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Abstract: In this paper, output feedback tracking sliding mode control was considered for uncertain
multivariable linear systems. The uncertainties included external disturbance, the system state, and
control input. A new property of the loop transfer recovery (LTR) observer was first established:
the state estimation error of the LTR observer can be made arbitrarily small with respect to state-
and input-dependent system uncertainties. Observer-based output feedback tracking sliding mode
control using the LTR observer is presented. The proposed sliding mode control approach can
maintain the boundedness of the system state and drive the system outputs arbitrarily close to
the desired reference outputs; the degree of closeness was determined by a design parameter in
the LTR observer. In the proposed approach, the most general and simple observer-based output
feedback control formulation was used to achieve global tracking. Simulations with a two-degree-of-
freedom (DOF) robotic manipulator application illustrated the claimed properties, and a peaking
and chattering reduction technique was demonstrated to protect the actuator.

Keywords: sliding mode control; output feedback control; LTR observer; robust observer; state- and
input-dependent uncertainty

1. Introduction

Sliding mode control is a widely recognized and robust control method. For applications
in robot manipulators, it has been developed over the past four decades [1–6]. In such a design,
robustness against parametric uncertainties and unknown disturbances is achieved using a
nonlinear switching control law. According to a review of such designs [7,8], early sliding
mode control designs mostly operate under the assumption that full state information is
available. However, because of technical or economic constraints, this assumption does not
hold in actual settings; only output measurement is available in real applications. Therefore,
developing output feedback sliding mode control designs is necessary.

Conventionally, the sliding surface is constructed as a static function of the output.
To guarantee the existence of the control law, geometric conditions were given in [9]
and relaxed in [10]. In [11–13], different sliding surfaces structured using a linear matrix
inequality technique were used to synthesize the static output feedback control law. An
artificial time delay was introduced in the output feedback control law in [14] to relax a
stability assumption. Recently, the system structure has been reconsidered using the super-
twisted algorithm with variable gain, and the first-order approximation filter has been
used to estimate the upper bound for the norm of a partially unmeasured state vector [15].
Most related approaches are hampered by the constraints applied to relative-degree-one
systems only.

In output feedback control, a key solution to such problems is the observer-based
structure. In this design, the required state information of the control system is estimated
by observers or differentiators. For a system with unknown disturbances or uncertainties,
constructing a robust observer or differentiator that can provide exact state estimations
is the first challenge to be overcome. Related studies aiming to address this matter have
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reported remarkable results. In [16], a reduced-order observer whose dynamics were
decoupled from unknown disturbances was proposed. A sliding mode observer was
proposed in [17] for the state estimation of systems subject to unknown disturbances.
However, the system must still be a relative-degree-one system. The relative degree
constraint was relaxed in [18–20] by using high-order sliding mode differentiators or high-
gain observers. High-gain observer-based sliding mode control [21,22] can be used for
multivariable nonlinear systems with stable zero dynamics, and a higher order sliding
mode differentiator can be used to estimate the required output derivatives [23–25].

In the observer-based approach, a design branch has focused on combining sliding
mode control with the standard model reference adaptive control formulation [26]. With
this formulation, the design of output feedback sliding mode control for relative-degree-
one systems is straightforward [27,28]. When the system relative degree is larger than one,
the design becomes complicated, with too many filters required [29,30]. Some researchers
have employed simpler approaches by using small-parameter filtering [31], a high-gain
observer [32], a lead filter design [33], or a higher order sliding mode differentiator [34,35]
to estimate the time derivatives of the system output. With the output derivatives available,
the difficulty of the control problem for a system with a relative degree larger than one is
reduced to that for a relative-degree-one system.

In this paper, a novel design was proposed for observer-based output feedback sliding
mode control. The proposed design relies on a robust observer, termed the loop transfer
recovery (LTR) observer. The LTR observer [36] was originally utilized to recover the
robustness properties, such as the phase margin and gain margin, of linear quadratic
Gaussian (LQG) control [37]. This paper exploited the novel advantage of having an LTR
observer, namely, the state estimation error of the LTR observer can be arbitrarily small
with respect to the state- and input-dependent system uncertainties. The resultant LTR
observer-based output feedback sliding mode control drives the system state into a small
residual set around the origin, with the size of the residual set controlled by a design
parameter in the observer Riccati equation.

