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Abstract: The increasing use of robots in the industry, the growing energy prices, and higher envi-
ronmental awareness have driven research to find new solutions for reducing energy consumption.
In additional, in most robotic tasks, energy is used to overcome the forces of gravity, but in a few
industrial applications, the force of gravity is used as a source of energy. For this reason, the use of
magnetic springs with actuators may reduce the energy consumption of robots performing trajecto-
ries due their high-hardness magnetic properties of energy storage. Accordingly, this paper proposes
a magnetic spring configuration as an energy-storing system for a two DoF humanoid arm. Thus, an
integration of the magnetic spring system in the robot is described. A control strategy is proposed to
enable autonomous use. In this paper, the proposed device is modeled and analyzed with simula-
tions as: mechanical energy consumption and kinetic energy rotational and multibody dynamics.
Furthermore, a prototype was manufactured and validated experimentally. A preliminary test to
check the interaction between the magnetic spring system with the mechanism and the trajectory
performance was carried out. Finally, an energy consumption comparison with and without the
magnetic spring is also presented.

Keywords: magnetic spring; energy consumption; humanoid arm; control strategy; energy-storing
system; neurorehabilitation

1. Introduction

Humanoid robots have been a source of study for at least two decades, with appli-
cations in industry, medicine, and, especially, in the area of rehabilitation [1,2]. Many
of these devices are based on robots of serial and parallel architectures [3]. However,
these robotic devices present several problems for their development, and one of them
is a high energy consumption during rehabilitation tasks. One way to achieve an energy
consumption reduction is a correct balancing strategy. There have been many balancing
methods developed over the years, all of them achieving their principal goal, which is
balancing robots. These methods were designed according to the necessities of each robot.
In reference [4], the author made a review of the mechanical gravity compensation and
balancing solutions. He divided the solutions into three general groups, which are: gravity
compensation by counterweights, by auxiliary actuators, and balancing by springs. The
main principle of the first technique is adding extra mass (counterweights) to the moving
links to keep their center of mass balanced. An example of this type was developed in
reference [4]; the author harnessed the mass of the hydraulic robot system to balance
itself. Industrial robots KUKA R630 and PUMA 200 use a similar system but harness their
electric motor mass. The second type uses auxiliary links (a mechanical system between
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the initial structure and the balancing element [5]) for balance. An example of this type
was carried out in reference [6], where the authors applied a novel auxiliary linkage system
to a five Degrees of Freedom (DoF) Penta-G robot. The next group of balancing solutions
has several subtypes, because there are different types of auxiliary actuators. An example
is the cable and pulley arrangement, which uses the simple principle of sliding a cable
through a pulley to move a mass. In reference [7], the authors applied the current technique
to a glove exoskeleton for obtaining and transmitting the data of the hand gestures to a
mobile device. A pneumatic or hydraulic system can be used for balancing a robot. In
reference [8], the authors developed a mechatronic concept using a gas spring; the gas
exerted a quasi-constant force against the external force applied to it. This system achieved
a balance into a human-operated load to reduce the human effort while operating it.

The balancing by springs technique has been relevant in recent years, since it brings
more benefits than the other strategies [6]. There are two types of springs, the zero free
length and the non-zero free. The zero free length is a spring that exerts zero force at
zero length, but this is mechanically complex, since a coil will never be a zero length.
On the other hand, the non-zero free length exerts zero force at nonzero positions [6]. In
reference [9], the authors used a novel gravity compensation system using springs for a
four Degrees of Freedom (DoF) manipulator that had parallelogram links. They focused on
reducing the gravity torque in the joints by adding springs. Furthermore, in reference [10],
the authors proposed a system using nonlinear springs for gravity balancing. They were
applied to a robotic arm with an elbow, achieving a reduction of the actuators torques.
The work presented in reference [11] defined that an energy consumption reduction can
be achieved by modifying the hardware and the software of a robot. The hardware is
divided into three categories: robot type, hardware replacement, and hardware addition.
This subclass refers to analyzing what kind of robot would be adequate for the required
work tasks and for achieve energy savings. In reference [12], a study was carried out to
find out which type of robot would be more efficient between parallel and serial structures.
According to this study, the parallel one (horizontal position) achieved a better average
performance than the other ones. The next hardware category is the hardware replacement;
this type looks for a weight reduction in the robot by making its arms or joints as light
as possible, so, in that way, the robot can move with less power [11]. An example is
the DLR’s torque-controlled lightweight robot III, where the authors made an effort by
improve their ultralight carbon-fiber arms in their robot, achieving less energy loss [13].
The last hardware type is the hardware addition. This is a relative novel technique. Its
principal objective is to use additional hardware as energy-storing and recovery devices.
It can be divided into two main groups, which are: Energy-Storing-Device Types and the
Energy-Sharing Devices [11]. According to reference [14], the Energy-Storing-Device Types
can be divided into four types of kinetic-energy recovery systems (KERS): mechanical
KERS, electric KERS, hydraulic KERS, and hydroelectric KERS. Focusing on the mechanical
KERS type: it uses mechanical devices for energy storage. In reference [15], these devices
were defined as “mechanical energy capacitors. One type of this mechanical capacitors” is
the elastic elements, and the famous elastic element is the springs.

