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Abstract: In robot control, the sliding mode control is known for its robustness against external
disturbances and system uncertainties. However, it has the disadvantage of control chattering, which
can damage the actuator and degrade system performance. With a new stability proof, this paper
presents an alternative simple linear feedback control that can cope with large system uncertainties
and suppress large external disturbances, doing so as effectively as sliding mode control does. The
advantage of using linear control is that the control law is simple and control chattering can be
avoided. Moreover, a noise-free control scheme is proposed as an improvement of the feedback
control; the modified design preserves the advantages of linear control and generates a chattering-free
control signal even in a noisy environment.

Keywords: high-gain control; robust linear control; system uncertainty; chattering reduction; noise-
induced chattering

1. Introduction

The tracking control of robot manipulators is a mature field but still has many research
possibilities, and a straightforward control scheme is known as computed-torque con-
trol [1]. Computed-torque control generally performs well in practice when the robot arm
parameters are accurately known [1]. When uncertainties and unknown disturbances occur,
conventional robust stability analysis shows that if the nominal system is exponentially
stable, the system can tolerate “small” system uncertainties and external disturbances [2],
therefore restricting the application of linear control to robot manipulators, which is a
highly nonlinear system. In this case, adaptive control [3–5], sliding-mode control [6–11],
and neural network control [12–14] were proposed to solve the problem.

Sliding mode control is known for its robustness against large system uncertainties
and external disturbances [15,16]. However, the sliding mode control has a disadvantage
of control chattering, which is due either to switching time delay [17] or unmodelled
dynamics [18,19]. Boundary layer design has been proposed as a solution, in which the
switching function is replaced with a continuous interpolation function [6,20]. In boundary
layer design, control accuracy and control smoothness are ensured by a small and large
boundary layer width, respectively, and thus trade off each other.

Other approaches have also been proposed to reduced control chattering in sliding
mode control, such as higher-order sliding-mode (HOSM) control [21]. The application
of HOSM control to robot manipulator can be found in [22–25]. However, the modified
sliding mode controls are complicated. Moreover, the boundary layer control [26] and
HOSM control [27] were proved to be sensitive to measurement noise; the control signal
will inevitably have undesired chattering when the state or the estimation is corrupted by a
stochastic noise, and only uniformly ultimate boundedness is guaranteed for both designs
in a noisy environment.

The purpose of this paper is to demonstrate that simple linear control can deal with
system uncertainties and external disturbances as effectively as sliding mode control can,
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especially in the robot control task. Furthermore, linear control has no side effect of control
chattering, and its control law is simple. Disagreeing with the conventional belief that
linear control can only cope with small linear or nonlinear system uncertainties [28,29], this
paper formulates a framework where linear control can cope with large linear or nonlinear
system uncertainties and suppress large external disturbances. With the new stability
analysis, the linear control design is proposed as a modified computed-torque control that
does not require the information of system parameters. Moreover, a noise-free control
scheme is presented to efficiently eliminate the noise-induced chattering that often occurs
in sliding-mode [27] of boundary layer controls [26].

The remainder of this paper proceeds as follows. The problem is formulated in
Section 2, preliminary lemmas are presented in Section 3, the stability of the proposed
linear control is analyzed in Section 4, the noise-free control scheme design is presented in
Section 5, an application to a two degree-of-freedom (DOF) robot manipulator is demon-
strated in Section 6, and conclusions are presented in Section 7.

2. Problem Description

Consider the dynamic equation of an n-DOF link robot

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fq̇ = τ, (1)

where q = [q1, · · · , qn]T is joint position, q̇, q̈ ∈ Rn are the joint velocity and acceleration
vectors; M(q), C(q, q̇), G(q), F are the inertia matrix, Coriolis matrix, gravity matrix, and
frictional matrix with proper dimensions, τ ∈ Rn is the input torque vector. Defining the
desired joint position qd = [qd1 , · · · , qdn ]

T , velocity q̇d, and acceleration q̈d, the position
errors for each joint are given as ei = xi = qi − qdi

for all i = 1 · · · n, and the error vector
x = [x1, ẋ1, x2, ẋ2, · · · , xn, ẋn]T is composed. When the system matrices M(q), C(q, q̇), G(q),
F in (1) are accurately known, the computed-torque control [1] gives

τ = M(q)(q̈d − Kx) + C(q, q̇)q̇ + G(q) + Fq̇, (2)

where

K =


K1 φ1×2 · · · φ1×2

φ1×2 K2
. . .

