δ are greater than zero. By using Equation (22), lx = d3

t (K) = CTD and l∗x = (C∗)TD, then
Equation (16) can be described as

dsa
dt = hxl∗v − hxlx − hxly − hxlz − hxlw − cvsa

= hx[(lx − l∗x)− (lx − l∗v )] + hx(l∗x − lx)− hxly − hxlz − hxlw − cvsa

= hxλ + hx[(C∗)
TD− CTD]− hxly − hxlz − hxlw − cvsa

(23)

To obtain two remunerated controls, the attunement law and the two evaluation laws,
the Lyapunov function is described as

Vx =
s2

a
2
+

(C∗ − C)T(C∗ − C)
2υ1

+
(γ̂− γ)2

2τ1
+

(δ̂− δ)
2

2τ2
(24)

where υ1 is the learning rate of the conjoined weight; τ1 and τ2 are the two positive
evaluation rates; γ̂− γ and δ̂− δ are the evaluation differences. By using Equations (22)
and (23), then the differential equation of (24) can be described as

dVx
dt = sa

dsa
dt −

(C∗−C)T

υ1
dC
dt + (γ̂− γ) d(γ̂−γ)

τ1dt + (δ̂− δ) d(δ̂−δ)
τ2dt

= sa{hxλ + hx[(C∗ − C)TD]− hxlz − hxlw − hxlx − cvsa} − (C∗−C)T

υ1
dC
dt + (γ̂− γ) dγ̂

τ1dt + (δ̂− δ) dδ̂
τ2dt

(25)

The attunement law dC
dt , two remunerated controls, lz and lw, and two evaluation laws,

dγ̂/dt and dδ̂/dt to fulfill dVx
dt ≤ 0 can be described as

dC
dt

= υ 1 sahxD (26)

lz = γ̂sgn(sahx) (27)

lw = δ̂sgn(sahx) (28)



Actuators 2021, 10, 65 9 of 24

dγ̂

dt
= τ1|sahx| (29)

dδ̂

dt
= τ2|sahx| (30)

By using Equations (26)–(30) and (17), then Equation (25) can be rewritten by

dVx
dt = sa{hxλ + hx[(C∗ − C)TD]− hxly − hxlz − hxlw − cvsa} − (C∗−C)T

υ1
dC
dt + (γ̂− γ) dγ̂

τ1dt + (δ̂− δ) dδ̂
τ2dt

= −cas 2
a + sahx{λ + (C∗ − C)TD− (γ̂ + δ̂)sgn(sahx)− 1

hx
[
∣∣∣ dµv

dt

∣∣∣+ |cvsa|+ Ra(µv) + Rb]sgn(sahx)}

− (C∗−C)T

υ1
υ1sahxD + (γ̂− γ) τ1|sahx |

τ1
+ (δ̂− δ) τ2|sahx |

τ2

= −cas 2
a + (sahxλ− γ|sahx|)− {δ + 1

hx
[
∣∣∣ dµv

dt

∣∣∣+ |cvsa|+ Rv(µv) + Rb]}|sahx|

(31)

By using |λ| < γ < δ and δ + ((Rv(µv) + Rb + |dµv/dt| + |cv, sa|)/hx) > 0, then
Equation (31) can be rewritten by

dVx
dt ≤ −cvs 2

a + (|λ| − γ)|sahx|)
≤ −cvs 2

a
≤ 0

(32)

sa and (C∗ − C) are represented as bounded when dVx
dt ≤ 0, which is a negative

semidefinite. Additionally, the uniformly continuous function xa(t) can be described by

xa(t) = −
dVx

dt
= cvs 2

a (33)

The integral of xa(t) can be rewritten by∫ t

0
xa(ε)dε =

∫ t

0
[−dVx

dε
]dε = Vx(0)−Vx(t) (34)

The differential of Equation (33) can be described as

dxa(t)
dt

= 2cvsa
dsa

dt
(35)

The limitation of Equation (34) when Vx(0) and Vx(t) are bounded can be described as

lim
t→∞

∫ t

0
xa(ε)dε < ∞ (36)

As all variables on the right side of Equation (23) are bounded, which implies dsa
dt is

also bounded and it can be shown that lim
t→∞

∫ t
0 xa(ε)dε = 0, thus sa(t)→ 0 as t→ ∞ by

using Barbalat’s lemma [36,37]. Therefore, the proposed witty control system is gradually
stable from proof. Moreover, the tracking error sa(t) of the system will converge to zero.