In reference [16], the authors designed an energy-saving system using springs for a
DELTA robot focusing on pick-and-place operations. They used a multibody simulation to
find out the optimal spring specs and the optimal trajectory to harness the robot’s natural
dynamics. They collocated the springs in parallel with the electric motors; with this, the
springs provided the required torque for moving the links, reducing the amount of the
exerted torque from the actuators. Another system was developed in reference [17]; the
authors made a hybrid system to harness the energy-storing devices and energy-recovering
devices to get both benefits. In reference [18], the authors also used springs for energy
consumption reduction in the pick-and-place applied to a Reconfigurable-Planar-Linkage
(RePlaLink), obtaining an energy consumption reduction in contrast to a similar robot
but without the springs. In reference [19], a highly efficient pick-and-place technique was
developed by the authors for SCARA robots. They used a similar configuration as in
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reference [17] for the springs. The authors set arbitrary initial and end positions for the
study, because the robot was not fixed in one position. The technique uses magnets instead
of springs, gears, pneumatics, or another kind of auxiliary system. Usually, it is compared
with springs since it brings a similar performance but with some advantages over springs,
like noncontact, zero vibrations, zero noises, etc.

In this paper, a novel magnetic spring strategy is proposed and added to a two
Degrees of Freedom (DoF) serial robot model. A novel configuration and experimental
characterization of the novel magnetic spring configuration is introduced. In addition, to
identify the initial position of the end effector (EE) at the startup in the robot, the control
algorithm is improved. Finally, an energy consumption comparison, with and without a
magnetic spring, is described.

2. Conceptual Design and Dynamic Model of a Two DoF Humanoid Arm

The dynamic model of a serial robot with two Degrees of Freedom (DoF) (Double
Pendulum) is presented, which simulates the action of the human arm, composed of
two joints variables (q1 and q2). Figure 1 shows the motion ranges of each joint. The
model allows calculating the necessary torque value during the different trajectories, in
addition to modifying the distance of each of its links, masses, angles of rotation, speeds,
and accelerations (see Figure 2a). The humanoid arm can be used as a prosthetic and
neurorehabilitation; in Figure 2b, the CAD model is shown.
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The mechanism is composed of two active joints, q1 and q2, that represent the shoulder
and elbow joint, respectively, as well as a series of variables to control. The data for an
average human arm [20,21] are presented in Table 1 below.

Table 1. Data from an average human arm [22].

Mass m1 = 2.13 kg m2 = 1.49 kg
Links L1 = 0.316 m L2 = 0.265 m

Distance between the axes of rotation
and the centers of mass Lc1 = 0.162 m Lc2 = 0.127 m

Moments of inertia Y-axis I1 = 1.66 kgm2 I2 = 1.66 kgm2

Friction constant K1 = −1 N K2 = −1 N

The direct and inverse kinematics of the two DoF mechanism were programed to carry
out two trajectories: a circle and a lemniscate; these trajectories were tested to evaluate their
feasibility and to assist the training exercises for the human arms in references [21,22]. The
equations that allow to generate each of the desired trajectories, x0 and y0, are presented by
considering their origin and radius as

xc = 0.2 m; yc = 0.2 m; r = 0.1 m (1)

x0 = xc + rsin(n); y0 = yc + rcos(n) (2)

x0 = xc + rsin(2n); y0 = yc + rcos(n) (3)

where xc and yc are the center of the trajectory, r is the radius, and n varies from 0◦ to 360◦.
Equations (2) and (3) are used to perform a circle and the lemniscate, respectively.