...
...

. . . . . . φ1×2
φ1×2 . . . φ1×2 KN

 ∈ Rn×(2n) (3)

is the gain matrix to be determined with Ki = [ki1 , ki2 ] ∈ R1×2 for all i = 1, · · · , n, and
φ ∈ Rp×q is a p× q zero matrix. Substituting the torque commend (2) into (1) yields

M(q)ë + K1 ė + K0e = 0, (4)

which is the basic formulation of impedance control of a robot manipulator [30] with
constant diagonal matrices K0 = diag(k11 , k21 , · · · , kn1) and K1 = diag(k12 , k22 , · · · , kn2).

When the system matrices M(q), C(q, q̇), G(q), F in (1) are unknown, the error dynamic
of the state vector x is described as

ẋ = Ax + B(u + ∆ f (x) + d) (5)

on the basis of (1), where

u(x) = τ, ∆ f (x) = M−1(q)(τ − C(q, q̇)q̇− G(q)− Fq̇)− τ, d = −q̈d, (6)
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and the system matrices are

A =


A φ2×2 · · · φ2×2

φ2×2 A
. . .

...
...

. . . . . . φ2×2
φ2×2 . . . φ2×2 A

 ∈ R(2n)×(2n),

B =


B φ2×1 · · · φ2×1

φ2×1 B
. . .

...
...

. . . . . . φ2×1
φ2×1 . . . φ2×1 B

 ∈ R(2n)×n, (7)

with

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (8)

In this paper, one assumes d ∈ Rn is a uniformly bounded and differentiable unknown
disturbance that satisfies the upper bound

|d| ≤ D, |ḋ| ≤ D̄, (9)

and the unknown nonlinearity ∆ f (x) ∈ Rn satisfies the Lipschitz condition:

‖∆ f (x)‖ ≤ h‖x‖ (10)

with Lipschitz constant h > 0 and the nonlinearity is assumed to be differentiable. This
paper does not force the nonlinearity to be small; hence, h can be a large number. Conven-
tionally, when given the uncertain system (5), one would most likely use switching sliding
mode control [15,16] or boundary layer control [6,20]

u = −Kx− ξsgn(s), or u = −Kx− ξsat(
s
ε
),

to stabilize the system and to suppress the disturbance, where ξ is an upper bound of the
uncertainties, s is the sliding variable, and ε is the boundary layer width. However, the
aforementioned sliding mode control and the boundary layer control have undesirable
side effects, as discussed in the Introduction section. This paper therefore considers
the possibility of dispensing with the nonlinear switching function sgn(·) or boundary
layer interpolation function sat(·). The proposed control law is simply a linear state-
feedback control

u = −Kx, (11)

where K places the eigenvalues of A− BK in the left-half-plane. With the linear feedback
control, system (5) becomes the following:

ẋ = (A− BK)x + B(∆ f (x) + d)

= Acx + B(∆ f (x) + d), Ac = A− BK (12)

The goal of this paper is to show that (1) given any large Lipschitz nonlinearity ∆ f (x),
one can always stabilize the closed-loop system with the proposed simple linear control
(11) and (2) the simple linear control is sufficient to suppress the effects of large disturbance
d on the system. No complex, nonlinear sliding mode control is required to deal with the
system uncertainties and external disturbances in (5).
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Remark 1. It is worthy noting the system Equation (5) describes the error dynamic of (1) as in [9],
and the system matrices (7) in (5) and (12) are therefore exact according to the definition of the
error dynamic [9]. However, if there is a structured uncertainty in the closed-loop system (12), the
proposed design naturally requests the uncertainty to fulfill a matching condition [31].

3. Preliminary

This section reviews some lemmas that are used in the stability analysis presented in
the next section.

Definition 1 ([32]). The modal matrix of a square matrix A is one whose columns comprise the
entire eigenvectors of A.

Lemma 1. Let Ac ∈ Rn×n be a stable matrix with distinct eigenvalues. Correspondingly, there
exist two positive numbers σ and N(σ) such that

‖eAct‖ ≤ N(σ)e−σt for all t > 0, (13)

where −σ is the real part of the eigenvalue of Ac that is closest to the imaginary axis and N is the
condition number of the modal matrix of Ac.