Therefore, to describe the online training process of the RRJPNN, an objective function
can be defined by

Vy =
s2

a
2

(37)

The conjoined weight by using the backpropagation technology and the gradient
descent technology from the attunement law dC

dt can be described as

dρ2
ts

dt
= υ1 sahxq3

t (38)
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By using the two above technologies, the conjoined weight from Equation (38) can be
expressed by

dρ2
ts

dt
= −υ1

∂F2

∂ρ2
ts
= −υ1

∂Vy

∂sa

∂sa

∂d3
t

∂d3
t

∂b3
t

∂b3
t

∂ρ2
ts
= −υ1

∂Vy

∂d3
t

∂d3
t

∂b3
t

∂b3
t

∂ρ2
ts
= −υ1q3

t
∂Vy

∂d3
t

(39)

In comparison with Equations (38) and (39), this can be obtained as

∂Vy

∂d3
t
= − sahx (40)

The updated law of the conjoined weight can be denoted by [38]

ρ2
ts(K + 1) = ρ2

ts(K) +
dρ2

ts
dt

(41)

By using the two above technologies, the recurrent weight of the attunement law can
be expressed by

dρ1
rt

dt
= −υ2

∂ Vy

∂ d3
t

∂ d3
t

∂ d2
s

∂ d2
s

∂ b2
s

∂ b2
s

∂ d1
r

∂ d1
r

∂ b1
r

∂ b1
r

∂ ρ1
rt

= υ2hxsaρ2
tsPs(·)q1

r (K)d
3
t (K− 1)d1

r (K) (42)

where υ2 is the learning rate of the recurrent weight. The updated law of the recurrent
weight can be denoted by [38]

ρ1
rt(K + 1) = ρ1

rt(K) +
dρ1

rt
dt

(43)

Moreover, the ABSA method was applied to search for two optimal adjustable learning
rates and to improve convergent speed of the weights in the RRJPNN in this research. The
existing algorithm with the excellent behavior of miniature bat echolocation is the important
development of the BA method. By adopting a random technology, this algorithm produces
a set of solutions. Then, the optimal solution is found by using the loop search. The local
solution is generated by random flight and generates a global optimal solution. For all bats,
the position of the bat i is zi(n− 1), the flight velocity is fi(n− 1) and the current global
optimal position is z∗ when their foraging space is part of the d-dimension at n − 1 time.
The flight velocity fi(n) and position zi(n) of bat i at n time can be calculated by

ki = kmin + (kmax − kmin)n/Nmax, i = 1, 2 (44)

fi(n) = fi(n− 1) + (zi(n− 1)− z∗)ki, i = 1, 2, n = 1, . . . , j (45)

zi(n) = zi(n− 1) + fi(n), i = 1, 2, n = 1, . . . , j (46)

where Nmax is the maximum number of iterations; kmax and kmin are the maximum and
minimum frequencies of the soundwaves produced by the bat. In the initial process,
the frequency of the bat’s soundwaves is uniformly distributed between kmin = 0 and
kmax = 1. The concerning frequency is obtained by adopting Equation (44). By adopting
Equations (45) and (46), the local search is realized. The bat randomly goes along the
optimal solution, and the new solution is updated by

znew(n) = zold(n− 1) + σ× di(n), i = 1, 2, n = 1, . . . , j (47)

where σ is a random number at [−1, 1]. zold(n− 1) is the solution selected from the current
optimal solution by adopting a random skill. di(n) is the average loudness from the bat
generation at n time. Additionally, it achieves a global search by controlling modified
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loudness di(n + 1) and modified pulse rate ei(n + 1). The modified pulse rate ei(n + 1)
and modified loudness di(n + 1) of the bat launch pulse can be updated by

