
actuators

Article

Dynamic Modeling and Control of Antagonistic Variable
Stiffness Joint Actuator

Ming Zhang 1,*, Pengfei Ma 1, Feng Sun 1, Xingwei Sun 1, Fangchao Xu 1, Junjie Jin 1 and Lijin Fang 2

����������
�������

Citation: Zhang, M.; Ma, P.; Sun, F.;

Sun, X.; Xu, F.; Jin, J.; Fang, L.

Dynamic Modeling and Control of

Antagonistic Variable Stiffness Joint

Actuator. Actuators 2021, 10, 116.

https://doi.org/10.3390/act10060116

Academic Editors: Carmine

Stefano Clemente and Daniele Davino

Received: 7 April 2021

Accepted: 28 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China;
PengfeiMa521@outlook.com (P.M.); sunfeng@sut.edu.cn (F.S.); sunxw@sut.edu.cn (X.S.);
xufangchao@sut.edu.cn (F.X.); jinjunjie@sut.edu.cn (J.J.)

2 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169, China;
ljfang@mail.neu.edu.cn

* Correspondence: mingzhang@sut.edu.cn; Tel.: +86-138-4051-4860

Abstract: This study aims to develop a novel decoupling method for the independent control of
the position and stiffness of a variable stiffness joint actuator (VSJA), which has been proven to
be able to vary its stiffness in a larger range than other variable stiffness actuators. Using static
analysis and the Jacobian matrix, we obtained the model of the stiffness of the robot joint actuator and
dynamics. Based on the hybrid dynamic model of position and stiffness, it is possible to compensate
for the torque of the variable stiffness joint actuator (VSJA) to enhance position control. Finally,
after describing the actuator prototype, the established compliance control method is verified using
simulation and experimental analysis.

Keywords: variable stiffness; decoupling control; compliance; torque compensation

1. Introduction

Variable stiffness robot joints (VSJs) are a class of joints that differ from traditional
rigid robot joints in the sense that they are flexible and can adjust their flexibility. Owing to
their adjustable stiffness, they can ensure stable contact and safe operation. Therefore, these
joints have been integrated into the development of several robots [1–6]. Some VSJ [7–10]
have an antagonistic structure that is resemblant to the system of skeletal muscles that
regulates stiffness and position in humans. In these, it is possible to separate a drive unit, a
variable stiffness mechanism, and an output link. Such separation can significantly reduce
the mass and inertia of the output link. It is well-known from the literature [11,12] that
the variable stiffness capability of antagonistic structures is directly related to the output
torque of the drive units. Therefore, the range of variable stiffness can be small when the
torque provided by the motor is limited. In this study, we use a novel permanent magnet
mechanism, already presented in [8], which increases the variable stiffness range without
increasing the driving torque requirements.

However, introducing compliance to robot joints poses control problems, which have
been extensively investigated [13–15]. The main motor controls the position or velocity
in the traditional series variable stiffness joint. Stiffness is regulated by another auxiliary
motor with a variable stiffness mechanism. Stiffness control and position control are
independent. Therefore, the challenges linked to the position control problem, associated
with mechanical compliance, are mainly related to the control of the main actuator. Previous
studies used feedback linearization to control joints with constant compliance or with
variable stiffness [16–20]. However, the control problem associated with the compliance of
the wire-driven antagonistic VSJs is related to both motors, where a coupling of the joint
compliance and position is present [21–26]. If the coupling is not dealt with, the control
system is often fragile and not anti-disturbance. When the load changes or is subjected to
an unknown shock load, problems such as instability of the control system become more
prominent [27–31].
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In this study, the VSJA is introduced based on the parallel configuration and perma-
nent magnetic mechanism. The actuator stiffness model is obtained using the Jacobian
matrix and the static relationship. The nonlinear equations composed of the mechanical
model and the stiffness model are solved using the optimization method, which can be
used to realize a nonlinear decoupling of the stiffness and position of the actuator, thus
independently achieving position and stiffness control and unity of the compliance. Based
on the hybrid dynamic model of VSJA’s position and stiffness, a torque observation method
was proposed to realize the torque compensation, improving the position control ability
under different joint stiffness. The above control method is simple, easy to implement,
and practice.