Proof. Case I. When the matrix Ac is diagonal, that is, eAct = diag(eλ1t, · · · , eλnt), where
λi denotes the eigenvalues of Ac, it is evident that ‖eAct‖ ≤ e−σt, where −σ is the real part
of the eigenvalue of Ac that is closest to the imaginary axis. In other words, (13) holds with
N = 1 for diagonal Ac.

Case II. The matrix Ac is not diagonal. Because the matrix A has distinct eigenvalues,
one can use the modal matrix T = [v1, . . . , vn], with vi being the eigenvector of the matrix
A, to diagonalize the stable matrix A, that is, A = TJT−1, where J is a stable diagonal
matrix one can obtain the following inequalities

‖eAt‖ = ‖eTJT−1t‖ = ‖TeJtT−1‖ ≤ σ̄(T)σ̄(T−1)‖eJt‖ ≤ σ̄(T)
σ(T)

e−σt = N(σ)e−σt, (14)

where the final inequality is obtained by referencing the result of Part I and by using
σ̄(T−1) = 1/σ(T).

Remark 2. In Lemma 1, the exponent −σ is related to the real part of the eigenvalue of matrix Ac
that is closest to the imaginary axis and N(σ) is related to the eigenvectors of the matrix Ac. If one
changes the positions of the eigenvalues of Ac, the eigenvectors of Ac also change and so does the
number N(σ) in the inequality (13). Normally, when one increases the value of σ (the eigenvalues
of the matrix Ac are pushed to the far left-hand side), the number N(σ) increases accordingly.

Lemma 2 ( Bellman–Gronwall Lemma [17]). Let k be a nonnegative constant. If the function
m(t) satisfies the integral inequality

m(t) ≤ λ(t) +
∫ t

0
k ·m(s)ds, ∀ t ≥ 0,

then one has m(t) ≤ λ(t) + k
∫ t

0 λ(s)ek(t−s)ds.

With the aforementioned two lemmas, one can introduce a robustness result presented
in a previous study for the system (12). The purpose of introducing this result is to contrast
it with our new result presented in the next section.
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Theorem 1. Consider an uncertain closed-loop system (12). Assume that no external disturbance
d is present and that the nominal system matrix Ac satisfies Lemma 1 with the constants N and
σ. The system is exponentially stable if the Lipschitz constant h in (10) is small in the sense that
it satisfies

h <
σ

‖B‖N(σ)
. (15)

Proof. When no disturbance d is present, it follows from linear system theory [2] that the
solution x of (12) satisfies the integral equation

x(t) = eActx0 +
∫ t

0
eAc(t−τ)B∆ f (x)dτ.

Taking the norm operation on both sides of the equality, one obtains

‖x(t)‖ ≤ N(σ)e−σt‖x0‖+
∫ t

0
N(σ)e−σ(t−τ)‖B‖h · ‖x(τ)‖dτ,

where the inequality is obtained using the upper bound in (10) and using Lemma 1.
Multiplying the inequality by eσt yields

eσt‖x(t)‖ ≤ N(σ)‖x0‖+
∫ t

0
‖B‖N(σ)h(eστ‖x(τ)‖)dτ ≤ N(σ)‖x0‖e‖B‖N(σ)ht,

where the second inequality is derived from Lemma 2. From the last inequality, one can
obtain

‖x(t)‖ ≤ N(σ)‖x0‖e(‖B‖N(σ)h−σ)t ∀ t > 0. (16)

When the Lipschitz constant h is small in the sense of (15), the exponent in the
preceding inequality (16) is negative. This ensures that the system state x(t) decays to zero
exponentially.

Remark 3. At a first glance of the stability condition (15), one may be tempted to think that if
the control design pushes the eigenvalues of Ac = A− BK to the far left-hand side (the value of σ
becomes large), the control can then tolerate a large Lipschitz constant h. However, as discussed
in Remark 1, pushing the eigenvalues far to the left increases the value of N(σ). The amount of
uncertainty h that can be tolerated is still limited by the stability condition (15). Therefore, the
conclusion of Theorem 1 can be formulated to state that systems with a linear stable part can tolerate
only small uncertainty ∆ f (x). The analysis in Theorem 1 alone is insufficient to yield a conclusion
that a nominally stable linear system with far-to-the-left eigenvalues can tolerate a large uncertainty.

