
actuators

Article

Dynamic Parameter Estimation of Large Space Debris Based on
Inertial and Visual Data Fusion

Jinming Yao 1,2 , Yuqiang Liu 3, Huibo Zhang 1,2,* and Shijie Dai 1,2

����������
�������

Citation: Yao, J.; Liu, Y.; Zhang, H.;

Dai, S. Dynamic Parameter

Estimation of Large Space Debris

Based on Inertial and Visual Data

Fusion. Actuators 2021, 10, 149.

https://doi.org/10.3390/act10070149

Academic Editor: André Preumont

Received: 10 May 2021

Accepted: 22 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,
Tianjin 300401, China; hebuteryaojinming@163.com (J.Y.); dsj@hebut.edu.cn (S.D.)

2 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
3 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China; echo33151223@sina.com
* Correspondence: zhanghb@hebut.edu.cn

Abstract: Most large space debris has large residual angular momentum, and the de-tumbling
and capturing operation can easily cause instability and failure of tracking satellites. Therefore,
it is necessary to perform real-time dynamic parameter identification of space debris prior to the
imminent de-tumbling and capture operation, thus improving the efficiency and success of active
debris removal (ADR) missions. A method for identifying dynamic parameters based on the fusion of
visual and inertial data is proposed. To obtain the inertial data, the inertial measurement units (IMU)
with light markers were fixed on the debris surface by space harpoon, which has been experimentally
proven in space, and the binocular vision was placed at the front of a tracking satellite to obtain
coordinates of the light markers. A novel method for denoising inertial data is proposed, which will
eliminate the interference from the space environment. Furthermore, based on the denoised data
and coordinates of the light markers, the mass-center location is estimated. The normalized angular
momentum is calculated using the Euler–Poinsot motion characteristics, and all active debris removal
parameters are determined. Simulations with Gaussian noise and experiments in the controlled
laboratory have been conducted, the results indicate that this method can provide accurate dynamic
parameters for the ADR mission.

Keywords: visual and inertial data fusion; denoising of redundant IMUs’ data; large space debris

1. Introduction

As human space activities increase, the condition of space debris gradually deterio-
rates, and the probability of collision with spacecrafts in orbit gradually increases [1–4].
Among them, large space debris such as rocket upper stages will create a large number of
new fragments after the collisions and disintegration, which seriously threatens the safety
of orbiting spacecraft. Therefore, the active debris removal (ADR) mission, which include
de-tumbling and capture operation, is necessary to carry out. Large space debris is mostly
more than 2 m in size [5]. It is affected by the gravity of the earth, sunlight pressure, and
residual angular momentum, and often presents the spin, nutation, and precession mixed
motion at around 40 rpm [6]. So, the knowledge of large debris’ dynamic parameters and
inertial properties is crucial for ADR mission.

