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Abstract: The control valve is an important piece of equipment in the steam turbine, which frequently
suffers from the fault of the dead zone. The graph model is a promising method for dead zone
detection, yet establishing an accurate and completed graph topology is not an easy task due to
limited mechanism knowledge. Hence, a graph model is proposed to predict the links in the graph
and estimate the relationship between variables of related equipment of the control valve. The graph
convolution is conducted on the uncompleted graph to learn the low-level representations of the
graph nodes, and the score function is used to evaluate the probability of the existence of links
between a pair of graph nodes. Results demonstrate a test accuracy of 99.2% for the link prediction,
and follow the principles of thermodynamics in the steam turbine. Consequently, the proposed
graph model is capable of estimating the relationships for the steam turbine control valve, and other
inter-connected industrial systems.

Keywords: graph convolution; link prediction; relationship prediction; score function; steam turbine
control valve

1. Introduction

The high pressure control valve is one of the most important pieces of equipment
in the steam turbine, which governs the steam flow and regulates the power generation.
Figure 1 illustrates the working mechanism of the control valve. When the valve is opening,
the pressure oil enters into the pressure chamber and pushes the valve stem downwards;
when the valve is closing, the oil is discharged from the solenoid valve and the return
spring drives the stem upwards.

3/20 

Siemens Electrohydraulic actuators for valves  CM1N4566en 

Smart Infrastructure 2019-11-27 

Equipment combinations 

Valve type DN PN-class kvs [m
3/h] data sheet 

Two-port valves VV... (control valves or safety shut-off valves)): 

VVF21... 1) Flange 100 6 124…160 4310 

VVF22... Flange 100 6 160 4401 

VVF31... 1) Flange 100…150 10 124…315 4320 

VVF32... Flange 100…150 10 160…400 4402 

VVF40... 1) Flange 100…150 16 124…315 4330 

VVF42... Flange 100…150 16 125…400 4403 

VVF41...1) Flange 65…150 16 49…300 4340 

VVF45.. Flange 65…150 16 49…300 4345 

VVF43.. Flange 65…150 16 50…400 4404 

VVF53.. Flange 65…150 25 63…400 4405 

VVF61... Flange 65…150 40 49…300 4382 

Three-port valves VX... (control valves for «mixing» and« diverting»): 

VXF21... 1) Flange 100 6 124…160 4410 

VXF22... Flange 100 6 160 4401 

VXF31... 1) Flange 100…150 10 124…315 4420 

VXF32... Flange 100…150 16 160…400 4402 

VXF40... 1) Flange 100…150 16 124…315 4430 

VXF42... Flange 100…150 16 125…400 4403 

VXF41... 1) Flange 65…150 16 49…300 4440 

VXF43.. Flange 65…150 16 63…400 4404 

VXF53.. Flange 65…150 25 63…400 4405 

VXF61... Flange 65…150 40 49…300 4482 

For admissible differential pressures pmax and closing pressures ps, refer to the relevant 
valve data sheets. 
1) Valves are phased-out

Third-party valves with strokes between 12…40 mm can be motorized, provided 

they are «closed with the de-energized» fail-safe mechanism and provided that the 

necessary mechanical coupling is available. For SKC32.. and SKC82.. actuators the Y1 

signal must be routed via an additional freely-adjustable end switch (ASC9.3) to limit 

the stroke. 

We recommend that you contact your local Siemens office for the necessary 

information. 

Overview table, see page 20. 

Technology 

1

3
4

2

5

9

6

7
8

10

11

12

  
  
  
  
  
  
  
  
  
  
  
  

  

Note 

Rev. no. 

12 Plug
11 Valve stem
10Coupling

 9 Position indicator 
8 Pressure chamber
7 Piston
6 Hydraulic pump
5 Solenoid valve
4 Return spring
3 Suction chamber
2 Pressure cylinder 
1 Manual adjuster

Figure 1. Diagram of the control valve in the steam turbine.

Due to frequent opening and closing of the valve in the process of daily operation,
the valve stem and valve body are easy to wear, resulting in the stiction, such as valve
dead zone. The dead zone is an insensitive area where the valve position does not change
with the command. The control valve dead zone can easily cause system oscillations.
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These oscillations will lead to increase energy consumption and increased wear and tear
of equipment along with poor product quality [1,2]. Hence, detecting the valve stiction
becomes imperative for the stable and economic operation and power generation for the
steam turbine.

