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Abstract: Usually, polyhedra are viewed as the underlying constructive cells of packing or tiling in
many disciplines, including crystallography, protein folding, viruses structure, building architecture,
etc. Here, inspired by the flexible origami polyhedra (commonly called origami flexiballs), we
initially probe into their intrinsic metamaterial properties and robotized methods from fabrication to
actuation. Firstly, the topology, geometries and elastic energies of shape shifting are analyzed for
the three kinds of origami flexiballs with extruded outward rhombic faces. Provably, they meet the
definitions of reconfigurable and transformable metamaterials with switchable stiffness and multiple
degrees of freedom. Secondly, a new type of soft actuator with rhombic deformations is successfully
put forward, different from soft bionic deformations like elongating, contracting, bending, twisting,
spiraling, etc. Further, we redesign and fabricate the three-dimensional (3D) printable structures of
origami flexiballs considering their 3D printability and foldability, and magnetically actuated them
through the attachment of magnetoactive elastomer. Lastly, a fully soft in-pipe robot prototype is
presented using the origami flexiball as an applicable attempt. Experimental work clearly suggests
that the presented origami flexiball robot has good adaptability to various pipe sizes, and also can be
easily expanded to different scales, or reconfigured into more complex metastructures by assembly.
In conclusion, this research provides a newly interesting and illuminating member for the emerging
families of mechanical metamaterials, soft actuators and soft robots.
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1. Introduction

Recently, increasingly innovative research cases [1,2] indicate that origami has far
exceeded its traditional definition of manual cutting and folding arts. Its remarkable char-
acteristics, including reversible foldability, adaptive multistability and tunable stiffness,
have provided extensive innovative inspirations for scientists and engineers to develop
nontraditional structures, mechanisms and materials, such as deployable structures [3,4],
mechanical metamaterials [5-7], soft actuators or robots [8-10], biomedical devices or
capsules [11,12], stretchable or flexible electronics [13-15] and other attractive possibili-
ties [16,17].

Undoubtedly, origami has been recognized as a powerful and exciting inspiration
source to chase the long-standing human dream: the whole physical system is fully pro-
grammable including its geometric deformation, material properties and even behavior
under external stimulation. By deeply exploiting the novelty of origami, more and more
concepts of traditional disciplines are revolutionarily refreshed. For example, a variety
of origami-based mechanical metamaterials are demonstrated, such as tunable negative
Poisson’s ratio [18], autonomous deployability [19], anisotropic multistability [20], self-
locking [21], etc. On another hand, many new types of soft actuators or soft robots with
novel deformation modes have been developed, including (but not limited to) self or
active folding [22], variable stiffness [23], twisting motion [24], curvilinear deployment [9]
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and adaptive envelopes [25]. However, most research mainly focuses on a few crease
patterns: Miura-ori pattern [25], waterbomb base [13,26], Yoshimura pattern [27] and
Ron Resch pattern [28,29]. There are still many exquisite origami structures worthy of
further exploration.

The initial motivation of this work is to reveal the intrinsic metamaterial properties of
flexible origami polyhedra (commonly called origami flexiballs). Traditionally viewed as
the underlying constructive cells of packing or tiling problems, polyhedra have fascinated
scientists of many disciplines, including crystallography [30], protein folding [31], virus
structure [32] and building architecture [33]. Here, we regard them as flexible and reconfig-
urable frameworks, and probe into their new properties from metamaterial perspectives.

Further inspired by the flexible origami polyhedra, we hope to break through the
deformation patterns of current soft actuators. Usually, the research community of soft
robotics pays more attention to soft bionic deformations like bending [34], stretching [35],
twisting [36], spiraling [37], coiling [38], etc. In this work, however, we intend to construct a
new type of soft actuator through magnetically stimulating the basic origami rhombic cell.