Most other output feedback sliding mode control designs constrain unknown un-
certainties, thus depending on the system output or time [9,11–14,16–24,28–30,32–34].
However, state-dependent uncertainties are prevalent in mechanical systems [38], elec-
tronic circuits [39], and robot manipulators [6]; dealing with such uncertainties has become
a pertinent research topic [15,35,38]. First, in this paper, unknown disturbances were
further extended to input- and state-dependent disturbances, which are the most widely
encountered related research. Such an endeavor is considerably challenging because such
uncertainties are potentially unbounded, and the input-dependent uncertainties further
complicate analysis when sliding mode control is used. Second, the output feedback sliding
mode control method detailed in this paper offered global stability, whereas designs [23–25]
based on higher order sliding mode differentiators are only locally or semiglobally stable.
Third, the proposed sliding mode control design was intuitively and structurally simpler
than the variable-structure model reference of adaptive control [27–35], high-gain observer
sliding mode control [21,22], the super-twisted algorithm [15], and the design based on a
higher order sliding mode differentiator [23–25]; hence, it can be easily accepted by control
engineers with only fundamental control knowledge. In [15,34,35], multiple estimators
were employed to guarantee global stability. By contrast, in they present study, only one
Luenberger-type observer was used. Fourth, the approach described in this paper required
minimum system information. The proposed design did not impose relative-degree-one
constraints on the original controlled system structure as in [9–11,13–17,20,28,29] or require
a priori knowledge of the system’s relative degree and upper bound of disturbance as
in [27–35]. Furthermore, herein, assumptions on disturbance in [10,13] and the system
structure in [10,11,13,14,21–23,40] were waived, and the design procedure proposed did
not require any state transformation. The most general system structure was considered in
this paper; the application of the related approach was therefore straightforward. In the
application in a robot manipulator, the proposed design used only joint position and input
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torque command, whereas the information of system matrices in the dynamic equation [3,4]
or the estimation of system matrices [5] were requested in the control design. Moreover,
the stability analysis in this paper was independent with the matrices in the governing
equation of robot dynamics, while [6] required the derivative of the state-dependent system
matrix to prove the controller stability. In this paper, a given vector x ∈ Rn, ‖x‖ denotes
the usual Euclidean two-norm vector.

2. State Feedback Sliding Mode Control

Consider a linear multiple-input multiple-output (MIMO) system subject to unknown,
but matched system uncertainties.

ẋ = Ax + B(u + e0), e0 = ∆κ u + θTx + d, (1)

y = Cx,

where x ∈ Rn is the system state, u ∈ Rm is the control input, y ∈ Rm is the system
output, (A, B, C) are nominal system matrices with proper dimensions, d ∈ Rm is an
unknown time-varying disturbance satisfying a matching condition [41], θ ∈ Rn×m contains
parametric uncertainty, and ∆κ ∈ Rm×m is the uncertainty in the control gain matrix. The
uncertainties, which may be arbitrarily time-varying and state- and input-dependent,
satisfy the upper bounds:

‖d‖ ≤ D, ‖θ‖ ≤ θ̄, ‖∆κ‖ ≤ κ̄ < 1. (2)

This condition on ∆κ is more stringent than the Hurwitz condition in [42], but the
control in [42] applies to relative-degree-one systems only. The system matrix A may
be stable or unstable; the matrix pair (A, B) was assumed to be controllable; (A, C) was
assumed to be observable; the number of inputs was equal to that of the outputs; and the
nominal system (A, B, C) was assumed to be minimum phase (all finite zeros are stable).
System state x was not accessible for measurement, and the only accessible signals were
control input u and system output y. The control objective was to drive system output y to
track, in the face of system uncertainty e0, desired bounded reference output ym as closely
as possible.

Remark 1. In most previous research on output feedback sliding mode control, uncertainty was
assumed to be a function of disturbance and output, e0 = θy + d; by contrast, in the proposed
approach, uncertainty was allowed to be a function of state, input, and external disturbance:
e0 = ∆κ u + θTx + d. This lumped uncertainty was potentially unbounded; the boundedness was
uncertain when the stability of the control system (1) was not conclusively demonstrated.

The first step of control design is to transform the tracking control problem into a
stabilizing control problem. This can be achieved by establishing a reference model for the
bounded reference output ym as follows:

ẋm = (A− BK)xm + Brm (3)

ym = Cxm,

where the reference state xm and the control command rm are all bounded but unavailable
and the reference output ym is available for measurement. The system matrix A − BK
is stable for some stabilizing state feedback gain K (see the control law (7) below). The
aforementioned reference model was temporarily used for analysis purposes. It can be
written as:

ẋm = Axm + Bum, um = −Kxm + rm (4)

ym = Cxm,
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where um is a bounded signal. Defining the error signals xe = x− xm, ye = y− ym and
subtracting (4) from (1) yield:

ẋe = Axe + B(u + e), (5)

ye = Cxe,

where the uncertainty becomes:

e = e0 − um = ∆κ u + θTx + d− um (6)

= ∆κ u + θTxe + d− um + θTxm,

in which θTxe is potentially unbounded prior to obtaining the proof of the stability of the
proposed control design, and−um + θTxm is unknown but bounded. If a stabilizing control
design u can be constructed to drive the error state xe in (5) to zero, the tracking mission
is achieved. Thus, the tracking control problem for the system (1) is transformed into a
stabilizing control problem for the error system (5).