Much literature has revealed the fault detection and diagnosis in actuators, such as
the state observer based method [3], the Kalman filter method [4], and the artificial neural
network [5]. Among a large number of fault detection methods for the control valve, the
graph model is a promising one due to its strong reasoning ability, such as bond graphs [6].
The premise of graph model application is to establish the graph topology accurately. On
the one hand, the dead zone detection based on graph model requires accurate graph
topology to characterize the industrial equipment, subsystem, and system. On the other
hand, the fault of dead zone will propagate to other equipment, subsystem, and system
along the related paths. The propagation paths are represented as the edges in the graph
topology. Hence, completed and accurate graph edges or relationships between variables
of graph nodes are crucial for the fault detection for the control valve dead zone.

However, obtaining the completed and accurate graph topology for the steam turbine
control valve is never an easy task, since with the deepening of the research, the graph
topology construction faces several difficulties. Above all, as the steam turbine system
becomes more complex, it is never an easy task to find all the relationships according to the
mechanism. Then, edges in the graph topology not only appear as physical connections,
but also as cross-correlation dependencies, which is difficult to analyze by pure mechanism.
Last but not least, only limited knowledge related to steam turbines can be obtained,
leading to the inaccuracy of the graph topology. Hence, it is necessary to develop a
method to estimate the relationship and predict the graph topology for the steam turbine
graph model.

In complex networks or graph theory, the problem of relationship prediction for the
steam turbine control valve is equivalent to the link prediction problem for the graph.
The basic idea for link prediction is to reveal the relationship between graph nodes by
analyzing the graph topology and the attributes of nodes and edges. Typical link prediction
methods mainly include similarity-based algorithm [7], maximum likelihood methods [8],
and probabilistic models [9], and they are well summarized in [10–12]. To the best of the
authors’ knowledge, little literature implements the link prediction in the graph of the
industrial system, and none of them studies the link prediction and relationship prediction
for the steam turbine control valve.

In this study, a novel method for the relationship prediction based on graph model for
steam turbine control valve is proposed. First of all, the uncompleted graph which may
have missing edges is established for the steam turbine control valve and its surrounding
equipment. Each node in the graph corresponds to the physical variable of the equipment
in the steam turbine, along with its measurement. Next, graph convolution is implemented
iteratively to learn the low-level representations for graph nodes. In the meantime, the dead
zone detection is finished. Afterwards, a score function for the edge, relying on the low-
level representations for the linked graph nodes, is defined to predict the links. Ultimately,
the accuracy for the dead zone detection and link prediction are over 98%. Moreover,
the results of the link prediction follow the principles of thermodynamics. The proposed
method is suitable for the relationship prediction for the steam turbine system. Doubtlessly,
the relationship prediction method can also be applied to other inter-connected industrial
system. In this paper, Section 2 includes a more detailed definition of the problem, the
mathematical preliminaries for the graph convolutional network, and the description of
the link prediction algorithm. Section 3 shows a numerical examples for the fault detection
and link prediction for the control valve of the steam turbine. Finally, Section 4 gives a
conclusion for the whole paper.
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2. Methods
2.1. Problem Definition

Fault detection and diagnosis based on the graph model is a promising technology
owing to its strong reasoning ability. The premise of application of graph model is to build
an accurate graph topology. For the construction of the graph topology for steam turbine
system, it relies on a full understanding of the system, including the composition of the
steam turbine system, the principles of thermodynamics, and control strategies. Whether
the relational graph is constructed accurately will directly affect the reasoning effect of the
graph model.

Remark 1. The inaccuracy of the graph topology is mainly reflected in two aspects. On the one
hand, the connected edges in the graph may not exist in reality and require deleting. On the other
hand, the unconnected edges may exist in reality and need to be completed.

Consider the high pressure control valve in a steam turbine system. The control
valve suffers from dead zone, which causes system oscillation. Figure 2 illustrates an
uncompleted graph topology for control valve dead zone detection, whose nodes depict
the physical variables of neighborhood equipment.

-m main steam

extraction steam #2ex2 -

ex1 extraction steam #1-

hp high pressure cylinder-

- enthalpyH

- mass flow rateQ

-p pressure

mechanical power-PMpm

phpQhpHhp

PM

pex1 pex2

Qex1

Hex1

Qex2

Hex2

Dead
zone

Figure 2. Diagram of an uncompleted graph for control valve dead zone detection.

Remark 2. The blue dashed nodes in Figure 2 are the virtual fault nodes representing the dead
zone of the high pressure control valve. Since opening of the valve is controlled by pressure pm,
and eventually regulates the steam flow into the high pressure cylinder, the fault node dead zone is
connected to pm and Qhp.