ei(n + 1) = [ei(n)− ei(0)][1− exp(−nξ)], i = 1, 2, n = 1, . . . , j (48)

ei(n)
di(n+1) = ς[di(n)− di(0)], i = 1, 2, n = 1, . . . , j (49)

where ei(0) is an initial rate and di(0) is an initial loudness. ς is a constant between 0 and 1
and ξ is a positive constant. When the bat is conscious of the presence of the prey, it will
increase its pulse emission rate and reduce the response of its pulsed emission. At last,
zi(n), i = 1, 2 is the best solution concerning the learning rates υi(n), i = 1, 2 of the two
weights in the RRJPNN. Thereby, the two adjustable values may be optimized by adopting
ABSA method to find the two learning rates of weights. Moreover, a progressive weight
pruning approach is based on the ABSA method to quicken convergence of weight.

4. Tests and Results

The arrangement of the ISM driving the rice milling machine system by adopting a
DSP control system is illustrated in Figure 1. In Figure 5, an experimental photo of the ISM
and the rice milling machine system is illustrated.

Figure 5. An experimental photo of the ISM and the rice milling machine system.

The conversion ratio for the rice milling machine system is 2.2. The profile formats are
the belt 1 length is 42.2 mm, the belt 2 length is 52.2 mm, the main idler diameter is 92.6 mm,
the diameter of idler 1 is 45.2 mm, and the diameter of idler 2 is 64.2 mm. The specifica-
tion of the ISM is three-phase two-pole 220 V, 60 Hz, 3 kW, 3582 rpm. The position and
speed conversion ratios are 1 V = 50 rad and 1 V = 50 rad/s. The internal parameters of
the ISM are ra = 1.08 Ω, rb = 1.02 Ω, Lu = 8.65 mH, Lv = 10.68 mH, Luv = 8.89 mH,
fa = 16.22× 10−3 Nms2 = 0.811 Nmsrad/V, and ga = 1.12× 10−3 Nms/rad = 0.056 Nm/V.
Figure 6 illustrates the control flowchart of executive program by adopting the DSP con-
trol system.
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Figure 6. Control flowchart of executive program.

The program in the experimental tests consists of the basic program (BP) and the auxil-
iary interrupt routine (AIR). The BP conducts all initializations for the adopted parameters
and all settings for the input/output interfaces. The AIR achieves the interrupt execution
within 2 ms. The executed processes by AIR are as follows: three-phase currents read
from analog–digital conversions, rotor position read from encoder interface circuit, rotor
speed computation, speed difference computation, lookup table generation, coordinate
transformations realization, PI current control realization, the proposed control system re-
alization, and three-phase space-vector pulse-width-modulation outputs for switching the
voltage fed converter. Three discerners A1_x, A1, A and 2 are set as 3, 0 and 0, respectively.
The DSP control system with the IFOC applied the discerner A2 to act as the executing
number of the proposed control method. If the IFOC is executed less than three times, i.e.,
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A1 < A1_x, the IFOC needs to be enforced repeatedly. The proposed control method is
executed one time and the IFOC is executed three times. Then, the AIR will back to the BP.