In this section, a state feedback sliding mode control approach was reviewed for this
error system (5) (assuming xe was accessible for measurement). In the next section, an
observer-based output feedback sliding mode control design is presented (assuming only
ye was accessible for measurement). A state feedback sliding mode control design for the
error system was constructed as follows.

u = −Kxe − ρ(xe)
σ

‖σ‖ , (7)

where K ∈ Rm×n is the state feedback gain that places the eigenvalues of A− BK in the
open left-half plane. As the nominal closed-loop system matrix A− BK is stable, a positive
definite matrix P ∈ Rn×n exists, satisfying the Lyapunov equation (Chapter 5.4 in [43]),

(A− BK)T P + P(A− BK) = −(1 + ν)I, (8)

where ν can be any small positive parameter and appears in the equation only for the
purpose of conducting a theoretical analysis of closed-loop stability. Without loss of
generality, it can be assumed that ν = 1. In the control law (7), σ ∈ Rm is the sliding variable:

σ = 2BT Pxe, (9)

where P is obtained from the Lyapunov Equation (8) and ρ(xe) ∈ R is a positive, time-
varying control gain:

ρ(xe) = c1‖xe‖+ c0, c1 ≥
θ̄

1− κ̄
, c0 ≥

d̄
1− κ̄

, (10)

where d̄ is an upper bound of d− um + θTxm. Conducting stability analysis of the afore-
mentioned state feedback sliding mode control approach (7) based on a Lyapunov function
xT

e Pxe has become standard (details can be found in Chapter 14.2 in [44]). State feedback
sliding mode control (7) can asymptotically drive the error state xe to zero despite system
uncertainties. Thus, the tracking mission of the original system was achieved.

Remark 2. In the reference model of (4), the structure naturally constrains the reference output
ym to be sufficiently smooth, and the signal should have bounded derivatives for at least n-times
differentiations. This property can be explicitly addressed if the reference model (4) is constructed in
observable canonical form.
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3. Robust Loop Transfer Recovery Observer

In the previous section, state feedback tracking sliding mode control was reviewed. In
many real-world applications, full state information is unavailable, and the only accessible
signal is the system output. It is therefore desirable to devise a sliding mode control
approach that relies on output measurement only. First, a robust observer was constructed
to obtain an estimate x̂e of the error state xe for the error system (5). Subsequently, all of
state xe in the state feedback sliding mode control law (7) was replaced by state estimate x̂e.

The robust observer proposed in this paper was the LTR observer. The original
purpose of the LTR observer [36] was to recover the loop transfer function of the output
feedback LQG control to that of the state feedback LQ control. Consequently, favorable
and robust properties such as a large gain margin and phase margin were achieved against
unstructured and unmodeled dynamics. However, related studies on the LTR observer
have not revealed the upper bounds of the estimation errors when system uncertainties are
present. In this paper, an upper bound of the state estimation error was explicitly derived.
On the basis of this upper bound, the LTR observer can be used for robust sliding mode
control of uncertain systems.

Consider the system (5) with accessible output ye but inaccessible state xe. The LTR
observer had the usual structure of a Luenberger observer and was constructed as follows:

˙̂xe = Ax̂e + Bu + L(ye − Cx̂e), L = QCT/µ, (11)

where x̂e is an estimation of the system state xe and Q ∈ Rn×n is the solution matrix of the
observer Riccati equation:

Q(A + δI)T + (A + δI)Q− QCTCQ
µ

+ ξBBT = 0, (12)

where µ > 0, δ > 0, and ξ > 0 are scalar design parameters. The initial condition of the
observer, x̂e(0), can be of any finite value and does not affect the estimation error stability.
Normally, x̂e(0) = 0 is chosen. In the LTR observer design, δ > 0 was used to control the
convergent speed of the state estimation error, and a value for ξ > 0 that was sufficiently
large was selected to ensure a small estimation error with respect to system uncertainty e.

The following lemma presents a well-known result in the study of LTR observers.
Because the system (A, B, C) was a minimum-phase system, a positive number δ existed
such that (A + δI, B, C) was also a minimum phase system.

Lemma 1. If (A+ δI, B, C) is the minimum phase, then the solution Q for the Riccati Equation (12)
satisfies limξ→∞ Q/ξ = 0.

Proof. See [45].

On the basis of Lemma 1, the theorem that follows proved that the LTR observer
obtained only a small estimation error with respect to system uncertainty e in (5). The
theorem enabled the derivation of an explicit upper bound of the state estimation error.
According to this upper bound, the larger the design parameter ξ in the observer Riccati
Equation (12) is, the smaller the state estimation error is. This theorem was a novel addition
to the literature. Previous research on the LTR observer [36,46] has only detailed the loop
transfer function recovery property of the LTR observer, without an explicit upper bound
of the estimation error.