Obviously, according to the steam turbine mechanism, the mass flow rate of the main
steam Qm is directly related to the mass flow rate of the high pressure cylinder Qhp, so
do Qex1 and Qex2. Hence, there exist three explicit links among these variables. However,
more implicit links are neglected because of the lack of system knowledge. And some of
the links are sometimes connected mistakenly. Here, the data-driven method is taken into
account to complete the links. Therefore, the problem can be formulated as:

Ĝ = f (G, X), (1)

where G,Ĝ, X and f (·) represent the uncompleted graph, the predicted completed graph,
the attributes of the graph nodes and the model, respectively. The results of graph topology
prediction Ĝ can reveal the relationships between physical variables related to the control
valve, which are represented by the links between graph nodes.
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2.2. Mathematical Preliminaries

Consider a graph, depicted as

G = (V , E), (2)

where V and E represent the set of nodes and edges. Then the adjacency matrix of G is A,
in which each entry Aij = 1 if there exist an edge between node i and j, otherwise Aij = 0.
The degree matrix is D, and

Dij =
N

∑
j=1

Aij (3)

if i = j, otherwise Dij = 0, where N = |V|.
In the Graph Convolutional Network scheme, the representations for nodes are calcu-

lated iteratively by [13]
h(l+1) = σ

(
Âh(l)W(l)

)
, (4)

where h(l), W(l) and σ(·) indicate the representation of the graph nodes on layer l, the linear
transformation matrix between layer l and l + 1, and the activation function. Besides [14],

Â = D̃−
1
2 ÃD̃−

1
2 , (5)

where Ã = A + IN , and D̃ = ∑N
j=1 Ãij.

And the graph model is illustrated in Figure 3.
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Figure 3. Graph Convolutional Network for fault detection.

The representation for the i-th node on the last layer, i.e., layer L, is h(L)
i , or yi. Then

the loss function of the optimization is

L1 = − ∑
i∈Yl

C

∑
c=1

YicSoftMax(yi)c (6)

2.3. The Link Prediction Algorithm

To predict the links, a score is given to the existence of link between node i and j:

g(yi, yj) = uT tanh(yT
i Myj), (7)
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where M ∈ RN×N is a square matrix. u is the extra non-linearity descriptor.

Remark 3. In Equation (7), M and tanh are bi-linear and non-linear operators characterizing the
linear and non-linear relationships between node i and j, respectively. In reality, the score function
utilizes the local or global features of the graph to measure the relationship between nodes.

Remark 4. The score function varies with the problem. Apart from Equation (7), other common
score functions are listed in Table 1.

Table 1. Different score functions.

Model Br AT
r Score Function

DistMult [15] - (QT
ri

,−QT
rj
) −‖ga

r (yi, yj)‖1

Single Layer (ours) - (QT
ri

, QT
rj
) uT

r tanh(ga
r (yi, yj))

TransE [16] I (VT
r , VT

r ) −2(ga
r (yi, yj)− 2gb

r (yi, yj) + ‖Vr‖2
2)

NTN [17] Tr (QT
ri

, QT
rj
) uT

r tanh(ga
r (yi, yj) + gb

r (yi, yj))

Where

ga
r (yi, yj) = AT

r

(
yi
yj

)
, (8)

and
gb

r (yi, yj) = yT
i Bryj (9)

are linear and bi-linear transformations, respectively.

For each node i, select the connected node j to form a positive pair (i, j),with label
l = 1, and the select an unconnected node k randomly to form a negative pair (i, k), with
label l = 0. Consequently, the positive set T = {(i, j)}, the negative set T′ = {(i, k)}, and
the whole set

T = T + T′. (10)

Then the loss function for link prediction problem in cross-entropy form is

L2 = − ∑
(i,j)∈T

l log(σg(g(yi, yj)) + (1− l) log((1− σg(g(yi, yj))), (11)

where σg is the Sigmoid function.

Remark 5. In addition to the Equation (11), the following loss function is also utilized:

L2 = ∑
(i,j)∈T

∑
(i′ ,j′)∈T′

max{g(yi, yj), g(yi′ , yj′), 0}. (12)

Consequently, set the score threshold to be 0.5. If σg(g(yi, yj)) > 0.5, the edge between
nodes i and j exists, otherwise the edge does not exist.