This paper is organized as follows. Firstly, the intrinsic metamaterial mechanisms of
origami flexiballs are clarified through the analysis of their topology, geometries and elastic
energies during shape shifting. Next the fabrication and actuation methods of the origami
flexiball are introduced. Lastly, a fully soft in-pipe robot prototype is experimentally
presented as an applicable attempt.

2. Intrinsic Metamaterial Mechanisms of Origami Flexiball

The source of our research inspiration is a popular and interesting origami flexiball
with transformable rhombuses, in which modular sheet units are folded and snapped
together into a flexible polyhedron with extruded outward faces, such as the rhombic
triacontahedron shown in Figure 1.

(b) (c)

(e) () (8)

Figure 1. Origami flexiball: (a) flat folding pattern, (b) modular unit sheet, (c) snapping modular units, (d) flexible

triacontahedron with extruded outward rhombic faces, (e-g) some kinds of switchable ultimate patterns.

While this origami model provides a geometric starting point for our research, our
focus here is not on manual folding crafts, but on its flexible deformation originating from
simple building block assembly. From this view, we intuitively anticipate that it should
have some kind of relationship with the concept of metamaterials, which have remarkable
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mechanical properties depending on repeating unit cells rather than the properties of bulk
materials in nature.

2.1. Topology and Geometry of Origami Flexiball

As a geometric demonstration, there are only three isometrically symmetrical poly-
hedra with rhombic cells: rhombic hexahedron (RHD, i.e., cube), rhombic dodecahedron
(RDD) and rhombic triacontahedron (RTD) [33]. Tables 1 and 2 together present the topol-
ogy and geometries of these three types of origami flexiballs. Euler’s theorem in topology
implies that the Euler characteristic of the simple polyhedron is two, namely, the number
of vertices V, the number of edges E and the number of faces F conform to

V+F-E=2 1)

Table 1. Topology and geometries of origami flexiballs.

Vertex Type

Polyhedra Geometry (See Table 2) Face Type Dihedral Angle Origami Flexiball
Cube 8{3} . 90°
<
A\
!
Rhombic 8_{'_3} 1200
dodecahedron 6l4) ‘
Rhombic 2(?53} . 144°
triacontahedron 12{5) a,

Vertex Degree

Schematic

Snapping module
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Further, the RDD has two types of vertices: eight vertices with three edges, and six
vertices with four edges. The RTD has another two types of vertices: twenty vertices
with three edges, and twelve vertices with five edges. The acute angles of their congruent
rhombic faces are, respectively, 90°, 70.5° and 63.4°. The theoretically dihedral angles (the
angles between adjacent faces) of these three rhombic polyhedra are, respectively, 90°, 120°
and 144°.

In geometry, these rhombic polyhedra have many types of symmetries, because they
are convex, face-transitive (isohedral) and isotoxal (edge-transitive). In addition, the
rhombic dodecahedron is a parallelohedron with four sets of parallel edges.

With the assumption that the faces are rigid and connected at the edges by revolute
joints, convex polyhedra are always rigid. However, once we regard them as frameworks
without rigid faces, they will have certain motion degrees of freedom (DOFs) and some-
times possess peculiar kinematic properties [39].

2.2. Energy Landscape of Origami Flexiball

Obviously, the great motion mobility or shape shifting of the origami flexiball can
make them absorb elastic energies of multiple magnitudes. However, due to the low
rigidity of paper sheets, it is very difficult to accurately build a general framework for the
elastic energy calculation of origami structures. Here, we suppose that the paper faces
remain rigid during deformations, that is, they do not store any energy. Then, we only
estimate the fold elastic energy Ucrease Of One crease by parameterizing its torsional stiffness
k, the rest crease angle ¢( and the opening angle ¢. The widely accepted formula [5,20,40]
is written as

1
Ucrease = Ek((\o - (90)2 (2

Further, the total elastic energy U, of the whole origami flexiball can be approxi-
mated by

E
Utotal = ZUcrease—i 3
i=1

Meanwhile, during the origami flexiball deformation by manually applying a force,
its volume also changes remarkably. If ignoring the origami sheets” own volumes, the total
volume Vi, of the origami flexiball only includes two parts: the internal polyhedron
cavity Veavity, and all volumes of the extruded rhombic cavity Ve, that is, they will
fulfill the following equation:

F
Viotal = VCavity + Z Vcellfj 4)
=1

Table 3 lists the possible maximum volumes and the corresponding elastic energies of the
three types of origami flexiballs with the same edge length L, and the rest crease angle 60°.