Theorem 1. The LTR observer (11) asymptotically (as time approached infinity) achieved a small
estimation error x̃e = xe − x̂e for the error system (5) in the sense that:

‖x̃e(t)‖ ≤ ε(κ̄‖u‖+ θ̄‖xe‖+ d̄) (13)



Actuators 2021, 10, 117 6 of 19

where:

ε =

√
σ̄(

Q
δξ

)→ 0 as ξ → ∞, (14)

in which σ̄(·) denotes the maximum singular value.

Proof. Define the state estimation error x̃e = xe − x̂e. From (5) and (11), the dynamics of x̃e
is given as:

˙̃xe = (A− LC)x̃e + Be. (15)

Choose the Lyapunov function V = x̃T
e Q−1 x̃e, where Q is the solution matrix from the

Riccati Equation (12). Checking the time derivative of V along the trajectory of x̃e gives:

V̇ ≤ −2δV − 1
µ
‖Cx̃e‖2 − ξ‖x̃T

e Q−1B‖2 + 2‖x̃T
e Q−1B‖ · ‖e‖.

In the aforementioned equation, the maximum of the last two terms occurs when
‖x̃T

e Q−1B‖ = ‖e‖/ξ, with the maximum being ‖e‖2/ξ. Hence,

V̇ ≤ −2δV − 1
µ
‖Cx̃e‖2 +

‖e‖2

ξ

≤ −2δV +
‖e‖2

ξ

= −δV − δ(V − ‖e‖
2

δξ
). (16)

The last inequality shows that V decreases exponentially as long as V ≥ ‖e‖2/(δξ);
thus, it can be concluded that V(t) ≤ ‖e‖2/(δξ) as time approaches infinity. The use of
V ≥ σ(Q−1)‖x̃e‖2 = ‖x̃e‖2/σ̄(Q) produces:

‖x̃e(t)‖ ≤

√
σ̄(

Q
δξ

)‖e(t)‖

= ε‖∆κu + θTxe + d− um + θTxm‖
≤ ε(κ̄‖u‖+ θ̄‖xe‖+ d̄) (17)

where:

ε =

√
σ̄(

Q
δξ

), as t→ ∞, (18)

and the last inequality is obtained by substitution of the definition of d̄ (10).
In the definition provided for ε, δ was fixed in the design. Hence, according to

Lemma 1, ε became arbitrarily small as the selected design parameter ξ became sufficiently
large. This proves the theorem.

Remark 3. In Theorem 1, the estimation error x̃e was bounded by the control signal ‖u‖ and
system state vector ‖xe‖; therefore, it can only be temporarily concluded that the estimation error
can be potentially unbounded in this stage. Components u and xe have the potential to be unbounded
because no conclusion on boundedness was made, and the convergency of the state estimation should
be examined after stability analysis for the controlled system (5) has been completed.

Remark 4. Previously, many researchers used a high-gain observer (see Chapter 14.5 of [44]) to
estimate the system state in their sliding mode control design. However, the high-gain observer is
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subject to the constraint that the system must have no zero dynamics; that is, the system relative
degree is equal to the system dimension. As a result, when the high-gain observer is applied to the
sliding mode control design for systems with an arbitrary relative degree [21,22,32], the high-gain
observer can estimate only the partial state (the external state) of the system, while the LTR observer
in this paper can estimate the full state of the system, providing more monitoring information of
the system.

Remark 5. In (11), the design of the robust observer has the usual structure of the Luenberger
observer, which is an intuitive and simple design of a linear state observer. By contrast, for example,
the higher order sliding mode differentiator follows the nonlinear recursive algorithm [23]:

ż0 = v0,

v0 = −λ0|z0 − ye(t)|n/(n+1)sign(z0 − ye(t)) + z1

ż1 = v1,

v1 = −λ1|z1 − v0|(n−1)/(n)sign(z1 − v0) + z2

... (19)

żn−1 = vn−1,

vn−1 = −λn−1|zn−1 − vn−2|1/2sign(zn−1 − vn−2) + zn

żn = −λnsign(zn − vn−1),

where zi is an estimation of the ith-order derivative of ye(t), and λi(i, L) is a function of i and L, in
which L stands for the known Lipschitz constant of the nth derivative of ye(t). Comparing (11) and
(19), it is seen that a higher order sliding mode differentiator (19) has a more complex structure and
requires more computation effort to estimate the desired system information.