Example 1. Consider a system (12) with

A =

 1 2 3
3 2 1
1 1 0

, B =

 1
2
−3

, ∆ f (x) = d = 0, (17)

and the state feedback gain K is designed to place closed-loop poles of Ac in (12) to [−σ,−2σ,−3σ]
with a constant σ ∈ R. In Figure 1, the upper bound σ/‖B‖N(σ) of the Lipschitz constant h in
(15) versus σ is depicted. It is obvious that, when σ increases, the upper bounded (15) decreases in
contrast, and the robustness of the closed-loop system (12) to system uncertainty also decreases by
the conclusion of Theorem 1.
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Figure 1. σ
‖B‖N(σ)

versus σ.

4. Stability Analysis

The result in Theorem 1 demonstrates that linear control can stabilize a system only
if the system uncertainty is small. However, in this section, we shown that a linear
control (11) scheme that pushes the nominal closed-loop eigenvalues to the far left half-
plane can, contrary to conventional belief, tolerate large system uncertainties and suppress
large disturbances in (5).

Theorem 2. Given any large disturbance upper bound D and large Lipschitz constant h in (9)
and (10), respectively, if the nominal closed-loop system matrix Ac = A− BK is designed with all
the eigenvalues sufficiently far in the left half-plane, the closed-loop system state converges to an
arbitrarily small residual set around the origin.

Proof. The proof is first derived for system with single input. Consider the system matrices
with dimensions A ∈ Rn×n and B ∈ Rn×1, one can transform (A, B) into controller
canonical form by a similarity transformation since the system matrix (A, B) is controllable.
Doing so results in the closed-loop pair (A− BK, B) = (Ac, B) also being in the following
controller canonical form. Because of the structure of system Equation (5) which coincides
with the controller canonical form, the similarity transformation is omitted here. Consider
the closed-loop system (12):

dx(t)
dt

= Acx(t) + B(∆ f (x) + d), (18)

where

Ac =


0 1 . . . 0
...

. . .
...

0 . . . 0 1
−a1 . . . . . . −an

, B =


0
...
0
1

, (19)

and the system state is

x(t) =


x1
x2
...

xn

 =


x1(t)

dx1
dt
...

dn−1x1
dtn−1

.
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Assume that the nominal closed-loop system matrix Ac = A− BK has eigenvalues at
−ρλ0,−ρλ1, · · · ,−ρλn, where ρ ∈ [1, ∞) is a design parameter in the eigenvalue assign-
ment control law. A large ρ value suggests that the eigenvalues of Ac are assigned far from
the imaginary axis. By virtue of the property of a bottom companion form matrix [17], the
elements in the last row of the matrix Ac are given by

[−a1, · · · ,−an] = [−
n

∏
i=1

ρλi, · · · ,−
n

∑
i=1

ρλi]. (20)

Note that the set of first-order differential equations (18) can be written as an nth-order
differential equation:

dnx1

dtn + an
dn−1x1

dtn−1 + · · ·+ a1x1(t) = ∆ f (x) + d, (21)

where x1 is the first element of the system state vector x. Substituting (20) into (21) yields

dnx1

dtn + (
n

∑
i=1

ρλi)
dn−1x1

dtn−1 + · · ·+ (
n

∏
i=1

ρλi)x1(t) = ∆ f (x) + d. (22)

Define a new time index τ = ρ t, where ρ > 1 is the design parameter in the eigenvalue
assignment control law; then, dt = dτ/ρ. With the new time index, Equation (22) becomes

dnx1

dτn + (
n

∑
i=1

λi)
dn−1x1

dτn−1 + · · ·+ (
n

∏
i=1

λi)x1(τ) =
∆ f (x)

ρn +
d
ρn . (23)

The preceding nth-order differential equation is equivalent to the following set of
first-order differential equations,

dz(τ)
dτ

= Fz(τ) + G(
∆ f (x)

ρn +
d
ρn ), (24)

where

z(τ) =


x1(τ)

dx1
dτ
...

dn−1x1
dτn−1

, F =


0 1 . . . 0
...

. . .
...

0 . . . 0 1
−∏n

i=1 λi . . . . . . −∑n
i=1 λi

, and G =


0
...
0
1

.

Crucially, note that in the preceding equation, F is a constant stable matrix with
eigenvalues at fixed positions −λ1,−λ2, · · · ,−λn independent of the design parameter ρ.
The transformed state z(τ) in (24) is related to the original state x(t) in (18) by

x(t) =


x1
x2
...

xn

 =


x1
dx1
dt
...

dn−1x1
dtn−1

 =


x1

ρ dx1
dτ
...