For the estimation of three-axis tumbling debris’ dynamic parameters, the stereo-
vision methods have been widely used. Tweddle et al. [7,8] proposed a method to estimate
the dynamic parameters of non-cooperative targets based on binocular vision. In this
method, aiming at the space proximity operation [9], the rotation of space debris was
modeled by the Euler–Poinsot model, and the estimation of parameters was regarded as
SLAM. The linear velocity, angular velocity, mass-center location, and normalized inertia
tensor matrix were considered, and the factor graph method was used to establish the
solution model. Finally, iSAM (incremental smoothing and mapping) system was used to
acquire the corresponding motion and inertia parameters. The effectiveness of this method
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has been verified by space station experiments [10]. At the same time, Tweddle analyzed
the observability of the binocular vision measurement method and concluded that when
measuring the inertia tensor matrix, the rank of the observation matrix is one less than the
number of variables. So, normalization is used to quantify inertia tensor. This normalization
was also used by many visual measurement methods [11–14]. Setterfield et al. [11,12]
described a procedure of estimating the inertial properties based on stereo vision, and
also used Euler–Poinsot to model the rotation of space debris. By considering the relative
magnitude of angular momentum and angular kinetic energy, as well as the relative
situation of the principal moment of inertia, the motion was divided into seven forms,
and two most common cases were considered. By analyzing the geometric properties
of the polhode, the optimization equation was established to solve the estimation of the
principal axes. The dynamic equation of Euler–Poinsot motion was analyzed and deduced,
and the optimization of inertia ratio estimation was solved. Vincenzo Pesce et al. [13]
regarded the relative position, attitude, velocity, angular velocity, and inertia ratio of
space debris as state variables, and used a nonlinear state equation to model the dynamic
characteristics of non-cooperative targets. He took the motion equation as a process model.
The stereo-vision observation equation and Euler dynamic equation were regarded as
the observation model. IEKF (iterated extended Kalman filter) was used for the above
model. Numerical simulation showed that the method can quickly converge and showed
good robustness. QIU et al. [14] proposed a two-step method to estimate the inertia ratio,
attitude, angular velocity and the direction of angular momentum. The EKF (Extended
Kalman Filter) was used, and numerical simulations were performed, which showed the
accurate estimate. Radar, LIDAR and TOF cameras are also used for the identification of
space debris dynamics parameters [15–19]. Bai et al. [15] creates a data-recording model for
radar’s two-dimensional (2D) ISAR imaging of rotating objects, and the effectiveness of the
algorithms is demonstrated by simulations. For the pose determination of uncooperative
targets, Opromolla et al. [16] proposed a customized three dimensional template matching
approach, which is used to obtain initial pose, and ICP algorithm is used for pose tracking.
Numerical simulations verify the high accuracy and robustness of the method, but the
real-time performance of the algorithm is not better than other algorithms and cannot meet
the requirements of the ADR tasks. Based on radar data and time-frequency based signal
processing, Ghio et al. [17] proposed an method that is used to estimate the geometrical
and motion parameters of resident space objects located in the LEO region. Furthermore,
the high accuracy and high real time performance of the method is demonstrated by
simulation. Using the a K-band frequency-modulated continuous-wave radar data, Ghio
et al. [18] identified the size and spin rate of the space objects, and the experimental results
proved that the method can be effectively used for identifying spinning space debris
characterization. In [19], Ghio et al. compared the methods relying on inverse radon
transform for the estimation of the object’s rotation period.

The above methods are used for Phase I of proximity operation (The phases of the
proximity operation are: I—Observing and Planning; II—Final Approaching; III—Impact
and Capture; IV—Post-capturing stabilization [9]), that is, checking the target at a safe
distance, obtaining information about the target, and planning the follow-up phase [11].
In this phase, there is no need for high accuracy, the visual method can achieve good
results. However, in the subsequent phases, especially in Phase 3, which include ADR
mission, the error of the visual method is unbearable. For example, in Pesce’s work [13], the
convergence value of relative-position error is above 0.4 m. Therefore, the visual method
is not suitable for the ADR mission. To solve the problem of Phase III, Qingliang Meng
et al. [20] used binocular vision and a flexible rod with a force–moment sensor to identify
the dynamic parameters of non-cooperative targets. In this method, the flexible rod carried
by the tracking satellite was used to change the motion of the target, and the force–moment
sensor at the end of the flexible rod was used to identify the contact force. The binocular
vision was used to identify the changes of the target pose. Using the data, all inertia
parameters of space debris, including the mass of space debris that could not be recognized
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by vision, were estimated. However, this method has some risks: when the target is larger
than the tracking satellite, if the flexible rod was exerted on the hole of the target and
cannot be pulled out in time, the detection satellite might be temporarily attached to the
target, which will cause satellite instability or even loss of control.

To solve the shortcomings of existing methods, an inertial parameter estimation
method of non-cooperative targets based on binocular vision and inertial measurement
unit (IMU) fusion is proposed in this paper. This method combines the visualization of
the visual method and the accuracy of inertial sensors’ measurement, can quickly and
accurately estimate dynamic parameters of targets, and convert the parameters to the ADR
coordinate system, which is beneficial to calculate direction and magnitude of de-tumbling
and capture’s torque. This method refers to I.V.Belokonov’s work [21] in the use of IMU.
I.V.Belokonov assumes that inertial units can be fixed on space debris using nanosatellites,
regardless of how to launch and attach the nanosatellites to the debris surface, only the
detection process is considered, and the following two hypotheses are made:

(a) The mechanical connection of IMU is rigid;
(b) Because the measurement time is very short, the perturbation moment has a minimal

influence on the motion, and the influence is not considered.