The experimental results with three test examples are shown to show some of the
control performances. Firstly, test JA is the case with huge comprehensive coalescence
disturbances and parameter variations ∆Fa + Fb1 at 1.2 s, starting with a mandate speed
of 1600 rpm (167.47 rad/s). Secondly, test JB is the case with double huge comprehensive
coalescence disturbances and parameter variations ∆Fa + Fb1 at 1.2 s, starting with a
mandate speed of 3300 rpm (345.40 rad/s). Thirdly, test JC has a mandate speed of
2000 rpm (209.33 rad/s) starting at 2 s and a mandate speed of 3000 rpm (314.00 rad/s)
at 10 s, with acceleration and added external load torque disturbance and parameter
variations 8 Nm(F1c) + Fb1 at 14 s, with a mandate speed of 3000 rpm (314.00 rad/s). The PI
controller as the TA controller and the proposed witty control system as the TB controller
are the two adopted controllers that are compared with control performances. Firstly, two
gains of the PI control as the TA controller are the proportional gain of 24.1 and the integral
gain of 10.2 by adopting the heuristic method [30–32] to obtain finer dynamic response
under the requirement of stability consideration. The control gains by using the proposed
witty control system as the TB controller are given as cv = 5.41, χ = 0.092, τ1 = 0.12 and
τ2 = 0.13 to better measure transient performance under the demand of stability planning.
In addition, the number of nodes of the RRJPNN, by adopting the progressive weight
pruning approach based on ABSA method to quicken convergence of conjoined weight,
are 2, 4 and 1 in the forehead, center and readward layers to better measure transient-state
and steady-state control properties.

Firstly, Figure 7a,b display speed responses for measured speed µv, mandate speed µc
and reference model speed µ∗ via experimental results of test JA by adopting the TA and
TB controllers for the ISM driving the rice milling machine system.

Figure 7. Speed responses via experimental results for the ISM driving the rice milling machine
system at test JA by adopting the controllers: (a) TA; (b) TB.
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Figure 8a,b display increase in speed difference sa responses between 2.8 and 3.2 s via
experimental results at test JA by adopting the TA and TB controllers for the ISM driving
the rice milling machine system.

Figure 8. Increase in speed difference responses via experimental results for the ISM driving the rice
milling machine system at test JA by adopting the controllers: (a) TA; (b) TB.

Figure 9a,b display the responses of three-phase currents via experimental results
at test JA by adopting the TA and TB controllers for the ISM driving the rice milling
machine system.

Figure 7a,b show that by adopting the TA and TB controllers in test JA, a better speed
tracking performance was achieved because of smaller disturbance. However, the increase
in tracking error when adopting the TA controller shown in Figure 8a is larger than the
increase in tracking error when adopting the TB controller shown in Figure 8b. The response
of three-phase currents when adopting the TA controller shown in Figure 9a generates a
larger harmonic wave than when adopting the TB controller shown in Figure 9b.

Secondly, Figure 10a,b display speed responses for measured speed µv, mandate speed
µc and reference model speed µ∗ via experimental results of test JB by adopting the TA and
TB controllers for the ISM driving the rice milling machine system.
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Figure 9. Responses of three-phase currents via experimental results for the ISM driving the rice
milling machine system in test JA by adopting the controllers: (a) TA; (b) TB.

Figure 10. Speed responses via experimental results for the ISM driving the rice milling machine
system in test JB by adopting the controllers: (a) TA; (b) TB.
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Figure 11a,b display in increase speed difference sa responses between 2.8 s and 3.2 s
via experimental results at test JB by adopting the TA and TB controllers for the ISM driving
the rice milling machine system.

Figure 11. Increase in speed difference responses via experimental results for the ISM driving the
rice milling machine system in test JB by adopting the controllers: (a) TA; (b) TB.

Figure 12a,b display responses of three-phase currents via experimental results of test
JB by using the controllers TA, and TB for the ISM driving the rice milling machine system.

Figure 10a by using the TA controller in test JB appeared to show a dilatory speed
response because of no good gain adjustment in the TA controller. In Figure 10b, by
adopting the TB controller at test JB, a good speed response is demonstrated, owing to
online adjustable method of RRJPNN control and two remunerated controls. However, the
increase in tracking error when adopting the TA controller shown in Figure 11a is larger
than the increase in tracking error when adopting the TB controller shown in Figure 11b.
The response of three-phase currents when adopting the TA controller shown in Figure 12a
results in larger harmonics than when adopting the TB controller shown in Figure 12b.

Thirdly, Figure 13a,b display two various speed-regulated responses when adding
load torque via experimental results of test JC by using the TA and TB controllers for the
ISM driving the rice milling machine system.
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Figure 12. Responses of three-phase currents via experimental results for the ISM driving the rice
milling machine system at test JA by adopting the controllers: (a) TA; (b) TB.