2. Working Principle and Stiffness Model

The VSJA is a parallel wire-driven structure similar to the antagonistic muscle drive-
form, as shown in Figure 1A. The permanent magnetic mechanism consists of the per-
manent magnetic spring module and the wire-driven system [8], which can perform
human-like flexible motions. The permanent magnetic spring module comprises of two
same-annular permanent magnets, whose similar magnetic poles face each other as shown
in Figure 1B. The wire-driven system is used for the VSJA drive. One end of the wire
is fixed on one side of the output link through two fixed pulleys and a movable pulley
in the permanent magnetic mechanism, while the other end of the wire is fixed on the
wire winch of the servomotor. Two groups of the above structures are symmetrically
arranged on both sides of the output link. The wire tension τ is applied to the movable
pulley through the wire, then the air gap of the magnetic spring module decreases as the
movable pulley is pulled up. The magnetic force and stiffness increase nonlinearly when
the air gap decreases. The magnetic force acts on the output link through the wire, thus the
increase of the magnetic force will increase the stiffness of the joint. A permanent magnet
spring was used instead of a linear spring, increasing the variable stiffness performance
without increasing the wire tension, unlike the wire-pulley system with a linear spring [14].
Therefore, the joint quality, inertia, and motor power can be reduced. When the two motors
rotate in the same direction at a certain speed, the joint position can be changed without
changing the stiffness. When the two motors rotate in opposite directions with a certain
speed, the joint stiffness can be changed, and the position remains unchanged. The output
link is rotated along the output shaft synchronously pulled by the wire. The encoder and
output shaft are coaxial. The encoder can be used to determine the real-time position of the
output link, evaluating the output link stiffness.
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The VSJA coordinate is defined as shown in Figure 2. The coordinate system
O1{x1, y1} is fixed at one end of the output link, and the output link is coaxial with the y1
axis of the O1{x1, y1}. The z1 axis of the coordinate system O1{x1, y1} and the z0 axis of the
base coordinate system O0{x0, y0} are coaxial. The coordinate system O2{x2, y2} is set on
another end of the output link gained by moving coordinate system O1{x1, y1} a definite
distance with the y1 axis. In this coordinate system, the transformation relationship from
the output link coordinate system to the base coordinate system can be described through
homogeneous transformation. The wire length equation can be obtained.

li = ‖rot(z, θ)trans(0, H) · Pai − Pbi
‖, i = 1, 2 (1)

In the formula, Pai is the position vector of the ai point in coordinate system O2{x2, y2},
and Pbi is the position vector of the bi point in base coordinate system O0{x0, y0}.
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The gravitational force of the output link mg and all wire-tensions τj (j = 1~2), have
the following static balanced relationship:

2

∑
j=1

τj × rj −mg× rg = 0, j = 1, 2 (2)

where rj is the moment arm of the jth wire-tension and rg is the moment arm of the
gravitational force.

Suppose that the joint actuator experiences an infinitesimal external torque ∆T, bring-
ing a tiny variation in the joint actuator ∆θ as follows:

∆T
∆θ

= Kθ =
2

∑
j=1

(
∂τj

∂θ
× rj + τj ×

∂rj

∂θ

)
−mg×

∂rg

∂θ
(3)

∆T/∆θ represents the stiffness of actuator Kθ . Representing the length of the jth wire
as lj, ∂τj/∂θ is expressed by the following equation:

∂τj

∂θ
=

∂τj

∂lj
ηj

∂lj

∂θ
= k jηj · zj (4)

Kj = ∂τj/∂lj denotes the stiffness of the permanent magnetic mechanism, ∂lj/∂θ is
expressed by zj, and ηj represents the vector direction of wire tension τj.

The relationship between wire velocity
.
l =

[ .
l1

.
l2

]T
and output link velocity

.
θ can be

rewritten as (4):
.
l = J

.
θ (5)
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J represents the Jacobian matrix from
.
θ to

.
l, which can be expressed by the following

equation:

J =

 R′(r sin θ−H cos θ)√
R′2+r2+H2−2R′(r cos θ+H sin θ)

−R′(r sin θ+H cos θ)√
R′2+r2+H2−2R′(r cos θ−H sin θ)

 (6)

where |o2ai| = r, |o2o1| = H and |o1bi| = R′, i = 1~2.
The relationship between stiffness k1, k2 of the permanent magnetic mechanism, and

output link stiffness Kθ can be obtained by simplifying Equations (3), (5) and (6) as follows:

Kθ = JT
[

k1
k2

]
J (7)