In this paper, we also use the above assumption: the inertial unit can be attached to
the surface of space debris using the space harpoon [22], which has successfully done space
experiments. Because the IMUs are generally light, it does not bring too much difficulty
to the attachment. In the next section, we will discuss the feasibility of space harpoon
attachment, but as this paper is mainly concerned with the subsequent identification of the
dynamical parameters, the feasibility of spatial harpoon attachment will not be discussed
much. Furthermore, to simplify the image matching, light markers are set on the surface of
IMUs.

In this paper, a novel identification algorithm of large debris’ dynamic parameters
is proposed. First, we introduce the dynamic model, including the coordinate systems,
parameterizations of rotation and the form of space debris’ motion. Because the IMUs
are interfered with by the space environment and produce large measurement noise, the
denoising model based on linear least-squares manners is established, and the normalized
inertia tensor is calculated in this process. Using the denoising data of IMU, supplement-
ing with visual data, the mass-center location and normalized angular momentum are
estimated based on the dynamic model of debris, and the ADR data set is established. The
simulations and experiments of identifying dynamic parameters were carried out, and the
results prove the real-time and high precision of our method.

2. Dynamic Model of Passive Non-Cooperative Target
2.1. Feasibility Analysis of Space Harpoons

In this section, the feasibility of using space harpoons to fix IMUs to space debris is
described. Space harpoons are an important method for Active Space Debris Removal
(ADR) missions, and validation experiments have been conducted by the Surrey Space
Centre of [22–25]. “The satellite was launched the 2 April 2018, to the International Space
Station (ISS) and from there, on the 20 June 2018, was deployed via the NanoRacks Kaber
system into an orbit of 405 km altitude” [24]. This proves that the strength of the harpoon
can withstand a large load of 20 times the gravity acceleration at launch, the harpoon can
be accelerated to penetrate the surface of the space debris, and its recoil is tolerable for
the service satellite. The mass of harpoon is 0.115 kg, and our IMU’s weight is 14 g (if a
structure such as a protective layer is added to the IMU it may increase the load by 10 g),
which will add some difficulty and cost to the launch, but with access to highly accurate
and real-time space debris motion parameters, this cost becomes negligible.

In the process of space harpoon attachment, the binocular vision (which is used in our
visual and inertial data fusion method) can be used to provide parameter support for the
process. For example, Tweddle’s binocular vision method has achieved fast identification
of space debris dynamics parameters. The angular velocity estimation error of Tweddle’s
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method is less than 5 deg/s, the normalized principal moment of inertia error is less than
0.35, the inertial principal axis direction error is less than 12.1 deg, and the identification
error of morphology is less than 1.14 cm [7,8]. It should be noted that most of the binocular
vision methods are within this accuracy range as well (e.g., the normalized principal
moments of inertia error for the Peasce method is less than 0.04 [13]). Most importantly,
Peng Jianqing of the Harbin Institute of Technology has experimentally verified that their
method of binocular vision method can maintain some precision under dark lighting
conditions (the error of its three-axis position measurement is less than 7 mm, and the
error of its attitude measurement is around 2 deg). While this precision cannot meet the
requirements of the de-tumbling and capture mission, it can provide good data support for
the process of space harpoon attachment. Thus, the binocular vision used in this paper can
be used to support the implementation of the space harpoon attachment.

The fixing of IMU is also an easy problem to solve, such as designing special chucks on
the harpoon or welding. Furthermore, there has been a penetration experiment of the space
harpoon on 3DOF rotating objects (2 DOF translation in the horizontal plane and uniaxial
rotation) by the University of New South Wales [26]. The experiments proved that the
space harpoon is able to better penetrate the actual satellite structure with multiple degrees
of freedom. The above experimental results prove that it is feasible for space harpoons to
carry IMUs fixed to space debris. Furthermore, the method used in this paper does not
require the IMU to attach to a specific location of space debris, which does not increase the
difficulty of launching the space harpoon. Therefore, there is sufficient evidence that the
use of space harpoons to fix IMUs to space debris is feasible.