ρn−1 dn−1x1
dτn−1

 = diag(1, ρ, · · · , ρn−1)z(τ). (25)

Hence, for ρ ≥ 1, one has the inequality

‖x(t)‖ ≤ ρ(n−1)‖z(τ)‖. (26)
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The solution of (24) satisfies the integral equation

z(τ) = eFτz0 +
∫ τ

0
eF(τ−s)G(

∆ f (x)
ρn +

d
ρn )ds. (27)

Because F is a stable matrix, it follows from Lemma 1 that

‖eFτ‖ ≤ Ne−στ , (28)

where N and σ are positive constants. Note that because the matrix F is independent of the
design parameter ρ, so are the two constants N0 and σ. Taking the norm operation on the
both sides of the inequality (27), one obtains the following:

‖z(τ)‖ ≤ Ne−στ‖z0‖+
∫ τ

0
Ne−σ(τ−s)‖G‖(h‖x(s)‖

ρn +
D
ρn )ds

≤ Ne−στ‖z0‖+
ND
σρn (1− e−στ) +

∫ τ

0
Nh e−σ(τ−s) ‖z(s)‖

ρ
ds,

where the first inequality is derived using (28) and the Lipschitz condition (10) and the
second inequality is derived using ‖G‖ = 1 and (26). Multiplying the preceding inequality
by eσ0τ yields

eστ‖z(τ)‖ ≤ N‖z0‖+
ND
σρn (e

στ − 1) +
∫ τ

0

Nh
ρ
· eσs‖z(s)‖ds

≤ N‖z0‖+
ND
σ0ρn (e

στ − 1) +
Nh
ρ

∫ τ

0
(N‖z0‖+

ND
σ0ρn (e

σs − 1))e
Nh
ρ (τ−s)ds

= α1e
Nh
ρ τ

+ α2(eστ − e
Nh
ρ τ

),

where the second inequality is the result of Lemma 2 and the constants αi’s are given by

α1 = N‖z0‖ (29)

α2 =
ND
σρn (1 +

Nh
σρ− Nh

).

Dividing the final inequality by eστ , one obtains

‖z(τ)‖ ≤ α1e(
Nh
ρ −σ)τ

+ α2(1− e(
Nh
ρ −σ)τ

). (30)

Because N, σ, and h are independent of ρ, one can always choose a design parameter
ρ such that

ρ >
Nh
σ

and the exponential terms in (30) decay to zero asymptotically. One then has

lim
τ→∞

‖z(τ)‖ ≤ α2 =
ND
σρn (1 +

Nh
σρ− Nh

).

Finally, using (26), one obtains a bound of ‖x‖ as time approaches infinity:

lim
t→∞
‖x(t)‖ ≤ lim

t→∞
ρ(n−1)‖z(τ)‖ ≤ ND

σρ
(1 +

Nh
σρ− Nh

). (31)

As indicated in the preceding inequality, given any large disturbance bound D and
large Lipschitz constant h, one can always choose a sufficiently large design parameter ρ
for the right-hand side of the inequality to be arbitrarily small. In other words, the system
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state x converges to an arbitrarily small residual set around the origin if the eigenvalues of
the closed-loop system matrix are sufficiently far in the left half-plane.

Moreover, when the system has multiple input signals u ∈ Rm, the system is capable
of being transformed into controller canonical form as long as (A, B) is controllable, and
the realization can be written as m differential equation [33]. Therefore the deviation for
Equation (21) can be directly applied, and the convergency of system state follows (31) for
the multiple input case.

Remark 4. According to Theorem 2, to stabilize a system with a real-valued large disturbance
and large nonlinearity, a large design parameter ρ must be used in the proposed linear control
u = −Kx, and the state feedback gain K is correspondingly large. In other words, the proposed
linear control becomes high gain control. The high-gain control exhibits the so-called “peaking
phenomenon” [17], in which the control signal and the system peak to very large values during the
very initial transient period. To avoid such a peaking phenomenon, one can, starting from a small
value of ρ, increase ρ in either a stepwise or continuous manner until satisfactory performance is
achieved. Notice that Theorem 2 proves that a large value of ρ guarantees closed-loop stability and
steady state performance. However, good transient performance relies on proper scheduling of the
design parameter ρ.

5. Noise-Free Control Design

In the previous section, we showed that the linear state-feedback control can suppress
the disturbance as sliding-mode control. However, the control law based on a large
parameter ρ results in high-gain control that is sensitive to the measurement noise. To
address this disadvantage, a design structure inspired by [34] is proposed.