The kinematic equations are programmed and simulated in MATLAB R2020b to find
the angles of the joints and the positions of the end effector (EE) that allow generating the
two previously defined trajectories.

Torque, Energy Consumption, and Electrical Power

The total mechanical energy ET of the system is a function of the kinetic energy ECT
and the potential energy UT ; then, the equations that allow obtaining the value of the total
energy of the system are

ET = ECT + UT (4)

ECT = K1 + K2 (5)

UT = U1 + U2 (6)

K1 =
1
2

m1Lc1
2

.
q1

2 +
1
2

I1

.
q1

2 (7)

K2 =
m2

2
I1

2
.

q1
2 +

m2

2
Lc2

2
[ .

q1
2 + 2

.
q1

2 .
q1 +

.
q2

2
]
+ m2L1Lc2

[ .
q1

2 +
.

q1
.

q2

]
cos(q2) +

1
2

I2[
.

q1 +
.

q2 ]
2 (8)

U1 = −m1Lc1 cos(q1) (9)

U2 = −m2L1gcos(q1)−m2Lc2 gcos(q1 + q2) (10)

The total electrical power PT is calculated as a function of the consumed torques T1
and T2 and the speed of each of the links:

P1 = T1
.

q1 (11)

P2 = T2
.

q2 (12)

PT = P1 + P2 (13)
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3. A Magnetic Spring as an Energy-Storing System

The magnetic spring system is composed of two identical well-shaped cylindrical
magnets, as in Table 2 [23], which shows the magnet proprieties. To calculate the force
generated in the magnetic spring, several equations were developed. First, there was the
Coulomb’s law, which focused on the magnet’s charges and the distance between them to
obtain the magnetic force [24–27]. Additionally, there was the equation that uses low order
polynomials to calculate it [28,29]. Another equation was developed in reference [30], in
which the authors defined their formula as the sum of the forces due to the four pairs of
the surface.

Table 2. Properties of the N45 magnet used for the magnetic spring system [23].

Material NdFeB
Exterior diameter 3/4” (19 mm)
Interior diameter 1/4” (6.35 mm)

Thickness 1/8” (3.175 mm)
Tolerance +/−0.1 mm

Mass 4.7 g
Grade N35

Subjection force 3.3 kg
Magnetization type Axial

The proposed experimental characterization used two magnet (fixed and float) and a
gram scale balance OHAUS model CS2000. U(s) is the distance between the magnets, and
Y(s) is the repulsive force calculated using the data of the balance and multiplied to reach a
gravity force of 9.81 m/s2. The interaction of displacement–force between the magnets in
the function to the time is shown in Figure 3.
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The System Identification toolbox from MATLAB was used to estimate the coefficients
and the order of a transfer function, a third-order system with zero, as

G(s) =
Y(s)
U(s)

=
−4.727× 10−1s + 5.397× 210−2

s3 + 5.904× 10−1s2 + 0.01121 s + 1.794× 10−6 (14)
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4. Integration of the Magnetic Spring System in the Robot

According to the previous information, a configuration that integrated the magnetic
spring system with the mechanism was proposed, as in Figure 4a,b. In addition, the
parameters that define this configuration are presented in Table 3. The objective is to
provide energy to the actuation system based on the magnetic field principle.
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where τe1 and τe2 are the external torques generated by the magnetic spring system, Ms1

and Ms2 are the fixed magnets, Mm1 and Mm2 are the float magnets, dm1 and dm2 are the
distances between magnets fixed and float, respectively, F1 and F2 are the repulsive forces
between the magnets, Lx1 and Lx2 are the positions of the fixed magnets around L1 and L2,
and Lt is the max distance between articulations to the fixed magnet.

Table 3. Design parameters by integration of the magnetic spring system in the robot.