2.2. Coordinate Systems and Dynamic Model of Space Debris

The notations used in our paper will be defined in this section. Points are indicated by
capital italic letters such as O. Vectors are represented by italic, bold and lowercase letters
like x. The matrixes are represented by italic, bold and capital letters such as J. Coordinate
system is represented by uppercase italic letters like I, and the notation xI and JI stands for
the vector x and matrix J projected in the coordinate system I (I = M, Sk, Lk, C). RCtoT(i) is
the rotation matrix from frame C to frame T at time instant i, and tCtoT(i) is the translation
matrix from C to T at time instant i.

To simplify the calculation, the process of identification is regarded as the tracking
satellite C remove the target debris T. The central principal axis frame M of the target
debris T is located at the debris’s mass center OT, and its z-axis points to the direction of
the maximum inertia. This coordinate system is related to the mass distribution of the
rigid body, so it is a conjoined coordinate system for space debris. It should be noted
that the special projection of the inertia tensor J in the M is a three-parameter matrix: the
moments of inertia are the principal moments of inertia A, B, and C (A > B > C), and
the product of inertia is 0. Only the projection in the M or in a frame parallel to M has a
three-parameter form.

In this paper, the k-th IMU coordinate system Sk is considered (k = 1, 2, 3). The axis
of Sk is determined by the sensor’s factory settings, and its orientation is unknown after
launch. Since the IMUs are fixed to the space debris, Sk is the conjoined coordinate system
of the debris. Lk is the luminous markers coordinate system, its origin is the center of
luminous marker on IMUs’ surface. Axes of Lk are parallel to Sk, and the direction cosine
matrix RSktoLk and the vector tSktoLk are known. Lk is also the conjoined coordinate system
of space debris.

The visual frame C is defined in the right camera optical center Oc. The z-axis of C
points to the space debris, the x-axis is parallel to the solar wing, and the y-axis is defined by
Cartesian right-hand rule. The frame C is also the de-tumbling frame. The pixel coordinate
systems Or-ur-vr and Ol-ul-vl are also considered, Or and Ol are located at the upper left
corner of the imaging plane, r and l in the lower right corner represent the right and
left camera, respectively, u and v represent the horizontal and vertical pixel coordinates,
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respectively. (cu,r, cv,r) is the pixel coordinate of Oc. The coordinate systems are shown in
Figure 1.

Figure 1. Reference frames and coordinate systems.

Once the notations and Coordinate systems are defined, the formulation of the rota-
tional motion of the space debris needs to be determined. Compared to the quaternion
method, the angle–axis method is simple and straightforward. The sampling frequency of
the inertial measurement unit used in this paper is up to 200 Hz, and the rotation angle of
the space debris measured at each sampling point is much less than 3 rad, which meets the
requirements of the axial angle method for small rotation angles. Thus, the angle–axis vec-
tor θ = θd is used to represent rotation matrix N, and θ can be mapped to N by Rodriguez
formula [27]:

N=

 d2
x(1− cos θ)) + cos θ dydx(1− cos θ)− dz sin θ dzdx(1− cos θ) + dy sin θ

dydx(1− cos θ) + dz sin θ d2
y(1− cos θ)) + cos θ dzdy(1− cos θ)− dx sin θ

dzdx(1− cos θ)− dy sin θ dzdy(1− cos θ) + dx sin θ d2
z(1− cos θ)) + cos θ

 (1)

After defining the fundamental parameters used in our paper, it is necessary to model
the dynamics of space debris, which is the basis for the identification of space debris
parameters. Since the debris in LEO (low-Earth orbit) poses the greatest threat to orbiting
satellites and the density of debris in LEO is the largest [4], the target considered in this
paper is located in LEO. Because the de-tumbling and capture is in the third phase of
proximity operation of space debris, both the tracking satellite and the target debris will
be located in LEO, and the relative translation between the satellite and the debris is
approximate zero. So, the relative translation motion between the tracking satellite and
debris is not considered.