The concept of noise-free control design is illustrated by a single input system. As
depicted in Figure 2, an integrator is placed in front of the controlled system in the new
design, and the control parameter now satisfies u̇ = v. Intuitively, the control parameter u,
which is treated as an output signal of the integrator, carries no noise-induced chattering.
In the new design, one can construct an augmented system:[

ẋ
u̇

]
=

[
A B
0 0

][
x
u

]
+

[
B
0

]
(d + ∆ f (x)) +

[
0
1

]
v. (32)

where v is still a simple linear state feedback design

v = −
[

k1 · · · kn+1
][ x

u

]
, (33)

and [k1 · · · kn+1] is the state feedback gain stabilizing the augmented system (32) when
d = ∆ f (x) = 0.

control System
x

disturbance

v u

augmented system

s

1

Figure 2. block structure of noise-free control.
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Theorem 3. The control design v in (33) drives the original system state x to an arbitrarily small
region around the origin with any large disturbance upper bound D and large Lipschitz constant h
in (9) and (10).

Proof. The pair (A, B) is described in the controllable canonical form

A =


0 1 . . . 0
...

. . .
...

0 . . . 0 1
−θ1 . . . . . . −θn

, B =


0
...
0
1

,

and the control parameter u can be represented as

u =
dnx1

dtn + θTx− (d + ∆ f (x)), θ =
[

θ1 θ2 · · · θn
]T , (34)

where θ is a set of bounded parameters that satisfies

‖θ‖ ≤ M. (35)

Note that the set of first-order differential equations (32) can be described as an
n + 1th-order differential equation

dn+1x1

dtn+1 + (θn + kn+1)
dnx1

dtn +
n−1

∑
i=1

(θi + kn+1θi+1 + ki+1)
dix1

dti + (kn+1θ1 + k1)x1 (36)

=
d
dt
(d + ∆ f (x)) + kn+1(d + ∆ f (x))

if the state feedback gain in (33) is designed to place the closed-loop system poles to
−ρλ1, · · · ,−ρλn+1 with the design parameter ρ ∈ [1, ∞). Correspondingly, one obtains

dn+1x1

dtn+1 + (
n+1

∑
i=1

ρλi)
dnx1

dtn + · · ·+ (
n+1

∏
i=1

ρλi)x1(t) =
d
dt
(d + ∆ f (x)) + kn+1(d + ∆ f (x)). (37)

Define a new time index τ = ρt. The preceding equation becomes

dn+1x1

dτn+1 + (
n+1

∑
i=1

λi)
dnx1

dτn + · · ·+ (
n+1

∏
i=1

λi)x1(τ) =
d

dτ
(

d
ρn +

∆ f (x)
ρn ) +

kn+1

ρ
(

d
ρn +

∆ f (x)
ρn ). (38)

The differential equation can be written in the controllable canonical form

że(τ) = F0z + G0(
d

dτ
(

d
ρn +

∆ f (x)
ρn ) +

kn+1

ρ
(

d
ρn +

∆ f (x)
ρn )), (39)

where

ze(τ) =


x1
dx1
dτ
...

dnx1
dτn

, F0 =


0 1 · · · 0
...

. . .
...

0
. . . 1

−∏n+1
i=1 λi · · · · · · −∑n+1

i=1 λi

, G0 =


0
...
0
1

. (40)

Note that the subscript of ze stands for the transformed state of the augmented system.
Because F0 is a stable matrix, one has

‖eF0τ‖ ≤ N0e−σ0τ (41)
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according to Lemma 1,and the augmented system state ze(τ) satisfies the relation

[
x(t)
u(t)

]
+

[
0

d + ∆ f (x)− θTx

]
=


x1
dx1
dt
...

dnx1
dtn

 =


x1

ρ dx1
dτ
...