The best-fit mechanical model of wire tension τ(∆l) and wire stretch ∆l of the perma-
nent magnet variable stiffness mechanism in [8] was obtained as follows:

τ(∆l) = 0.0022∆l4 − 0.0198∆l3 + 0.0932∆l2 + 0.3204∆l + 1.5541 (8)

3. Joint Actuator Dynamic Model and Controller Design

The dynamic model of the flexible variable stiffness joint is mainly divided into three
parts, including the output link, motor M1, and motor M2. The output link is non-linearly
coupled, and the motor is linearly decoupled. The variable stiffness mechanism causes the
elastic deformation of the joint, and the elastic deformation of the wire is ignored. IM

[ ..
θ1..
θ2

]
+

[
rdξ1
rdξ2

]
=

[
Tm1
Tm2

]
IL

..
θ + BL

.
θ + G(θ)− JTξ = 0

(9)

where IL is the moment of inertia of the output link, BL is the damping coefficient of the
output link, G(θ) is the gravitational moment vector, IM is the moment of inertia of the
drive unit (including the motor, reducer, winch, etc.) transferred to the motor shaft, rd is
the radius of the winch, and θ1,2 is the position vector of the 2 × 1 motor rotation angle.
When the output link is at the initial position, θ1,2 is 0. ξ is the tension vector of the wire.
Tm is the motor output torque vector. Although there are six state variables θ,

.
θ, θ1,

.
θ1, θ2,

.
θ2

in the system, only two are independent, and the remaining state variables are determined
by θ,

.
θ and stiffness Kθ of the output link.

3.1. Controller Design

The gravity moment G(θ) was considered during the solving of the nonlinear equations
with the Newton method to realize the stiffness decoupling control. The total input torque
is JT [ξ1 ξ2]

T − G(θ), the reference input stiffness is Kθ and the input position of the output
link is θd. The VSJA can be reduced to a physical model consisting of the input torque, the
output link, and the elastic part. The input position is θd, and the input torque acts on the
elastic part first. Then, the torque transmitted to the output link, i.e., the actual output of
the output link, is θ, as shown in Figure 3.
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The input torque, gravity moment G(θ), and the elastic part have the following balance
relationship:

JT[ ξ1 ξ2
]T − G(θ) = Kθ(θd − θ) (10)

Then, the nonlinear dynamic equation of the VSJA can be simplified as follows:

IL
..
θ + BL

.
θ = Kθ(θd − θ) (11)

Following Laplace transformation of the above formula, the system transfer function
is obtained as:

θ

θd
=

Kθ

ILs2 + BLs + Kθ
(12)

All the poles of the characteristic root of the system have negative real parts, making
the system stable.

In the trajectory planner, the wire length change value fi(θ) that is used to control
output link position θ can be obtained.

f i(θ) = ‖li,0 − li,θ‖, i = 1, 2 (13)

Output link position θ and stiffness Kθ are given before calculating Equations (2), (7)
and (8), and then the corresponding wire stretch values (Ls1 and Ls2) that realize the output
link stiffness can be acquired (Figure 4).
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The gravitational force of the output link was considered while determining the
values of wire length. This did not require adding the gravity compensation again when
controlling the stiffness and position of the output link. The controller of motor M1 and M2
are the conventional PD controllers used to regulate the wire length. IM

[ ..
θ1..
θ2

]
+

[
rdξ1
rdξ2

]
=

[
kmp1(θ1d − θ1) + kmd1(

.
θ1d −

.
θ1) + rdξ1

kmp2(θ2d − θ2) + kmd2(
.
θ2d −

.
θ2) + rdξ2

]
IL

..
θ + BL

.
θ = Kθ(θd − θ)

(14)
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The controllers are used to control the actual rotation of the motors. The input term
is the sum of the angle required to control the position of the output link and the angle
needed to control the stiffness of output link θ1d and θ2d. The output term is the actual
rotation angle of the motors θ1 and θ2.

After Laplace transformation, the closed-loop transfer function of the motor is ob-
tained as:

GM(s) =
kds + kP

IMs2 + kds + kp
(15)

To make the system stable, the value ranges of kd and kp can be obtained following the
Routh-Hurwitz criterion.