Table 3. Volumes and elastic energies of origami flexiballs.

Origami Flexiball Polyhedron Volume RhombusVolume Total Volume Elastic Energy
Rhombic 3 3 R
hexahedron L 05L 4L 0.18 k
Rhombic 16 3 3 3 s
dodecahedron $VILI ~3.08L 047 L 8.72L 5.84 k
Rhombic 3 3 3 5
triacontahedron 4v/5+2V5L° ~ 1231 L 045L 25.66 L 37.39k

Further, we depicted the volumes versus the elastic energies of four switchable ul-
timate patterns of the three types of origami flexiballs, as shown in Figures 2—-4. In the
figures, we marked the crease opening angles and the numbers of different patterns by



Actuators 2021, 10, 67

50f 14

arb.unit

Elastic energy

18 -

16 -

{(angles degree, edges number) }. Although this evaluation approach is somewhat rough,
the energy landscapes of shape-shifting origami flexiballs are still clearly described. Firstly,
we can see that the changes of elastic energies vary with the directions of elastic deforma-
tion. Secondly, during the transformations of different ultimate patterns, large volume
reductions are also produced. Taking an RTD as an example, the maximum volume re-
duction happens between the fully expanded Pattern #1 and the fully compressed Pattern
#4, and the maximum volume ratio is approximately 14-fold. Thirdly, it is important to
note that for the same origami flexiball, the relationship between the volumes of different
ultimate patterns and their elastic energies is highly nonlinear. Further, Pattern # 1 of the
RHD and Pattern #3 of the RDD have the same volume value, but the elastic energy of the
former is more than 20 times that of the latter. Pattern #1 of the RDD and Pattern #3 of
the RTD are very close in volume, but the elastic energy of the latter is more than 15 times
that of the former. This fully demonstrates that the elastic energy of an origami flexiball
not only depends on the numbers of unit cells and their topological connections, but also
depends on the motions of crease opening angles.

14 4 Pattern #2
w«,f Ii £(0°.6):(180°.6)}
10 Pattern #4 {(0°.6):(120°.6)}
8 4
6
44
2 4 Pattern #1
Pattern #3 {(0°.2):(90°.8):(180°.2)} ((90°.12)!

0 1 $ $ { { } $ ' »|

0 0.5 1 1.5 2 25 3 3.5 4 4.5

Volume 1.}

Figure 2. Shape shifting, energy landscape and cavity volume of rhombic hexahedron origami.
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Figure 3. Shape shifting, energy landscape and cavity volume of rhombic dodecahedron origami.
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150+ Pattern :2'
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Volume /1.

Figure 4. Shape shifting, energy landscape and cavity volume of rhombic triacontahedron origami.