ρn dnx1
dτn

 = diag(1 · · · ρn)ze(τ). (42)

From the preceding equation, one obtains the inequalities

‖x(t)‖ ≤ ρn−1‖ze(τ)‖ (43)

‖u(t)‖ ≤ ρn−1(ρ + h + M)‖ze(τ)‖+ D, (44)

where (9), (10), (35), and (43) are used to derive (44). Using the procedure for evaluating
Theorem 2, one obtains

‖ze(τ)‖ ≤ β1e
(

N0h0
ρ2 −σ0)τ

+ β2(1− e
(

N0h0
ρ2 −σ0)τ

), (45)

where

β1 = N0‖ze0‖, β2 =
N0D0

σ0ρn+1 (1 +
N0h0

σ0ρ2 − N0h0
), (46)

and

D0 = D̄ + kn+1D + h, h0 = kn+1h. (47)

From (45), the transformed state is uniformly bounded for all time points τ. Because
N0, h0, σ0 are constants, one can always choose the design parameter ρ that satisfies

ρ >

√
N0h0

σ0
. (48)

With this design parameter ρ, all exponents in (45) decay to zero as time approaches
infinity. Thus, one has

lim
τ→∞

‖ze(τ)‖ ≤ β2 =
N0D0

ρn−1(σ0ρ2 − N0h0)
, (49)

and, by combining (43) and (49), one obtains

lim
t→∞
‖x(t)‖ ≤ lim

τ→∞
ρn−1‖ze(τ)‖ ≤

N0D0

σ0ρ2 − N0h0
. (50)

As per (48), the denominator of (50) is always positive. As evident in the preceding
equation, when a sufficiently large ρ is specified, the right-hand side of the inequality
becomes an arbitrary small quantity; thus, the system state x(t) converges to a small region
around the origin. Substituting (49) into (44), one verifies the following bound for the
control signal as time approaches infinity:

lim
t→∞

u(t) ≤ (ρ + h + M)
N0D0

σ0ρ2 − N0h0
+ D, (51)

where the fraction term vanishes with a sufficiently large ρ and where the bound is domi-
nated by the upper bound of the disturbance d.
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Remark 5. When the control system has multiple control inputs u ∈ Rm, the controller canonical
form of system is combined by m realizations [33], and the state-space realization of the noise-free
design can be written as m differential equations with the structure of (37). Therefore the result for
single input system can be generalized to the multiple input case; the augmented system (32) becomes[

ẋ
u̇

]
=

[
A B
0 0

][
x
u

]
+

[
B
0

]
(d + ∆ f (x)) +

[
0
I

]
v (52)

for the multiple inputs system, and the convergency of system state (50) and boundedness of control
signal (51) hold for (52) as well.

6. Application to a Two DOF Robot Manipulator

A two-link robot studied by [9] is used here to illustrate the efficiency of the proposed
control design. As shown in Figure 3, the manipulator is in the vertical position, and the
parameters are shown in Table 1. System matrices in (1) are defined as in [9]:

M =

[
m1l2

c1 + m2(l2
1 + l2

c2 cos(q2)) + I1 + I2 m2(l2
c2 + l2lc2 cos(q2)) + I2

m2(l2
c2 + I1 Ic2 cos(q2)) + I2 m2l2

c2 + I2

]
C =

[
−2m2l1lc2 sin(q2)q̇2 −m2l1lc2 sin(q2)q̇2

m2l1lc2 sin(q2)q̇2 0

]
G =

[
m2g cos(q1 + q2) + (m1 + m2)gl1 cos(q1)

m2gl2 cos(q1 + q2)

]
, F =

[
f1 0
0 f2

]
, (53)

and the desired trajectories are

qd =

[
2 sin(t)
sin(t)

]
. (54)

In this case, the system matrices (53) are assumed to be unknown and considered as
system uncertainties and disturbances in (5), and the system matrices in the closed-loop
system (5) are

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, B =


0 0
1 0
0 0
0 1

. (55)

y

x

l1l1

m2 , I2 

m1 , I1 

l1l1

q2

m2g

m1g
q1

 22qf 

 11qf 


2

Figure 3. The schematic diagram of two-DOF manipulator.
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Table 1. System parameters of the two-link robot.

Parameters Value

l1 1 m
l2 2 m

m1 1 kg
m2 1 kg
lc1 1 m
lc2 2 m
f1 0.3 N ·m · s/rad
f2 0.3 N ·m · s/rad

Conventionally, the sliding-mode control design [17] for the uncertain system (5) is
constructed as

u = −Kx− ξ
s
‖s‖ , (56)

where

K =

[
1 2 0 0
0 0 1 2

]
is the state feedback gain that places eigenvalues of A− BK in the open left-half plane. As
the nominal closed-loop system matrix Ac = A− BK is stable, a positive definite matrix P
exists, satisfying the Lyapunov equation [35]

AT
c P + PAc = −I. (57)