Variable Min Value Max Value

dm1 0.003 m 0.028 m
dm2 0.003 m 0.028 m
F1 0.130 N 5 N
F2 0.130 N 5 N
Lx1 0.010 m L1
Lx2 0.010 m L2

Figure 4a,b allows describing τe1 and τe2 when interacting with the mechanism, and
Table 3 shows the parameters of the system. Therefore, the equations to calculate τe1 and
τe2 generated by the magnetic spring system, can be expressed as

dmi =

√∣∣∣Msyi
−Mmyi

∣∣∣2 + ∣∣∣Msxi
−Mmxi

∣∣∣2 (15)

Fi =
f Msi Mmi

dmi
2 (16)

qi = sin−1
(

dmi

Lxi

)
(17)

τei = FiLxi i = {1, 2} (18)
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where Msyi
, Mmyi

, Msxi
, and Mmxi

are the coordinates x and y of the magnets, and f is the
magnetic field constant.

The analysis of the mechanical energy and electrical power consumption of the dy-
namic model of the robot is based on the implementation of the Proportional Derivative
(PD) control with Desired Gravity Compensation (PD-DGC) [31,32].

5. Control Strategy and Simulations

The aim of the pure position control of manipulative robots whose dynamic models
include the gravitational torque term g(qdi

) is solved by the PD-DGD [31]. The PD-DGD
control law is represented as

τi = kpi qei + kvi

.
qei + g

(
qdi

)
i = {1, 2} (19)

where τ1 and τ2 are the joints torques; kp1 = 120, kp2 = 81, kv1 = 35, and kv2 = 15 are the
proportional and derivative constants, respectively, and are the positive-definite matrix, qe1

and qe2 are the trajectories errors, as in Equation (20), and g
(
qd1

)
and g

(
qd2

)
are the torques

due to the gravity forces in positions qd1 and qd2 [32]. The only difference with the gravity-
compensated PD controller is that the term g

(
qdi

)
replaces g(qi). The practical convenience

of this controller is evident when the desired position qd is periodic or constant. Indeed,
the vector g

(
qdi

)
, which depends on qd and not on qi, can be evaluated “offline” once qd

has been defined and, therefore, it is no longer necessary to evaluate g(qi) in real time.

qei =
(

qdi
− qi

)
i = {1, 2} (20)

Figure 5 shows the two trajectories generated by the mechanism by means of a PD-
DGD-type control algorithm with the desired gravity compensation; in addition, the start
and end of the trajectory located at q1 = 0◦ and q2 = 0◦ are presented.
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The block diagram in Figure 6 describes the elements to implement the control strategy
of the two DoF robot arm, including the magnetic springs.

The torque generated by the magnetic springs are added to the torque generated
by the robot arm actuators by the control algorithm τci , and the torque generated by the
magnetic spring system τei is added and enters the dynamic model of the robot to follow the
trajectory (position and velocity). In addition, through this control diagram, it is possible to
know when the torque generated by the magnetic spring system acts on the system, which
indicates when the system provides energy to the control.
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5.1. Mechanical Energy Consumption Simulation

To analyze the power consumption of the robot arm with the magnetic spring system
during the trajectory, a mechanical energy consumption simulation was carried out. In
Figure 7a–c, three states are observed: initial position, trajectory generation, and return
to the initial or final position. In addition, the total mechanical energy consumption
Ec (J) of the system is shown for each of the mentioned states. The generation of the
circular trajectory is programmed by implementing a PD-DGD-type control algorithm with
gravity compensation.

Figure 8 shows the required mechanical energy in the robot during the circular trajec-
tory from the starting to the 400-sample time. The red line corresponds to a mechanical
energy consumption without the magnetic spring system, and the blue line corresponds to
a mechanical energy consumption with the magnetic spring.

The results in Figure 8 show a significant reduction on the mechanical energy that
the control must apply to the robot. The estimation of the energy consumption during the
circle trajectory is reduced by 71.47% with the magnetic spring system.

5.2. Kinetic Energy Rotational Simulation

To validate the power consumption, a kinetic energy rotational simulation is proposed;
the simulation was developed in Working Model (version 5.1.2.53, San Mateo, CA, USA).
The objective was to measure the kinetic energy rotational from q2 = 0◦ to q2 = 15 with
and without the magnetic force. In the scenario with the magnetic force applied the
actuator, torque was input as 20 Nm, and a 5-N force along the x-axis was applied for
0.5 s, simulating the magnetic field. In the scenario without the magnetic force, only the
actuator torque was input as 25 Nm. Both simulation scenarios lasted 1 s. The frictionless
motion of L2 was programmed, and the gravitational force was included. The simulation
parameters of the mechanism are shown in Table 1. Figure 9 a and b shows a scheme of
both the simulated scenarios.
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Figure 10a,b shows the power consumption with and without the magnetic force;
the measure of the kinetic energy rotational with a magnetic force was 0.5 J, and the
measure of the kinetic energy rotational without a magnetic force was 0.9 J. The results in
Figure 10a,b show a significant reduction as 0.4 J on the kinetic energy rotational applied
to the mechanism. Therefore, when the magnets of the system are employed, the motor
only needs to overcome the dissipative forces, reducing the energy consumption.