2.3. Intrinsic Metamaterial Properties of Origami Flexiball

Obviously, according to the above analysis, if viewing the highly flexible and de-
formable rhombic module as an underlying unit cell, the presented RHD/RDD/RTD
origami flexiballs exactly satisfy the definition of an origami-inspired transformable meta-
material with multiple degrees of freedom, which was put forward by Johannes et al. [41].
Further, both the RHD and RDD are parallelohedrons, which can tessellate in a certain
space by translational copies of themselves. In light of this, they can be viewed as second-
order underlying cells to be assembled into more complex reconfigurable structures like
the three-dimensional (3D) printable origami assemblages [42].
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Undoubtedly, here we introduce a new type of origami flexiball metamaterial, which
has two remarkable properties, as follows: switchable rigidity and shape shifting with
multiple degrees of freedom; hierarchical reconfigurability of rhombic cells, polyhedra
and more complex assemblages. To make this point more understandable, let us look back
the original intent of the term metamaterial, coined by Walser [43]: macroscopic materi-
als having a human-made, 3D, periodic cellular architecture and exhibiting remarkable
properties not available in nature. Academically, more and more novel metamaterials or
metastructures have been put forward that blur the boundaries between material, structure,
mechanism and even multifunctional materials [44]. For instance, Correll and Voyles [45]
presented a new type of robotic material or computational metamaterial that tightly inte-
grated sensing, actuation, computation, communication and power routing in a periodic
fashion. As another example, Ion et al. [46] demonstrated the concept of metamaterial
mechanisms by constructing 3D cell grid structures to transform input forces and move-
ment into the desired outputs of force and movement. As mentioned in Section 1, these are
all efforts to advance human long-standing dreams.

3. Magnetically Driven In-Pipe Robot Inspired by Origami Flexiball
3.1. Digital Fabrication of Origami Flexiball Metamaterial

Although the intrinsic metamaterial mechanisms of origami flexiballs have been
demonstrated through the abovementioned analysis, this new type of origami metama-
terial still encounters a practical application obstacle: manufacturability. Folding and
assembling modular, unit-based thin sheets with negligible or zero thickness require a com-
plex and tedious sequences of dexterous hand manipulations, and current manufacturing
technologies cannot imitate this process automatically. In the past few years, harness-
ing the power of 3D printing technology to manufacture various soft robots has become
an important trend [47]. Therefore, considering that 3D printing technology has strong
adaptability to direct fabrications of complex geometries, we attempted to explore the
digital fabrication approach of this origami flexiball metamaterial using the popular fused
deposition modeling (FDM) method. Before 3D printing, the modular thin sheet structure
needs to be redesigned to have a good trade-off between its 3D printability and foldability
with high elasticity and damage tolerance. After many experiments, we designed the
printable thin sheet units as shown in Figure 5.

N, *
< TS
\\f N
4 S .
NNy
. - gy / S N
NV ZD NG
/ NN NN ~_ O\
A S \ N\ AN N
~ QY " NSNR
N - 28 N
N~ XN N2
 RRR S — D .
P Kk v
0 NN N
~ N7 L0
~ N
S, P O3
~ [0S~ ,'\
Na N
(a) (b)
2
foa )

Figure 5. Redesign of thin sheet units: (a) schematic of the thin sheet unit with one hinge,
(b) schematic of the thin sheet unit with two hinges, (c) connecting schematic.

Considering the actual capability of our own 3D printer, we employed flexible 1.75 mm
polylactic acid (PLA) filaments and a 0.3 mm diameter extruder nozzle. The infill density
of the grid pattern was set as 50%. The printing speed was at 50 mm/s and the layer
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height was 0.2 mm. As illustrated in Figure 6, we then snapped the printed thin sheet units
into the finalized origami flexiball using strong glue. Figure 7 demonstrates the multiple
shape-shifting patterns of the finalized origami flexiball.

Figure 6. Fabrication of origami flexiball: (a) 3D printed thin sheet units; (b) bonding thin sheet units
together; (c) a bonded module; (d) the finalized origami flexiball.

(a) (b)

() (d) (e)

Figure 7. Shape-shifting patterns of 3D printed origami flexiball metamaterial: (a) freely expanded
pattern; (b) fully compressed pattern; (c) fully compressed pattern at symmetric points; (d) fully
compressed pattern at symmetric faces; (e) fully compressed pattern at symmetric edges.
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3.2. Actuation of Origami Flexiball Metamaterial Actuator

Thus far, we have shown that the shape and volume of the origami flexiball can be
altered by manually dexterous operations. It still cannot be actuated through various
external stimuli, such as light, heat and magnetic and electric fields. Perhaps the most easy
way to make it active is to use pneumatics to drive the motions of crease opening angles.
However, this actuation method needs many flexible tethers to transfer the gas. In addition,
we also forsake centering on the locally actuating concepts of hinge type or bending type
active folds [48], and turn to a new actuation strategy.