Figure 13. Two speed-regulated responses when adding load torque via experimental results of test
JC by adopting the controllers: (a) TA; (b) TB.
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Figure 14a,b display responses of three-phase currents with addition of load torque
via experimental results of test JC by using the TA and TB controllers for the ISM driving
the rice milling machine system.

Figure 14. Responses of three-phase currents with adding load torque via experimental results of
test JC by adopting the controllers: (a) TA; (b) TB.

The two speed-regulated responses when adding load torque via experimental results
by adopting the TA controller, shown in Figure 13a, are worse than the two speed-regulated
responses when adding load torque via experimental results by using the TB controller,
also shown in Figure 13a. Responses of three-phase currents with adding load torque
via experimental results by adopting the TA controller shown in Figure 14a has a greater
harmonic than responses of three-phase currents when adding load torque via experimental
results by adopting the TB controller shown in Figure 14b.

Moreover, responses of the two learning rates curves in test JB shown in Figure 15a,b
using calculated learning rates according to the proposed ABSA method are compared
to two learning rates of conjoined weight and recurrent weight by utilizing the PSO
method [20] and ACO method [23] to demonstrate the usefulness of this novel technique.
This study shows that convergence to optimal values can be achieved by using the pro-
posed ABSA method. The proposed method also achieves faster convergence and less
computational complexity.

Additionally, responses of two weights at test JB by using the PSO method [20] and
the ACO method [23] and the proposed ABSA method are shown in Figure 16a,b. The
convergences of conjoined weight and recurrent weight by using the proposed ABSA
method with progressive weight pruning approach are superior to the ACO method and
the PSO method. Thereby, the proposed method with progressive weight pruning approach
can quicken convergence of weights.
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Figure 15. Responses of two learning rates via experimental results of test JB by adopting the ant
colony algorithm (ACO), particle swarm optimization (PSO) and altered bat search algorithm (ABSA)
methods for: (a) learning rate of conjoined weight, (b) learning rate of recurrent weight.

Figure 16. Responses of two weights via experimental results of test JB by adopting the ACO, PSO
and ABSA methods for: (a) conjoined weight; (b) recurrent weight.
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Furthermore, response of the numbers of conjoined weight at test JB by using the PSO
method [20] and the ACO method [23] and the proposed ABSA method by adopting the
progressive weight pruning approach is shown in Figure 17. The convergence of numbers
of conjoined weight by using the proposed ABSA method and the progressive weight
pruning approach is superior to the ACO method and the PSO method. Thereby, the
proposed method can achieve faster convergence in conjoined weight.

Figure 17. Responses of numbers of conjoined weight via experimental results of test JB by adopting the ACO, PSO and
ABSA methods.

5. Analyses and Discussion

Dynamic responses for the PI controller as the TA controller and the proposed witty
control system as the TB controller at three tested examples via experimental results that
are listed in Table 1 are explained as below. For test JA, the maximum differences for the
TA and TB controllers are 82 (8.58 rad/s) and 30 rpm (3.14 rad/s), and the quadratic mean
differences for the TA and TB controllers are 48 (5.02 rad/s) and 17 rpm (1.78 rad/s). For
test JB, the maximum differences for the TA and TB controllers are 128 (13.40 rad/s) and
35 rpm (3.66 rad/s), and the quadratic mean differences for the TA and TB controllers are
53 (5.55 rad/s) and 19 rpm (1.99 rad/s). For test JC, the maximum differences for the TA
and TB controllers are 489 (51.18 rad/s) and 192 rpm (20.10 rad/s), and the quadratic mean
differences for the TA and TB controllers are 188 (19.68 rad/s) and 46 rpm (4.81 rad/s).
The TB controller has better dynamic responses than the TA controller according to the
experimental results in tests JA, JB and JC.

Table 1. Dynamic responses for the two controllers.