Actuators 2021, 10, 136 11 of 17

Actuators 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

USA). The objective was to measure the kinetic energy rotational from q = 0° to q =15 with and without the magnetic force. In the scenario with the magnetic force applied 
the actuator, torque was input as 20 Nm, and a 5-N force along the x-axis was applied for 
0.5 s, simulating the magnetic field. In the scenario without the magnetic force, only the 
actuator torque was input as 25 Nm. Both simulation scenarios lasted 1 s. The frictionless 
motion of L  was programmed, and the gravitational force was included. The simulation 
parameters of the mechanism are shown in Table 1. Figure 9 a and b shows a scheme of 
both the simulated scenarios. 

 
(a) (b) 

Figure 9. Power consumption simulation scheme: (a) with magnetic force, (b) without magnetic 
force. 

Figure 10a,b shows the power consumption with and without the magnetic force; the 
measure of the kinetic energy rotational with a magnetic force was 0.5 J, and the measure 
of the kinetic energy rotational without a magnetic force was 0.9 J. The results in Figure 
10a,b show a significant reduction as 0.4 J on the kinetic energy rotational applied to the 
mechanism. Therefore, when the magnets of the system are employed, the motor only 
needs to overcome the dissipative forces, reducing the energy consumption. 

  
(a) (b) 

Figure 10. Power consumption: (a) with magnetic force, (b) without magnetic force. 

 

Figure 10. Power consumption: (a) with magnetic force, (b) without magnetic force.

5.3. Multibody Dynamic Simulation

To analyze the interaction between the mechanisms with the magnetic spring system
for the flexion and extension trajectories, a multibody dynamic analysis was carried out.
For the simulation, a trajectory from q2 = 0◦ to q2 = 15◦ ◦ was programmed for 5 s to
move the mass of L2 = 1121.48 g and material PLA. An external force generated by the
magnetic spring system of 5 N was applied after 3 s from the start of the trajectory; this
force was applied on top of the surface of the magnet in a direction normal to the surface
of the magnet.

The torque applied by the mechanism before and after interacting with the external
force of the magnetic spring system was analyzed, as shown in Figure 11a. The results
show that, at the beginning of the trajectory, a torque of 242.15 Nm was needed, which
increased until it reached 349.65 Nm in 3 s; after the external force was applied, the torque
decreased to 125.57 Nm until it reached 48.06 Nm in 5 s. Therefore, at 3 s, the torque
decreased 224.08 Nm due to the interaction of the magnetic spring system.
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In Figure 11b, the analysis of the energy consumption is presented, and the data
shows that, at the beginning of the trajectory, 0.0120 W was consumed, which increased
until reaching 0.0190 W in 3 s; then, when the magnetic force was applied, the energy
consumption went down to −0.0065 W in 3 s. This result indicates that the magnetic
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system causes the mechanism to behave like a generator system, since it provides more
energy than it consumes. Therefore, this result, due to the magnitude of the external force
generated by the magnetic system, is higher than that required by the mechanism.

6. Prototype Manufacturing and Experimental Test

After the design and simulation of a magnetic spring as an energy-storing system for
a two DoF humanoid arm, a prototype was produced with additive manufacturing [33].
The geometrical parameters of the mechanism with the magnetic spring system are shown
in Table 4. Two magnet N45 used for the magnetic-spring system, two Dynamixel AX-12A
servomotors motors, were chosen for the actuation system of the prototype, as shown in
Figure 12. The controller is composed of an Arduino Mega board that is connected to
two motors, and this board allows speed and direction control of the motor at the same
time. The power supply generates 5 V DC to 12 V DC and a maximum current of 2 A. The
prototype weight is 2.5 kg, and thanks to the additive manufacturing technology used, the
manufacturing price of the prototype is less than $400.