The system adopts a position and stiffness hybrid control strategy. The structural block
diagram is shown in Figure 5. Given the position of output link θd, the rigid parallel robot’s
position transformation relationship is used to obtain the wire-length changes f 1(θd) and
f 2(θd) that are caused by changing the output link’s position. Given the output link stiffness
Kθ , using the Newton method to solve the nonlinear equations formed by Equations (2),
(7) and (8), the corresponding Ls1 and Ls2 can be obtained. Then, the change in length of
the two wires at this time is f 1(θd) + Ls1 and f 2(θd) + Ls2, realizing the decoupling control
of position and stiffness. Two servo drive motors adopt PD position control. The above-
mentioned decoupling controller entirely considers the difference in flexibility when the
output link stiffness changes and realizes the position control accuracy and also realizes
the stiffness control. This method is simple, easy to implement, and practical.
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Next, when the output link is subjected to external torque Text, the dynamic equation
of the output link becomes:

IL
..
θ + BL

.
θ + Text = Kθ(θd − θ) (16)

Then the final steady-state form of the system becomes:

Text = Kθ(θd − θ) (17)

It can be seen from the final stable form of the system that as long as the stiffness of
the joint is controlled accurately, compliance can be adjusted accurately.

When the output link is subjected to an external torque, the new balance relationship
is formed as follows:

2

∑
j=1

ξ j × rj −mg× rg = Text, j = 1, 2 (18)

From Equation (14), the external torque Text can be estimated. Solving the new
nonlinear equations formed by Equations (7), (8) and (18), and obtaining new wire-length
changes Ls1 and Ls2, the compensation of gravity and compensation of external torque can
be realized, as shown in Figure 6. The advantage is that when an external force deforms
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the output link, it can be detected by the encoder in real-time, and then substituted into the
decoupling calculation.
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3.2. System Simulation Analysis

The structural parameters of the variable stiffness joint actuator are as shown in Table 1.
Using the S-Function module in MATLAB/Simulink for simulation analysis, we substituted
the corresponding parameters of the joint actuator into the simulation block diagram.

Table 1. Datasheet of the joint actuator.

Mechanical Specification Value Unit

Stiffness range 0~∞ [N·m/rad]
Time for stiffness change 0.4 [s]

Range of joint rotation 140 [◦]
Dimensions o2a1 = o2a2 0.024 [m]

oo2 0.072 [m]
ob1 = ob2 0.08 [m]

Winch radius rd 0.02 [m]
Winch inertia IM 0.0002 [kg·m2]

Output link inertia IL 1.2 [kg·m2]
Output link weight m 0.3 [kg]
Output link length L 0.25 [m]

The simulation result of the relationship between the joint position response and
joint stiffness change is shown in Figure 7A. The stiffness of the VSJA was changed to
Ka = 30 N·m/rad and Kb = 60 N·m/rad. Then, a sine signal with an amplitude of 20
degrees and a period of 3.2 s was given to the VSJA. The position response of the VSJA
is as shown in Figure 7A. The dotted-and-dashed red line was the trajectory following
the VSJA, when joint stiffness Ka = 30 N·m/rad. The dashed blue line was the trajectory
following the VSJA, when joint stiffness Kb = 60 N·m/rad. The law of the change between
position response and joint stiffness can be obtained from the simulation results. When the
joint stiffness was low, the position error of the VSJA caused by inertia was large, and the
position error was bigger than high joint stiffness. Meanwhile, with the increase in joint
stiffness, the position error caused by inertia was suppressed.

The simulation result of the VSJA’s compliance is shown in Figure 7B. When the
VSJA was in the initial position, the stiffness of the VSJA was changed to Ka, Kb and Kc
(Ka = 30 N·m/rad, Kb = 60 N·m/rad and Kc = 90 N·m/rad). In the time period of 2 to 4 s,
an external torque of 1.5 Nm was applied to the VSJA, the position change of the VSJA is
shown in Figure 7B. When the joint stiffness is Ka, the joint position change is shown as a
dotted-and-dashed red line. When the joint stiffness is Kb, the change in joint position is
shown as a dashed blue line. When the joint stiffness is Kc, the change in joint position
is shown as a solid black line. By analyzing the relationship between joint position and
stiffness change, we found that the accurate control of VSJA compliance can be achieved
through the change in joint stiffness.
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Figure 7. Simulation results of variable stiffness robot joint; (A) position control simulation, and (B) simulation of compliance
control.