4. Output Feedback Sliding Mode Control

As detailed in the previous section, a state estimate x̂e was obtained from the LTR
observer (11). Next, the observer-based output feedback tracking sliding mode control can
be established by replacing xe in the state feedback control law (7) with its estimate x̂e. The
resultant output feedback sliding mode control equation is as follows:

u = −Kx̂e − ρ(x̂e)
σ̂

‖σ̂‖ , (20)

where the estimated sliding variable is:

σ̂ = 2BT Px̂e, (21)

and the switching control gain is chosen as:

ρ(x̂e) = c1‖x̂e‖+ c0, (22)

with:

c1 ≥
κ̄‖K‖+ θ̄

βγ− κ̄
, c0 ≥

d̄
βγ− κ̄

, (23)

in which β and γ are two positive constants to be defined. The choice of constants c0 and
c1 in (22) is different from that in (10).

Given the uncertainty upper bounds κ̄ ∈ [0, 1), θ̄, the norm of state feedback gain ‖K‖,
and a sufficiently small ε in Theorem 1, a constant β ∈ (κ̄, 1) exists such that:

β · γ > κ̄, where γ =
1− εθ̄

1 + ε‖K‖ . (24)
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The aforementioned inequality ensures that the denominator in (23) is positive. Given
β as chosen, define another constant α:

α =
1− β

1 + β
, with α ∈ (0, 1). (25)

The virtual constants α and β were used only in the following closed-loop stability
analysis for the MIMO system (1). The stability analysis was nontrivial for the MIMO
system. In the case that the system is a single-input single-output system, the stability
analysis can be considerably simplified, without the need to define the constants α and β.

To simplify the equation derivations in the stability analysis, the following lemma
should be constructed in advance.

Lemma 2. The following inequalities hold for the system (1) and sliding mode control (20).
(i) ‖x̃e‖ ≤ ε[(κ̄‖K‖+ θ̄)‖x̂e‖+ κ̄ρ(x̂e) + d̄]/(1− εθ̄).
(ii) ‖Kx̃e + e‖ ≤ βρ(x̂e).
(iii) ‖x̃e‖ ≤ ε( f1‖xe‖+ f0) for some positive constants f1 and f0.
(iv) ‖ρ(x̂e)‖ ≤ g1‖xe‖+ g0 for some positive constants g1 and g0,
where ε is as in (14).

Proof. (i) The control law (20) suggests that:

‖u‖ ≤ ‖K‖ · ‖x̂e‖+ ρ(x̂e) ≤ (‖K‖+ c1)‖x̂e‖+ c0. (26)

One continues to derive:

‖x̃e‖ ≤ εκ̄‖u‖+ εθ̄‖xe‖+ εd̄

≤ εκ̄(‖K‖+ c1)‖x̂e‖+ εθ̄‖xe‖+ ε(κ̄c0 + d̄)

≤ ε(κ̄‖K‖+ θ̄)‖x̂e‖+ εθ̄‖x̃e‖+ εκ̄ρ(x̂e) + εd̄

≤ ε

1− εθ̄
[(κ̄‖K‖+ θ̄)‖x̂e‖+ κ̄ρ(x̂e) + d̄], (27)

where the first inequality follows from Theorem 1, the second follows from (26), the third
follows from the inequality ‖xe‖ ≤ ‖x̂e‖ + ‖x̃e‖ and (22), and the last is obtained by
rearranging the equation;
(ii) With the upper bound in (i), an upper bound for Kx̃e + e can be derived,

‖Kx̃e + e‖ ≤ ‖K‖‖x̃e‖+ ‖e‖
≤ ε‖K‖(κ̄‖u‖+ θ̄‖xe‖+ d̄) + (κ̄‖u‖+ θ̄‖xe‖+ d̄)

= (1 + ε‖K‖)(κ̄‖u‖+ θ̄‖xe‖+ d̄)

≤ (1 + ε‖K‖)[κ̄(‖K‖+ c1)‖x̂e‖+ θ̄‖xe‖+ (κ̄c0 + d̄)]

≤ (1 + ε‖K‖)[(κ̄‖K‖+ θ̄)‖x̂e‖+ θ̄‖x̃e‖+ κ̄ρ(x̂e) + d̄]

≤ 1 + ε‖K‖
1− εθ̄

[(θ̄ + κ̄‖K‖)‖x̂e‖+ κ̄ρ(x̂e) + d̄]

≤ 1
γ
[(θ̄ + κ̄‖K‖)‖x̂e‖+ κ̄ρ(x̂e) + d̄] ≤ βρ(x̂e),

where the second inequality results from (5) and (13), the third inequality follows from (26),
the fourth inequality follows from the inequality ‖xe‖ ≤ ‖x̂e‖+ ‖x̃e‖ and (22), the fifth
inequality results from Part (i) of the lemma, and γ is as defined in (24). The last inequality
is derived using the inequalities in (22) and (24);
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(iii) In this section, an alternative upper bound is presented for the estimation error x̃e:

‖x̃e‖ ≤ εκ̄‖u‖+ εθ̄‖xe‖+ εd̄

≤ εκ̄(‖K‖+ c1)‖x̂e‖+ εθ̄‖xe‖+ ε(κ̄c0 + d̄)