Table 4. Geometrical parameters of a magnetic spring as an energy-storing system for a two DoF
humanoid arm.

Dimension Value (mm)

L1 250
L2 170
Lx1 60
Lx2 120
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Figure 12. Prototype with the magnetic spring system: (a) forearm detail, (b) full arm detail,
(c) arm detail.

Preliminary tests were carried out to check the interaction between the magnetic spring
system with the mechanism and the trajectory performance. The aim of the experiment was
to measure the ability of the mechanism to generate the flexion and extension trajectories in
the end effector (EE) defined by the x1 and y1 axes. Thus, two poses were programed to test
the reaction of the system. These poses consisted of a flexion and extension trajectory defined
from q2 = 0◦ to q2 = 90◦ and q2 = 90◦ to q2 = 0◦, as shown in Figure 13a–c, respectively.
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Figure 13. Flexion and extension trajectories: (a) capture at 0◦, (b) capture at 45◦, (c) cap-
ture at 90◦.

To validate the trajectory performance, a strategy on marker detection was used
to identify the EE position through image processing; this strategy was explained in
reference [34]. Figure 14a–c shows the EE identification in green color, and Figure 15 shows
the comparison between the program trajectory and the trajectory generated by the EE,
defined by xi and yi.
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The results in Figure 15 show a significant error in the trajectory that the mechanism
generated. The estimation of the trajectory error is 3%.

To validate the low power consumption of the mechanism with and without the
magnetic spring system, an experiment was proposed to measure the current consumption.
The current consumption was measured for a trajectory from q2 = 0◦ to q2 = 15◦. This
trajectory was selected to function with the specifications of the magnetic system shown in
Table 3. A T-RMS digital multimeter powered by Steren was used. The results obtained
showed that the mechanism with the magnetic spring system consumed a current at the
startup of the trajectory of 0.031 A and finished at 0.113 A. On the other hand, when
the mechanism was without the magnetic spring system, the current consumption at the
startup of the trajectory was 0.050 A and finished 0.140 A. Therefore, it can be validated
that the current consumption in the startup was 0.019 A less by using the magnetic spring
system. The results obtained are presented in Figure 16a,b. The average current con-
sumption with and without the magnetic force was 11.46 A and 13.81 A, respectively.
Considering that the voltage was the same, this results in about a 17% power consumption
reduction when introducing the magnetic force; this magnetic force has a production cost
of approximately $12.
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All in all, the focus of this paper was on the design of a magnetic spring as an
energy-storing system, integration of the magnetic spring with the humanoid arm, and
preliminary testing for reduced power consumption. The advantages with other designs,
as shown in reference [16], are that they use physical contact, and we proposed no contact;
this allowed us to avoid mechanical wear between the moving parts of the prototype.
However, we had limitations, such as adding weight to the mechanism, as represented by
the magnetic system.

The mechanical design of q2 that used the additional supports necessary for the
magnetic system allowed us to generate the flexion and extension motions of the elbow
without limitations. However, for q1 it was not possible to generate the motions of the
shoulder, since the mechanical design had one DoF.

As for future works, the proposed design can be adapted to generate reference trajec-
tories for three-dimensional exercises. In addition, there may be alternative ways to better
use a magnetic spring as an energy-storing system for reduced power consumption.

7. Conclusions

In this paper, a magnetic spring as an energy-storing system for a two DoF humanoid
arm was proposed. The proposed design was based on the characteristics of the magnetic
spring obtained through a displacement–force relationship. The new prototype is character-
ized by a kinematic model, trajectory performance analysis, and simulations that include a
mechanical energy consumption and kinetic energy rotational and multibody dynamics.
Then, a low-cost prototype presented its manufacturing process through 3D printing and
commercial components. The hardware and software for the control system were then
detailed, and experimental tests validated the performance and low power consumption of
the proposed mechanism design.

In conclusion, a magnetic spring as an energy-storing system for a two DoF humanoid
arm allowed to obtain low energy consumption through the phenomenon of attraction
and repulsion of the magnetic field and the action force that compresses them. In future
developments, the components of the magnetic spring system will be manufactured with
an improved repulsion and attraction force through the electromagnetic models, improving
the magnetic force and creating a high energy-efficiency potential.
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