Noting that the most basic deformation of the origami flexiball metamaterial is the
rhombic cells opening and shutting, in this work, we present a magnetically driven soft
actuator with rhombic motion, as shown in Figure 8. First, we used silicone as the medium
to incorporate 5-micron magnetic powder particles of 30 wt.%, and achieved magneto-
active elastomer (MAE) after drying and curing [49]. Then, we bonded the MAEs on the
rhombic faces. In the experiments, the external magnetic field was a NdFeB permanent
magnet with a magnetic field intensity of 2 T. Clearly, it can be seen that the rhombic unit
cell with MAEs is quickly actuated to open or shut with the adjusting of the magnetic
induction distance. The advantages of this actuation not only depend on the ease of quickly
and accurately controlling the magnetic field direction and magnitude, but also on its
ability to penetrate most materials without tethers. To our best knowledge, a soft actuator
with rhombic deformations was created for the first time, which is distinctly different
from the most current deformations of soft actuators, such as bending, twisting, stretching,
compressing, buckling, wrinkling, etc.

Figure 8. Magnetically driven rhombic deformations of soft actuator.

Next, we deployed MAEs onto the whole origami flexiball, as shown in Figure 9,
according to the magnetic field simulation and actuation experiments. Similarly, under the
stimulation of a NdFeB permanent magnet with a magnetic field intensity of 3 T, when the
operating distance ranges from 140 mm to 10 mm, the origami flexiball can freely switch
between the fully expanded pattern and the fully compressed pattern. This is very exciting
and inspires us to wonder that how it can change into a kind of robot, after all, we have
come a long way from the origami art, to metamaterial properties, and to this new type of
soft actuator.

Figure 9. Magnetically driven shape shifting of the origami flexiball.



Actuators 2021, 10, 67

10 of 14

3.3. An In-Pipe Robot Prototype

For a very long time, many types of in-pipe robots have been developed by different
enabling technologies to adapt to certain complicated pipe structures [50]. The importance
of the regular inspection and maintenance of pipelines in various industries and hydraulic
or pneumatic equipment cannot be overemphasized. Working in constrained pipeline
environments (e.g., variable pipe diameter, partial clogging, fragile pipe wall and low
stiffness) is always a great challenge for this research community [51]. So, can the origami
flexiball with MAEs move in an in-pipe scene like a robot? Next, our experiments try to
give an answer.

Firstly, we put the origami flexiball with MAEs into a polycarbonate pipe with a
diameter of 71 mm, as shown in Figure 10a. Obviously, if there is no external magnetic field,
the origami flexiball actuator would relax naturally. When the NdFeB permanent magnet
approaches the pipe from below, the origami flexiball actuator would compress in a radial
direction and elongate in an axial direction. Additionally, when the permanent magnet
leaves from the top with a relatively lower speed than approaching, the origami flexiball
actuator would spring back, and, meanwhile, the origami flexiball actuator would move
forward about 23 mm. Being very similar to earthworm crawling [52], this locomotion is
caused by two concurrent factors, the first of which is the wave effects along the origami
flexiball actuator originating from the velocity difference of elongation and contraction
deformations during the reciprocating stroke. Additionally, the second factor is that the
kinetic frictions between the origami flexiball and pipe walls vary with the changes of
contact areas during the alternating deformations. When the static frictional force blocks
the elongation from front to back, the overall actuator will move forward. As assembly
errors in 3D printed thin sheet units are inevitable, it is easy to determine the front end of
the moving origami flexiball after driving experiments. Maintaining the above alternating
changes of external magnetic fields will achieve continuous locomotion. Further, we
simulated an in-pipe cleaning task, and the origami flexiball robot successfully pushed out
the foam-like rubbish, as shown in Figure 10b.