Three Test Examples Performance

Controllers TA Controller TB Controller

Maximum
Differences of sa

Quadratic Mean
Differences of sa

Maximum
Differences of sa

Quadratic Mean
Differences of sa

Test JA
82 rpm 48 rpm 30 rpm 17 rpm

(8.58 rad/s) (5.02 rad/s) (3.14 rad/s) (1.78 rad/s)

Test JB
128 rpm 53 rpm 35 rpm 19 rpm

(13.40 rad/s) (5.55 rad/s) (3.66 rad/s) (1.99 rad/s)

Test JC
489 rpm 188 rpm 192 rpm 46 rpm

(51.18 rad/s) (19.68 rad/s) (20.10 rad/s) (4.81 rad/s)

Additionally, the peculiarity performances for the TA and TB controllers according to
the three tested examples via experimental results that are listed in Table 2 are represented
as below. The total harmonic distortion (THD) values in the three-phase currents for the
TA and TB controllers in test JB are 21% and 5%. The responses of rising times for the
TA and TB controllers in test JB are 0.92 s and 0.75 s. The regulation capabilities with
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adding load torque for the TA and TB controllers in test JC are 489 rpm (51.18 rad/s) in
maximum difference and 192 rpm (20.10 rad/s) in maximum difference. The speed tracking
differences for the TA and TB controllers in test JB are 128 rpm (13.40 rad/s) in maximum
difference and 35 rpm (3.66 rad/s) in maximum difference. The denial potentialities of
parameter disturbance for the TA and TB controllers in test JB are 128 rpm (13.40 rad/s)
in maximum difference and 35 rpm (3.66 rad/s) in maximum difference. The above
performances concerning the harmonic values in the three-phase currents, the dynamic
responses, the regulation capabilities for adding load torque, the speed tracking differences
and the denial potentialities of parameter disturbance in the TB controller are better than
the TA controller. Thereby, the TB controller has better peculiarity performance than the
TA controller from experimental results of tests JB and JC.

Table 2. Peculiarity performances for the two controllers.

Peculiarity Performances

Controllers TA Controller TB Controller

Total harmonic distortion (THD) values in the three-phase
currents in test JB 21% 5%

Responses of rising times in test JB 0.92 s 0.75 s

Regulation capabilities with adding load torque in test JC 489 rpm (51.18 rad/s) in
maximum difference

192 rpm (20.10 rad/s) in
maximum difference

Speed tracking differences in test JB 128 rpm (13.40 rad/s) in
maximum difference

35 rpm (3.66 rad/s) in
maximum difference

Denial potentialities of parameter disturbance in test JB 128 rpm (13.40 rad/s) in
maximum difference

35 rpm (3.66 rad/s) in
maximum difference

6. Conclusions

The proposed witty control system has been applied to control the the ISM driving
the rice milling machine system with better robustness. The proposed witty control system
that can realize the RRJPNN control, which involves an attunement law, two remunerated
controls, which have two evaluation laws, and a dominator control were proposed to
obtain a fine control performance.

The contributions of this research are as below. (a) The dynamic models of the ISM
driving the rice milling machine system have been developed. (b) The ISM driving the rice
milling machine system under huge comprehensive nonlinear synthesized disturbances
and parameter variations affect has been controlled by using the proposed witty control
method. (c) On the basis of the Lyapunov stability principle, the attunement law in the
RRJPNN control and the two evaluation laws in the two remunerated controls have been
developed. (d) The ABSA method was utilized to find the learning rates of conjoined and
recurrent weights in the RRJPNN to obtain optimal values and to quicken convergence of
weights. (e) The proposed witty control system has better sinusoidal shapes than the PI
control in terms of the harmonics values of three-phase currents.