The Euler–Poinsot model is the most widely used in the dynamic modeling of space
non-cooperative objects, which treats objects as a rigid body free from external torque and
rotating around the mass center. Because space debris in low-Earth orbit is disturbed by
extremely weak perturbation moment and the disturbance has a low impact on debris
motion in a short period of time, it can be regarded as Euler–Poinsot motion in a short
time. The torque-less Euler Equation (2) is used to model the dynamic of space non-
cooperative objects:

Jω̇ + ω× (J ·ω) = 03×1 (2)

J is the inertia tensor, ω is the angular velocity vector, and ω̇ is angular acceleration
vector. By projecting these vectors into the frame M, inertia tensor J becomes a 3-parameters
matrix, and the angular momentum integral and kinetic energy integral are obtained from
a simple form. Since it is assumed that the debris is free from external torque, its motion is
constrained by the conservation of angular kinetic energy and the conservation of angular
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momentum [27]. Two elliptic Equations (3) and (4) under the system will be established by
the above integrals:

Aω2
x,M

2H
+

Bω2
y,M

2H
+

Cω2
z,M

2H
= 1 (3)

A2ω2
x,M

L2 +
B2ω2

y,M

L2 +
C2ω2

z,M

L2 = 1 (4)

A, B and C are the principal moments of inertia, H and L are the angular kinetic energy
and angular momentum of space debris, ωs,M is the s-axis angular velocity projection int
the frame M. Equations (3) and (4) show that the angular velocity vector’s end moves
at the intersection of the above two ellipsoids, and the projection of the angular velocity
under the body-fixed frame is called polhode. According to the modeling method in [12],
comparing the magnitudes of 2TB and L2 and whether the mass distribution is symmetrical,
the motions of space debris are classified into seven cases by Setterfield. Most space debris
exhibit asymmetric mass distribution due to impact, and in the seven cases, the most
common form of space debris is shown as Figure 2:

Figure 2. Polhode of space debris.

In these forms, the elliptic functions become the aperiodic hyperbolic equations of
the medium energy case [12], which means this form is the most unstable and unlikely
motion. Furthermore, the high energy case will decay to the low energy case because of
energy dissipation. Therefore, the low energy case is the most stable and probable motion
of space debris. Due to the imbalance of mass distribution, nutation around spin axis
occurs in this case in addition to spin and precession, and the body-fixed angular velocity
shows a “saddle-shaped” curve around the minimum inertia axis. Furthermore, refer
to Euler–Poinsot motion, the normal vector of the angular velocity projection plane in
non-body coordinate system is parallel to the angular momentum vector, which is a fixed
plane in space. In this way, the dynamic model of space debris will be established, and be
described in geometric. In Sections 3 and 4, the experiment and simulation will be carried
out according to this motion.

3. Inertial Parameters Estimation Algorithm

In this section, the inertial parameters estimation framework based on the visual and
IMUs’ data is illustrated. Affected by the space environment, the accuracy of the IMUs’
measurement decreased. Therefore, in Section 3.1, we use the redundant data of multiple
IMUs to denoise the IMUs’ data. Then in Section 3.2, the denoised IMU data and visual
measurement data are used to identify the location of mass center in frame C, which is vital
to locate the space debris. Finally, in Section 3.3, the matrix RSktoC and normalized angular
momentum LC are acquired and form the de-tumbling data set I. Using this framework,
we can guide de-tumbling operations of space debris.
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3.1. Denoising Model of Redundant IMU Measurement Data

Due to the disturbances in space such as the large temperature differences, radiation
and magnetic interference, the inertial measurement unit often has a large amount of noise
in the measurement data, which can greatly reduce the accuracy of the subsequent space
debris dynamic parameters. These errors mainly include zero bias and the angular random
walk. Where zero bias is the average output of the IMU when the IMU is stationary, which
is subject to internal electromagnetic noise and external influences such as temperature
differences. Its effect on the measurement is linear and can be de-noised by linear least
squares. IMUs tend to have large angular random walk in space due to the effects of
space radiation, scattered particle noise from detectors, mechanical jitter, etc. However,
angular random walk is an effect of Gaussian white noise, which can also be de-noised by
the linear least squares principle and L-M algorithm [28,29]. Therefore, to decrease these
adverse impacts of the space environment on IMUs’ data and improved the accuracy in
identifying dynamic parameters, the denoising of IMU data is essential. IMU data include
angular velocity ωk,Sk(i), angular acceleration ω̇k,Sk(i), acceleration ak,Sk(i), and inclination
angle φk,Sk(i) is measured by tilt sensors in k-th IMU, i represents the measurement data at
moment i. Since gravity almost all provides centripetal acceleration in LEO, the tilt sensor
is ineffective. So, only ωk,Sk(i), ω̇k,Sk(i) and ak,Sk(i) are discussed.