4. Experimental Analysis

The experimental setup, using a wire-driven variable stiffness robot joint actuator, was
constructed as shown in Figure 8. The controller unit of the variable stiffness robot joint
actuator was a MicroLabBox (MicroLabBox, dsPACE, Paderborn, Germany), regulating
the motions of DC servo motors (M1 and M2) with the harmonic reducer (the reduction
ratio is 50:1) at 1 kHz. The joint actuator control code was written directly in the real-time
control software MATLAB/Simulink (2012).
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Figure 8. Experimental setup using a robot joint actuator.

4.1. Analysis of Position Control

To investigate the performance of the position control, sine signals with an amplitude
of 20 degrees and a period of 3.2 s were investigated for different joint stiffness values.
The motion direction of the joint actuator was perpendicular to the gravity direction. The
dotted-and-dashed red lines represent the measured joint position for joint stiffness Ka
(Ka = 30 N·m/rad), and the dashed blue lines represent the joint position for joint stiffness
Kb (Kb = 60 N·m/rad), as shown in Figure 9A. This experimental result demonstrated the
behavior of a compliant joint. As the joint stiffness increased, the overshoot decreased, and
the response speed increased. The deviations at the peak position and valley position were
higher than those in the other position. The corresponding DC servo motor (M1 and M2)
rotations are shown in Figure 9B,C. The solid black line represents the theoretical motor
rotation when only controlling the joint position. When controlling the joint stiffness, the
two motors rotated in opposite directions. When controlling the joint position, the two
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motors rotated in the same direction. By adjusting the angle of the motor, the stiffness and
position of the joint could be controlled independently.
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4.2. Analysis of Compliance Control

A weight of 0.25 kg, with a 200 mm vertical height, affected the output link end of
the variable stiffness joint actuator whose length was 250 mm. Meanwhile, the deflection
angle of the variable stiffness joint actuator was recorded. The initial condition was that
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the output link of the joint actuator remained horizontal, and no external torque was
applied to it. When the stiffness of the variable stiffness joint was Ka = 30 N·m/rad,
Kb = 60 N·m/rad, and Kc = 90 N·m/rad, we repeated the collision experiment and
recorded the maximum deflection angle and vibration time. As shown in Figure 10, when
the stiffness of the variable stiffness joint was Ka, the maximum deflection angle (−8.49◦)
of the output link was much bigger than joint stiffness Kb (−6.48◦) and joint stiffness Kc
(−5.4◦). When stiffness was at a higher level, the vibration was slight, and the vibration time
was about 0.23 s. However, when stiffness was at a lower level, vibration was significant,
and the vibration time (0.35 s) was much longer. The experiments demonstrated that
vibration and vibration time increased with the decrease in joint stiffness.

Actuators 2021, 10, 116 11 of 14 
 

 

4.2. Analysis of Compliance Control 
A weight of 0.25 kg, with a 200 mm vertical height, affected the output link end of 

the variable stiffness joint actuator whose length was 250 mm. Meanwhile, the deflection 
angle of the variable stiffness joint actuator was recorded. The initial condition was that 
the output link of the joint actuator remained horizontal, and no external torque was ap-
plied to it. When the stiffness of the variable stiffness joint was Ka = 30 N·m/rad, Kb = 60 
N·m/rad, and Kc = 90 N·m/rad, we repeated the collision experiment and recorded the 
maximum deflection angle and vibration time. As shown in Figure 10, when the stiffness 
of the variable stiffness joint was Ka, the maximum deflection angle (−8.49°) of the output 
link was much bigger than joint stiffness Kb (−6.48°) and joint stiffness Kc (−5.4°). When 
stiffness was at a higher level, the vibration was slight, and the vibration time was about 
0.23 s. However, when stiffness was at a lower level, vibration was significant, and the 
vibration time (0.35 s) was much longer. The experiments demonstrated that vibration 
and vibration time increased with the decrease in joint stiffness. 

The safety of the variable stiffness joint actuator was verified using collision experi-
ments. The collision force between the output link end and the weight can be calculated 
by the maximum deflection angle and corresponding joint stiffness, as shown in Figure 
10. The maximum collision force at stiffness level Ka was 4.44 N at the time of 0.477 s. The 
maximum collision force at stiffness level Kb was 6.78 N at the time of 1.278 s. The maxi-
mum collision force at stiffness level Kc was 8.48 N at the time of 2.057 s. The collision 
condition of the experiment was the same, and the collision force can be regulated easily 
by changing the stiffness of the variable stiffness joint actuator. This means that the vari-
able stiffness joint can effectively absorb the collision force by changing the joint’s stiff-
ness. 