Figure 10. In-pipe locomotion of the origami flexiball robot: (a) undulatory motion, (b) cleaning experiment.

Additionally, the ability of self-adaptive variable diameter has also been viewed
as an important indicator to measure the performance of in-pipe robots. Therefore, we
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experimentally inspected the origami flexiball robot’s adaptability to pipes of variable
diameters. As illustrated in Figure 11, the connected polycarbonate pipes include three
different pieces with inner diameters of 57 mm, 67 mm and 71 mm. Our presented origami
flexiball robot smoothly crawled through the pipes in sequence, and the locomotion speed
was up to 6 mm/s. At the joins between different diameter pipes, no jam, stagnation or
other problems were observed. This fully demonstrated that the controllable adaptive
deformation of the origami flexiball robot has high compliance for various pipe sizes by
adjusting the stimulation of the external magnetic field.

| D57mme | | @,67mm d>3'67mfn‘

— -

Figure 11. The origami flexiball robot crawls through variable diameter pipes (the nested connections
of variable diameter pipes are marked using red circles): (a) from @57 mm pipe to @67 mm pipe;
(b) from @67 mm pipe to @71 mm pipe.

Obviously, although our origami flexiball-inspired in-pipe robot prototype looks a
little simple, it provides a new alternative. Besides its good adaptability to various pipe
sizes, it has many other potential advantages. For instance, due to its fully soft nature
without any rigid parts, it can work in pipes with fragile walls. Further, it can be easily
expanded to different scales, or reconfigured into many segments by assembly. Admittedly,
there is much room for its full robotization, including self-sensing, long-range control
strategy and a more complex deformation mechanism.

4. Conclusions

In recent years, origami-inspired structures, origami-inspired mechanisms, origami-
inspired metamaterials and even origami-inspired robotics have primarily demonstrated
their promising potential for innovative inspirations for engineering solutions. In this
research, origami flexiballs configured with rhombic cells are investigated from underlying
metamaterial mechanisms to robotized possibility.

In light of the definition of a mechanical metamaterial, and further referring to the
similarly origami-inspired metamaterials, this type of origami flexiball could be exactly re-
garded as a shape-shifting metamaterial mechanism owing to multiple degrees of freedom,
switchable rigidity and large volumetric deformations. Further, we redesigned and fabri-
cated the soft origami structures considering 3D printability and foldability. Furthermore,
we introduced a magnetically driven soft actuator with rhombic deformations different
from soft bionic deformations like bending, stretching, twisting, spiraling, etc. Lastly, an
applicable attempt was presented through robotizing the soft origami flexiball as an in-pipe
crawling robot. Locomotion through variable diameter pipes and a cleaning task clearly
suggested the presented origami flexiball robot has good adaptability to various pipe sizes,
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and can also be easily expanded to different scales, or reconfigured into more complex
metastructures by assembly.

Although this exciting and illuminating research may contribute to the new soft
robotics paradigm, admittedly, there is much room for the full robotization of origami
metamaterial polyhedra, including self-sensing, long-range actuation methods and more
controllable complex shape-shifting mechanisms like hopping, rolling and self-assembly.
Besides robotic fields, many more applications in other interesting fields are expected,
such as soft deformation sensors, transformable buildings, optical instruments with fold-
able long-focal-length and multiset lenses, reconfigurable dampers, lightweight haptic
devices [53], constrained devices [54], etc.
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Nomenclature

DOF  Degree of Freedom

FDM  Fused Deposition Modeling
MAE Magnetoactive Elastomer
PLA  Polylactic Acid

RHD Rhombic Hexahedron

RDD  Rhombic Dodecahedron
RTD  Rhombic Triacontahedron
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