In the control law (56), s is the sliding variable

s = 2BT Px, (58)

where P is obtained from the Lyapunov equation (57) and the constant ξ = 70 is an upper
bound of unknown disturbances. Figure 4 shows that the system outputs track desired
references when the time exceeds 4 s with the sliding-mode control design, and Figure 5
shows the time history of the control signals. It can be seen that the control inputs suffer
from the chattering phenomenon because the discontinuous switching function sgn(·)
is used in the control design (56). By contrast, the robust linear control design (11) is
employed to deal with the uncertain system (5), where K is the state feedback gain that
places the eigenvalue of Ac in (12) to [−ρ,−2ρ,−3ρ,−4ρ], and the design parameter ρ > 0
observes the scheduling law

ρ(t) =
ρ̄

2
(

t− T
|t− T|+ ε

+ 1), (59)

where ρ̄ = 50, T = 4 and ε = 1 to provide a similar convergent speed as the sliding-mode
control design (56). In Figure 6, the tracking performance with the robust linear control
(11) is depicted, and Figure 7 presents the control signals. It is seen the robust linear
control (11) performs the robustness as the sliding-mode control design (56) with a much
more straightforward design algorithm; moreover, the chattering phenomenon in Figure 5
is absent, and the undesirable peaking phenomenon [17] is eliminated.
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Figure 4. Time history of system outputs and references: (a) q1 and qd1
, (b) q2 and qd2 (sliding-mode

control).
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Figure 5. Time history of control signals: (a) u1 and (b) u2 (sliding-mode control).
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Figure 6. Time history of system outputs and references: (a) q1 and qd1
, (b) q2 and qd2 (robust linear

control).
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Figure 7. Time history of control signals: (a) u1 and (b) u2 (robust linear control).

When a uniform distributed measurement noise in the interval [−0.001, 0.001] is
added to the state measurement of x, the control performance of proposed robust linear
control is shown in Figure 8 and 9. Figure 8 shows that the control mission is achieved
even if the measurement is corrupted by a stochastic noise. However, as depicted in
Figure 9, when the design parameter ρ in (59) is increasing, the interference of measurement
noise is increased in the control signals; as discussed in Remark 4, the control signal is
coupled with an undesirable, high-frequency oscillation when the state feedback gain K is
correspondingly large.
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Figure 8. Time history of system outputs and references: (a) q1 and qd1
, (b) q2 and qd2 (robust linear

control with noise).

Because the measurement process always couples with measurement noise, the un-
desirable oscillation occurs when the control design (11) is implemented. Therefore,
developing the robust noise-free control design is necessary for eliminating the noise-
induced chattering. As an intuitive augmentation of (11), the state feedback gain K
of the robust noise-free control in (33) is designed to place the poles of system (52) to
[−ρ,−2ρ,−3ρ,−4ρ,−5ρ,−6ρ], and the design parameter ρ are scheduled as in (59). The
controlled system response is depicted in Figure 10. Following the same concept of pole
placement, the exponent σ0 in (41) coincides with σ in (28); the convergent speed of robust
linear control (30) and robust noise-free linear control (45) are dominated by the same
singular value when ρ is large (Figure 11). On the other hand, because of the high-frequency
oscillation is filtered out by the integrator, the control inputs of the noise-free design are
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smooth even if the state measurement is corrupted by a stochastic noise and the control
gain K is scheduled to a high level; moreover, the peaking phenomenon [17] which often
occurs in high-gain control is absent due to the design control structure and the scheduling
law (59).
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Figure 9. Time history of control signals: (a) u1 and (b) u2 (robust linear control with noise).
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Figure 10. Time history of system outputs and references: (a) q1 and qd1
, (b) q2 and qd2 (robust

noise-free linear control).
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Figure 11. Time history of control signals: (a) u1 and (b) u2 (robust noise-free linear control).
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7. Conclusions

This paper shows that simple linear control can effectively suppress large system
uncertainties and external disturbances. The proposed linear control is simple, has no side
effect of control chattering even in a noisy environment, and can deal with large system
uncertainties and large external disturbances as effectively as the sliding mode control does.
In the application example, the noise-free design is implemented in a robot manipulator.
The simulation results confirm that the proposed robust noise-free control algorithm is an
intuitive design that requires minimum computational effort, and therefore can be easily
accepted by control engineers with only fundamental control knowledge, and the actuators
in real world are protected.
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