 
Figure 10. Compliance analysis of variable-stiffness joint. 

4.3. Analysis of Force Compensation 
To investigate the control performance of the compensation of the external torque, a 

0.5 kg weight was attached to the output link (length of 250 mm), to observe the defor-
mation angle of the variable stiffness joint actuator using controller I (decoupling control-
ler) and controller II (decoupling controller with compensation of external torque), respec-
tively. The experiment was repeated at two joint stiffness levels, and the results are as 
listed in Table 2. When the joint stiffness was 30 N·m/rad, using controller I, the average 
deformation angle of the variable stiffness joint was 3.32°, while using controller II, the 
average deformation angle was 0.32°. When the joint stiffness was 60 N·m/rad, using con-
troller I, the average deformation angle of the variable stiffness joint was 1.58°, while using 

0 1 2 3

-8

-4

0

4

8

1.08°Jo
in

t p
os

iti
on

(°
)

Time(s.)

 Ka
 Kb
 Kc

2.01°

Figure 10. Compliance analysis of variable-stiffness joint.

The safety of the variable stiffness joint actuator was verified using collision exper-
iments. The collision force between the output link end and the weight can be calcu-
lated by the maximum deflection angle and corresponding joint stiffness, as shown in
Figure 10. The maximum collision force at stiffness level Ka was 4.44 N at the time of 0.477 s.
The maximum collision force at stiffness level Kb was 6.78 N at the time of 1.278 s. The
maximum collision force at stiffness level Kc was 8.48 N at the time of 2.057 s. The collision
condition of the experiment was the same, and the collision force can be regulated easily by
changing the stiffness of the variable stiffness joint actuator. This means that the variable
stiffness joint can effectively absorb the collision force by changing the joint’s stiffness.

4.3. Analysis of Force Compensation

To investigate the control performance of the compensation of the external torque, a
0.5 kg weight was attached to the output link (length of 250 mm), to observe the deformation
angle of the variable stiffness joint actuator using controller I (decoupling controller) and
controller II (decoupling controller with compensation of external torque), respectively.
The experiment was repeated at two joint stiffness levels, and the results are as listed
in Table 2. When the joint stiffness was 30 N·m/rad, using controller I, the average
deformation angle of the variable stiffness joint was 3.32◦, while using controller II, the
average deformation angle was 0.32◦. When the joint stiffness was 60 N·m/rad, using
controller I, the average deformation angle of the variable stiffness joint was 1.58◦, while
using controller II, the average deformation angle was 0.28◦. These results showed that
the decoupling controller with an external force compensation could significantly improve
the position control accuracy for the variable stiffness joint. The stiffness control effect
of the decoupling controller can meet the working requirements, and the external force
compensation link can be selected according to the position control accuracy requirements.
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Table 2. Deformation angle of variable-stiffness joint.

Weight (kg) Stiffness
(Nm/rad) Compensation Average Deflection

Angle (◦)
Each Deflection

Angle (◦)

0.5 30 No 3.32

3.4
3.2
3.3
3.4
3.3

0.5 30 Yes 0.32

0.3
0.4
0.3
0.2
0.4

0.5 60 No 1.58

1.7
1.6
1.6
1.5
1.5

0.5 60 Yes 0.28

0.4
0.3
0.3
0.2
0.2

5. Conclusions

Aiming at the stability and safety of the interaction between users and robots, this
study proposed a decoupling control method for the position and stiffness for the wire-
driven variable stiffness robot joint actuator, realizing compliance control and position
control. The joint actuator stiffness model is obtained using the Jacobian matrix and the
static relationship between the models. The nonlinear equations composed of the mechani-
cal model of the variable stiffness mechanism and the joint stiffness model were solved
using the optimization method to realize a nonlinear decoupling of stiffness and position.

Based on the decoupling control method, the variable stiffness joint actuator torque
compensation was realized, and the joint position tracking ability was improved. The
joint prototype and control system of the variable stiffness joint actuator was established.
The feasibility and effectiveness of the above compliant control and external torque com-
pensation methods were verified via simulation and experimental analysis. The current
study lays the foundation for a real-time control system considering dynamic modeling
and disturbance uncertainty in the future.
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