3. Numerical Examples

Consider a steam turbine simulation system, which consists of the boiler, the control
valve, the high, intermediate, low pressure turbine, the condenser, and the two stage steam
extractions, etc. The simulation is conducted under the Matlab/Simscape environment.
Matlab/Simscape supports a steam turbine physical system based on Rankine cycle [18].
For the simulation of the fault, a dead zone block is connected between the PID controller
output and the opening of the high pressure control valve, and a 15% dead zone is injected
into the valve, with the simulation time of 2400 s. Consequently, the time series of node
variables in Figure 2 is obtained, and php together with dead zone illustration are exhibited
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in Figure 4. Figure 4a shows the inlet pressure of HP in the process of turbine power
regulation. The inlet pressure of HP is nearly stable at 4100 kPa. It can be inferred
that the control valve dead zone does cause the HP oscillation. To some extent, the HP
oscillation will lead to system oscillation, which will affect the safe and stable operation of
steam turbine.
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To feed the time series data into the proposed link prediction model, the data are
pre-processed. Above all, the data is scaled into 0∼1 using standard normalization. Then,
data under normal and dead zone condition are labeled with 0 and 1 respectively. Next,
they are combined and randomly shuffled, with 70% for training the model and 30% for
testing the model. The total layers sum up to 4, and the dimensions of the layers are 4, 8, 8,
4. The coefficient of the L2 normalization is 0.001. The learning rate of the batched gradient
descent algorithm is 0.01. Each batch contains 10 samples, and the batched gradient descent
algorithm utilizes all the 10 samples in one batch to update the parameters of the model
at one training step. The training batches for dead zone detection and link prediction are
31 and 63, respectively. Finally, the training accuracy and loss are shown in Figure 5a.
Moreover, the test accuracy for dead zone detection reaches 98.8%.
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Figure 4. Simulation results of steam turbine under normal and faulty conditions.

To feed the time series data into the proposed link prediction model, the data are
pre-processed. Above all, the data is scaled into 0∼1 using standard normalization. Then,
data under normal and dead zone condition are labeled with 0 and 1 respectively. Next,
they are combined and randomly shuffled, with 70% for training the model and 30% for
testing the model. The total layers sum up to 4, and the dimensions of the layers are 4, 8, 8,
4. The coefficient of the L2 normalization is 0.001. The learning rate of the batched gradient
descent algorithm is 0.01. Each batch contains 10 samples, and the batched gradient descent
algorithm utilizes all the 10 samples in one batch to update the parameters of the model
at one training step. The training batches for dead zone detection and link prediction are
31 and 63, respectively. Finally, the training accuracy and loss are shown in Figure 5a.
Moreover, the test accuracy for dead zone detection reaches 98.8%.
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After dead zone detection, the representations for graph nodes are obtained. The
link prediction can be conducted based on the node’s representations. Regard the edges
Qhp − Qex1 and Qhp − Qex2 as the positive samples, and randomly selected another two
unconnected edges as the negative samples. The training results are illustrated in Figure 5b.
The test accuracy for the link prediction reaches 99.2%.

Since the link prediction model is tested with high accuracy, it can be adopted to
predict the unknown edges. In Figure 6, the score histograms for all of the predicted
existent edges and parts of the nonexistent are exhibited. Each histogram shows the score
distribution of the corresponding links, and the average score is attached above each
picture, indicated by µ. For the positive samples, i.e., the existent links, it can be inferred
that the predicted average scores for the nine types of links are bigger than 0.5. For the
negative samples, that is the nonexistent links, the predicted average scores for the three
types of links are smaller than 0.5. Obviously, the link prediction based on the score
function for the steam turbine system is accurate.
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What is more, the completed graph Ĝ is shown in Figure 7, which conforms to the
results in Equation (1). The red lines are the predicted existent edges, labeled with the score
of the link prediction model.

pm

phpQhpHhp
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pex1 pex2

Qex1

Hex1

Qex2

Hex2

Dead
zone

0.93

0.6

0.91

0.88 0.71

0.94

0.61

0.67

0.65

Figure 7. Completed graph Ĝ.

The link prediction results mainly reveal two kinds of relations: the relation between
the steam pressure and the steam mass flow rate, and the relation between the steam
pressure and the steam enthalpy. On the one hand, according to the thermodynamics
of fluid, when the cross-sectional area of the flow is fixed, the larger the flow rate is, the
greater the pressure is. On the other hand, the enthalpy H has the following relations with
the intensity of pressure P:

H = U + PV, (13)

where U and V represent the system internal energy and the volume, respectively. Obvi-
ously, the enthalpy is directly related to the pressure. Therefore, the link prediction results
are convincing. The proposed method is suitable for the relationship prediction for the
steam turbine and other inter-connected industrial system.

4. Conclusions Remarks

To solve the problem of inaccurate and uncompleted graph topology while detecting
the fault of dead zone for the steam turbine control valve based on the graph model, a
link prediction technology is proposed to estimate the relationships in this study. First of
all, the uncompleted graph topology for the steam turbine control valve, which may lack
some edges, is established according to the limited mechanism knowledge. Then, graph
nodes representations are obtained using the graph convolution network. Finally, scores for
edges are calculated utilizing pairs of connected graph nodes. The edges with scores larger
than 0.5 indicate that there exist relationships between the corresponding graph nodes.
Results exhibit the test accuracy of 99.2%, and follow the principles of thermodynamics.
Moreover, in addition to the steam turbine control valve, other industrial system and even
other disciplines, such as social networks and recommendation systems, must also have
the same issue of link prediction and relationship prediction. The proposed method can
also take these areas into account, with a good application prospect.
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