≤ εκ̄(‖K‖+ c1)‖x̃e‖+ (εθ̄ + εκ̄(‖K‖+ c1))‖xe‖+ ε(κ̄c0 + d̄)

≤ ε( f1‖xe‖+ f0),

with

f1 =
θ̄ + κ̄‖K‖+ κ̄c1

1− ε(κ̄‖K‖+ κ̄c1)
, f0 =

κ̄c0 + d̄
1− ε(κ̄‖K‖+ κ̄c1)

. (28)

In the aforementioned equations, the first inequality follows from Theorem 1, the
second follows from (26), the third follows from the inequality ‖x̂e‖ ≤ ‖xe‖+ ‖x̃e‖, and
the last is obtained by rearranging the equation;
(iv) According to (22),

ρ(x̂e) = c1‖x̂e‖+ c0

≤ c1‖xe‖+ c1‖x̃e‖+ c0

≤ (c1 + εc1 f1)‖xe‖+ c0 + εc1 f0,

where the second inequality is derived from ‖x̂e‖ ≤ ‖xe‖+ ‖x̃e‖ and the last inequality is
obtained from Part (iii) of the lemma. Thus, Part (iv) is proven with g1 = c1 + εc1 f1 and
g0 = c0 + εc1 f0.

Before closed-loop stability was proven, the system uncertainty e = ∆κu + θTx + d−
um + θTxm in (13) was potentially unbounded. Hence, the state estimation error ‖x̃e‖ in (13)
was also potentially unbounded. Determining whether the proposed observer-based state
feedback tracking sliding mode control (20) was stabilizing required a rigorous stability
analysis. This was accomplished using the main theorem that follows.

Theorem 2. The LTR observer-based output feedback tracking sliding mode control (20) stabi-
lized an uncertain system (1) in that the system state xe was driven into an arbitrarily small
residue set around the origin if the design parameter ξ in the observer Riccati Equation (12) was
sufficiently large.

Proof. Choose a Lyapunov function candidate W = xT
e Pxe for the controlled error system (5),

where the matrix P is from the Lyapunov Equation (8). Taking the time derivative of W
along the trajectory of the error system (5) controlled by the output feedback sliding mode
control (20) yields:

Ẇ = xT
e [(A− BK)T P + P(A− BK)]xe + σT [−ρ(x̂e)

σ̂

‖σ̂‖ + Kx̃e + e]

= −(1 + ν)‖xe‖2 − ρ(x̂e)
σT σ̂

‖σ̂‖ + σT [Kx̃e + e], (29)

where e is the lumped system uncertainty e = ∆κu+ θTxe + d− um + θTxm. With σ̃ = σ− σ̂,
two possible cases may exist in the above equation.
Case 1 (reaching mode): ‖σ̃‖ < α‖σ‖, where α ∈ (0, 1) is from (25). In this case, using the
two inequalities ‖σ̂‖ = ‖σ− σ̃‖ ≤ ‖σ‖+ ‖σ̃‖ < (1 + α)‖σ‖ and σT σ̃ ≤ ‖σ‖ · ‖σ̃‖ < α‖σ‖2

can produce:

−σT σ̂

‖σ̂‖ = −σTσ− σT σ̃

‖σ− σ̃‖ < −‖σ‖
2 − α‖σ‖2

‖σ‖+ α‖σ‖ = −1− α

1 + α
‖σ‖,
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where − 1−α
1+α‖σ‖ = −β‖σ‖ from (25). The inequality (29) then becomes:

Ẇ < −(1 + ν)‖xe‖2 − ρ(x̂e)β‖σ‖+ ‖Kx̃e + e‖ · ‖σ‖
≤ −(1 + ν)‖xe‖2, (30)

where the second inequality is obtained from Part (ii) of Lemma 2. It can be concluded that
in this case, the Lyapunov function W in (30) is strictly decreasing. Moreover, the sliding
variable σ fulfills the relation:

‖σ‖2 = σTσ = |4xT
e PBBT Pxe| ≤ 4δ̄ · ‖xe‖2 ≤ 4δ̄

σ(P)
V, (31)

where δ̄ is the maximum singular value of the square matrix PBBT P and σ(P) is the
minimum singular value of matrix P. Combining (30) and (31) revealed that the absolute
value of the sliding variable |σ| was exponentially decreasing; in this case, the reaching law
can be concluded as:

σ→ σ̃.