Finally, all results show that the proposed witty control system is better than the PI
control for the ISM driving the rice milling machine system from all experimental results
and control behaviors.
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Abbreviations

wu, wv u− v axis stator voltages
qu, qv u− v axis stator currents
qur, qvr u− v axis rotor currents
Lu, Lv, Luv u− v axis self inductances, mutual inductance
ra, rb stator and equalized rotor resistances.
µv, µu, µt mechanical and electrical angular speeds, electrical angular

speed of synchronous flux in the ISM
Fa electromagnetic torque
ϕu, ϕv u− v axis flux linkages
Pt number of pole
Fv, Fd, Fb1 electromagnetic torque of the ISM, the output torque of idler 2

and the output torque of the main idler
fa, fc, fd, fb four moments of inertia in the ISM, in idler 2, in the main idler

and in idler 1
gv, gc, gd, gb four viscid frictional coefficients in the ISM, in idler 2, in the

main idler and in idler 1
φb transposition ratios regarding idler 2 and the main idler for

the rice milling machine system
Fl

b(Rvb, Fvb, Fvl , gb) nonlinear coalescence disturbances function
Rvb, Fvb, Fvl rolling force, wind force, braking force
µv, µb speed in idler 2 and the speed in the main idler.
gr = ga + gc coalescence viscid friction coefficient including the main idler

and the ISM
fr = fa + fc coalescence moment of inertia including the main idler and

the ISM
∆Fa + Fb1 huge comprehensive coalescence disturbances and parameter

variations
Ft(F1c, F2c, F3c) coalescence torque
F3c, F2c, F1c coulomb friction torque, Stribeck effect torque, adding load

torque
Fb1 comprehensive coalescence disturbances
∆Fa comprehensive parameter variations
∆Fa + Fb1 + Fe comprehensive coalescence disturbances
hv = −gr f−1

r friendly ratio constant
Rv(µv) bounded with functional-bounded value
hw = − f−1

r friendly constant concerning the coalescence moment of inertia
hx = f−1

r friendly constant concerning the coalescence moment of inertia
Rb, Rc two friendly values with bound
lv = Fv electromagnetic torque of the ISM
sa speed difference
cv positive control gain
lx, ly, lz, lw RRJPNN control, dominator control, two remunerated controls
a1

2 = sa(1− z−1) = ∆sa,
a1

1 = µ ∗ −µv = sa speed difference alteration, speed difference
m, χ and K node number of the center layer, the recurrent gain of the center

layer and the iteration number
ρ1

rt(K), ρ2
ts(K) recurrent weight, conjoined weight

y1
r , y2

s , y3
t three linear activation functions in the forehead, center and

readward layers
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d1
r (K), d2

s (K), d3
t (K) information of three outputs of nodes in the forehead, center and

readward layers

P(α,β)
s (b) Jacobi polynomial function

P(α,β)
0 (b), P(α,β)

1 (b), P(α,β)
2 (b) 0-, 1- and 2-order Jacobi polynomial functions

d3
t (K) = lx output information in the readward layer

D =
[

d2
0 · · · d2

m−1
] T ,

C =
[

ρ2
10 · · · ρ2

1, m−1

] T
input information and weight vectors in the readward layer

λ minimum difference
l∗x = d∗t = (C∗)TD excellent control rule of the RRJPNN control
C∗ excellent weight vector
δ greater than zero real number
xa(t) uniformly continuous function
Vx(0), Vx(t) two bounded
sgn(·) sign function
Vy objective function
dC
dt attunement law

υ1, υ2 learning rate of the conjoined weight, learning rate of the
recurrent weight

τ1, τ2 two positive evaluation rates
γ̂− γ, δ̂− δ two evaluation differences
dγ̂/dt, dδ̂/dt two evaluation laws
zi(n− 1), fi(n− 1) position of the bat i at n − 1 time, flight velocity of the

bat i at n − 1 time
zi(n), fi(n) position of the bat i at n time, flight velocity of the bat i

at n time
z∗ current global optimal position
Nmax maximum number of iterations
kmax, kmin maximum and minimum frequencies of the soundwaves

produced by the bat
σ random number at [−1, 1]
zold(n− 1) solution selected from the current optimal solution at

n − 1 time
di(n) average loudness from the bat generation at n time
di(n + 1), ei(n + 1) modified loudness at

n + 1 time, modified pulse rate at n + 1 time
ei(0), di(0) initial rate, initial loudness
ς, ξ constant between 0 and 1, positive constant
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