The statement implies that the sliding variable σ reaches σ̃, the boundary layer of the
sliding surface σ = 0.
Case 2 (sliding mode): ‖σ̃‖ ≥ α‖σ‖. In this case, the system state was restricted in the
boundary layer of the sliding surface, and the following can be derived from (29):

Ẇ ≤ −(1 + ν)‖xe‖2 + (1 + β)ρ(x̂e)‖σ‖

< −1 + ν

λ̄
W +

(1 + β)

α
ρ(x̂e)‖σ̃‖

= − ν

λ̄
W − 1

λ̄
[W − (1 + β)λ̄

α
ρ(x̂e)‖σ̃‖], (32)

where the first inequality results from Part (ii) of Lemma 2; the second inequality results
from the hypothesis of this case; and ‖W‖ ≤ λ̄‖xe‖2, with λ̄ being the maximum eigenvalue

of matrix P. Equation (32) shows that if W ≥ (1+β)λ̄
α ρ(x̂e)‖σ̃‖, then W decays exponentially.

Hence, the following is eventually obtained:

lim
t→∞

W <
(1 + β)λ̄

α
ρ(x̂e)‖σ̃‖.

It follows from the definitions of sliding variables in (9) and (21) that ‖σ̃‖ ≤ ‖2BT P‖‖x̃e‖.
With the inequality ‖W‖ ≥ λ‖xe‖2, where λ is the minimum eigenvalue of P, the above
equation can be written as:

‖xe‖2 <
(1 + β)λ̄

αλ
‖2BT P‖ · ρ(x̂e) · ‖x̃e‖

= η2 · ρ(x̂e) · ‖x̃e‖
≤ ε η2( f1‖xe‖+ f0)(g1‖xe‖+ g0),

≤ ε η2(h1‖xe‖+ h0)
2 as t→ ∞

where:

η2 =
(1 + β)λ̄

αλ
‖2BT P‖;
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the second inequality results from Parts (iii) and (iv) of Lemma 2, and in the last inequality,
h1 = max( f1, g1) and h0 = max( f0, g0). Taking the square root of both sides of the last
inequality yields:

‖xe‖ <
√

ε η(h1‖xe‖+ h0) <

√
ε ηh0

1−
√

ε ηh1
, as t→ ∞ (33)

where the second inequality is obtained by rearranging the first inequality. Because ac-
cording to Theorem 1, limξ→∞

√
ε = 0, this ensured that the denominator in the above

equation was always positive if the design parameter ξ in the LTR observer was sufficiently
large. Because

√
ε also appears in the numerator, Equation (33) proves that, eventually, the

error dynamic xe = x− xm converges to a small residual set around the origin, with the
size of the residual set controlled by the design parameter ξ in the LTR observer design;
thus, x → xm and y→ ym are arbitrarily close. Furthermore, the result of (33) guaranteed
that the estimation error x̃e in Theorem 1 was made arbitrarily small using Part (iii) of
Lemma 2, and the state estimation x̂e was bounded and made arbitrarily small by the rela-
tion ‖x̂e‖ ≤ ‖xe‖+ ‖x̃e‖. Finally, the control signal u in (20) remained uniformly bounded
because all components in it were bounded.

The following section illustrates the effectiveness of the proposed output feedback
sliding mode control scheme (20).

5. Application Example

A two-degree-of-freedom robotic manipulator studied in [4] was used here to
illustrate the efficiency of the proposed control design. The dynamic equation of the
two-link robot is defined as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fq̇ = τ, (34)

where q = [q1, q2]
T is the joint position and q̇ and q̈ ∈ R2 are velocity and acceleration

vectors; M(q), C(q, q̇), G(q), and F are the inertia matrix, Coriolis matrix, gravity matrix,
and frictional matrix with proper dimensions; τ ∈ R2 is the input torque vector. On the
basis of the state-space realization proposed in [4], system matrices in the error dynamic (5)
are given as:

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, B =


0 0
1 0
0 0
0 1

, C =


1 0
0 0
0 1
0 0


T

with y = [y1, y2]
T = [q1, q2]

T , and the desired reference trajectory was assigned as
ym = [ym1 , ym2 ]

T = [2 sin(t), sin(t)]T . In the output feedback tracking sliding mode
control algorithm, the design parameters in the observer Riccati Equation (12) were µ = 1,
δ = 10, and ξ = 1016. According to (18) and (33), ξ should be sufficiently large to guarantee
estimating and tracking performance. The control law (20) was constructed with a state
feedback gain:

K =

[
1 2 0 0
0 0 1 2

]
,

and positive constants were assigned as ν = 1 in (8) and c1 = c0 = 1000 in (22) to achieve
the desired convergent speed of (30) and to satisfy (23). Herein, the torque command
was given as τ = u in (20) without the knowledge of the system matrices M(q), C(q, q̇),
G(q), and F in (34), and the unknown parameters were considered as the state- and input-
dependent disturbances in the error dynamic (5). Figure 1 shows the tracking performance
of the controlled system. Because the initial condition of state estimation x̂e was set as zero,
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coinciding with the system error xe, the control system reached the residue set (33) from
the very beginning of the simulation. Moreover, the parameters ξ in (12) and ρ in (22) were
properly chosen; therefore, the system state was constrained in a sufficiently small residue
set of error (33), and the two outputs precisely tracked their references; in Figure 1, it is seen
the tracking error was a constant from the very initial time. The control signals are shown
in Figure 2, and Figure 3 presents the sliding variable. It was seen that the control input u
rapidly peaked in the very initial time interval; the actuators might be saturated when the
control design was implemented. Moreover, because a nonlinear switching function was
used in the control law, both control signals were subject to a high-frequency oscillation
when the sliding variable σ̂ in Figure 3 chattered around σ̂ = 0, which is harmful for
actuators in the real world.

To avoid the occurrence of the peaking and chattering phenomenon, the control
design (20) was modified as:

u = −Kx̂e − ρ(x̂e)
σ̂

‖σ̂‖+ 0.001
, (35)

where the discontinuous function σ̂/‖σ̂‖ was replaced by the boundary layer [47] control
σ̂/(‖σ̂‖+ 0.001) and the constants in the switching control gain (22) were scheduled as
c1 = c0 = 1000(1 − e−2t). The system performance of the modified control design is
depicted in Figure 4, and Figure 5 shows the control signals. In Figure 4, the references
were reached more slowly since the switching gain in (22) was scheduled with time. When
the constants c1 and c0 in (22) were small, the switching gain was incapable of completely
suppressing the unknown disturbance, and the tracking performance was degraded; when
the switching gain was increasing, the robustness of the control design was improved,
and the references were therefore reached. With the modified control design, the control
signals u exhibited no peaking phenomenon; the chattering was efficiently removed,
thus protecting the actuators. It is worth noting that the boundary layer design [47] was
sensitive to measurement noise [48], and an alternative approach to chattering reduction
is to use dynamic sliding mode control [49], which can eliminate chattering, especially
in noisy real-world environments. Moreover, the dynamic sliding mode control [49] was
capable of alleviating the rapid spikes in control design since the control input was an
integrated result.
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In order to provide a more complete set of validation experiments, the reference signal
was extended as:

ym =

[
ym1

ym2

]
=



[
2 sin(t)
sin(t)

]
, t ∈ [0, 4π)

[
2
1

]
, t ∈ [4π, 5π), [6π, 7π)

[
−2
−1

]
, t ∈ [5π, 6π), [7π, 25],

and the control design (35) was applied with the switching gains c1 = 7000 and c0 = 3000
in (22). The tracking performance is depicted in Figure 6, and Figure 7 presents the two
control signals. In Figure 6, the desired references had discontinuities at t = 4π, 5π, 6π, 7π,
and system outputs, especially y2, had a sudden jump at these moments. Likewise, the
control signals in Figure 7 inevitably peaked at the time of discontinuities even if the smooth
boundary layer control design (35) was implemented. According to (33), ‖xe‖ → 0 when ξ
was sufficiently large, and ‖x̃e‖ = ‖xe − x̂e‖ → 0 according to (13). Consequently, ‖x̂e‖ → 0,
and the steady-state of control input (35) was approximated as:

u = −Kx̂e − ρ(x̂e)
σ̂

‖σ̂‖+ 0.001
≈ −c0

σ̂

0.001
. (36)

In Figure 8, the time history of the sliding variable is depicted, and the detail of control
signal u is shown in Figure 9. In these figures, the approximation of the control signal (36)
was confirmed with c0 = 3000.
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Figure 6. Time history of system outputs and the extended references (a) y1, ym1 and (b) y2, ym2 .
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Figure 7. Time history of the control signals (a) u1 and (b) u2 with the extended references.
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Figure 9. Time history of the control signals (a) u1 and (b) u2 with the extended references (zoomed).

Remark 6. According to (34), it was straightforward to derive the steady-state of input torque
signal as:

τ = G(qm)

when the desired reference qm was constant. However, the system matrix G(q) was assumed to be
uncertain, and a robust control design (35) was proposed to suppress the unknown nonlinearity.
In the sequel, the steady-state of control input (36) therefore depended on the switching gain (22)
assigned by the user as in (36).

6. Conclusions

This paper presented an output feedback tracking sliding mode control approach for
uncertain linear MIMO systems with uncertainties such as external disturbance, the system
state, and control input. In this study, the tracking control problem was first transformed
into a stabilizing control problem through the introduction of a reference model for the
reference output. Subsequently, a new property of the LTR observer was established; it
was revealed that the state estimation error of the LTR observer could be made arbitrarily
small with respect to the system uncertainties. Finally, in this paper, observer-based output
feedback tracking sliding mode control based on an LTR observer was proposed. The
proposed sliding mode control can maintain the boundedness of the system state and
drive the system output to track a desired reference output with any degree of accuracy,
as determined by a design parameter in the LTR observer. The approach was applied to
the case of a two-link robot to illustrate the efficiency of the control design, and a modified
controller was presented to remove the harmful chattering and peaking phenomenon for
the actuators.
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