According to the [7], since the sensor used in this paper cannot apply force to space
debris, there will always be an invisible parameter in J. Using ωk,Sk(i), ω̇k,Sk(i) and
Equation (2), normalized 5-parameters symmetric inertia tensor matrix J,Sk will be ob-
tained. Because it is related to the mass distribution in the frame, Sk and Sk is a conjoined
base, and it is a constant matrix. Therefore, by substituting measured values of ωk,Sk(i),
ω̇k,Sk(i) and ak,Sk(i) at multiple times, the optimized value can be estimated by Equation (2):

ε1{J∗Sk
}= argmin

J∗Sk

m

∑
i=1

∥∥∥J∗Sk
ω̇k,Sk(i) + ωk,Sk(i) ×

(
J∗Sk
·ωk,Sk(i)

)∥∥∥ (5)

Equation (5) can be solved by the L-M algorithm. The * in the upper right indicates
the data after optimization. Since JSk is a normalized symmetric matrix and dyadic, it can
be transformed into a normalized 2-parameters principal moment of inertia matrix (the
two parameters are Ja,k and Jb,k, k represents the J that is calculated by k-th IMU’s data),
that is, project to the M:

J∗k,M=RMtoSk J∗Sk
RSktoM (6)

RMtoSk is the rotation matrix from Sk to M, and RMtoSk = RSktoM. Because Sk and M are
both body frame, RMtoSk is constant matrix. Using the RMtoSk , the denoising of redundant
IMU data can be carried out. The design variable at time instant i is given as follow:

I∗k,Sk(i)
=
[

ω∗k,Sk(i)
ω̇∗k,Sk(i)

ia∗Sk(i)

]
(7)

The data set at time instant i is also built:

Il,Sl(i) =

[
ωl,Sl(i) ω̇l,Sl(i)

∣∣∣ak,Sk(i)

∣∣∣ al,Sl(i)∣∣∣al,Sl(i)

∣∣∣
]
(l = 1, 2, 3) (8)

Furthermore, the optimization equation can be established:

f
(

ω∗k,Sk(i)
, ω̇∗k,Sk(i)

, a∗k,Sk(i)

)
= RMtoSk RSl toM Il,Sl(i) − I∗k,Sk(i)

(9)

Then the denoising problem of ωk,Sk(i), ω̇k,Sk(i) and ak,Sk(i) can be transformed into an
unconstrained optimization problem:
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ε2

{
ω∗k,Sk(i)

, ω̇∗k,Sk(i)
, a∗k,Sk(i)

}
= arg min

ω∗Sk(i)
,ω̇∗Sk(i)

,a∗Sk(i)

3

∑
l=1

∥∥∥ f
(

ω∗k,Sk(i)
, ω̇∗k,Sk(i)

, a∗k,Sk(i)

)∥∥∥2
(10)

Therefore, using RMtoSk , vectors ωk,Sk(i), ω̇k,Sk(i) and ak,Sk(i) can be real-time denoised
by linear least-squares manners. Using the fixed-point motion equation of the rigid body,
the equation for the vector rk,Sk(i) from mass center OT to the origin of Sk is derived:

rk =
(
ω̇k,×,Sk

+ ωk,×,Sk
·ωk,×,Sk

)−1 · ak,Sk
(11)

Substituting the above denoised vectors and into Equation (11), the primary calcu-
lation rpri

k,Sk(i)
can be got. Since the Sk is a body frame, the rk,Sk

is a constant vector, using

rpri
k,Sk(i)

at multiple times can acquire the second optimization vector:

ε4

{
r∗k,Sk

}
= arg min

rk,Sk

s

∑
i=0

∥∥∥rk,Sk
− rk,Sk(i)

∥∥∥2
(12)

Real-time denoising of inertial unit measurements is achieved by repeating Equations
(5)–(12) at each sampling moment. The denoising data ωk,Sk(i), ω̇k,Sk(i) , ak,Sk(i) and r∗k,Sk
will provide a more accurate benchmark for the identification of mass-center location and
normalized angular momentum. It should be noted that the redundant inertial data denois-
ing method proposed in this paper has good applicability to most cases of interference.The
algorithm is also simple and fast to compute, making it suitable for space operations with
high real-time requirements such as deconfliction and capture. Furthermore, the denoising
method produces an excessive data inertia tensor J, which is important for understanding
the space debris mass distribution and planning the de-tumbling point and de-tumbling
force. In the next two subsections, we will identify the core parameters of the de-tumbling
and capture mission—the mass center location, which is the de-tumbling positioning
reference, and the normalized angular momentum, which is the the de-tumbling force
orientation reference.

3.2. Mass-Center Location Estimation

The mass center of the debris is the relatively fixed point in the ADR frame C, and is
also the benchmark for the conversion of inertial parameters under the debris’ body frame
Sk to the ADR coordinate system C. Its accurate identification is the key to improving
the efficiency and success rate of de-tumbling and capture. This section is based on
triangulation to locate the luminous markers of IMUs. Then, supplemented with the r∗k,Sk
solved in Section 3.1, the mass-center location at moment i is obtained. Finally, using the
least-squares optimization, the estimation of mass-center location O∗T,C is positioned. The
process of mass-center estimation is as Figure 3.

To simplify the calculation, the left and right camera images will be matched based on
luminous markers. Furthermore, the triangulation is used to obtain the coordinates of the
marked points Pk,C(i):

zk,C(i) =
frb

uk,r − uk,l
(13)

xk,C(i) =
uk,r(i)zk,C(i)

f
=

uk,r(i)b
uk,r(i) − uk,l(i)

(14)

yk,C(i) =
vk,l(i)zk,C(i)

f
=

vk,l(i)b
uk,r(i) − uk,l(i)

(15)
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fr is the focal length of the right cameras, and b is the baseline of the two cameras.
Using the r∗k,Sk

obtained in the Section 3.2, and the known RSktoLk and tSktoLk , the vector
from the mass-center OT to the origin of Lk can be obtained:

rk,Lk
= RSktoLk (r

∗
k,Sk

+ tSktoLk ) (16)

Based on Pk,C and rk,Lk
, the spherical equations of moment i can be established. It can

be known that when the visual measurement is accurate, the estimation of mass center
should be located at the intersection of each sphere. However, affected by light conditions
and debris surface texture, the visual data is not accurate. Furthermore, the mass center
will be located at the point with the shortest distance from the spheres’ surface. Therefore,
unconstrained optimization is used to estimate the mass-center location OT,C(i), and the
objective function is established:

hk,C(i) =
(

Ox,T,C(i) − xk,C(i)

)2
+
(

Oy,T,C(i) − yk,C(i)

)2
+
(

Oz,T,C(i) − zk,C(i)

)2
(17)

ε5

{
OT,C(i)

}
= arg min

OT,C(i)

3

∑
k=1

∥∥∥hk,C(i) −
∣∣rk,Lk

∣∣∥∥∥2
(18)

where,

OT,C(i) =
[
Ox,T,C(i), Oy,T,C(i), Oz,T,C(i)

]T
(19)

OT,C(i) is the calculation of mass center at moment i. Furthermore, the mass-center loca-
tion set can be obtained by solving unconstrained optimization of OT,C(i) at multiple times.
Finally, using the least square method, the mass-center optimization O∗T,C can be acquired:

∆O =
(

Ox,T,C(i) −O∗x,T,C

)2
+
(

Oy,T,C(i) −O∗y,T,C

)2
+
(

Oz,T,C(i) −O∗z,T,C

)2
(20)

ε5
{

O∗T,C
}
= arg min

O∗T,C

s

∑
i=0
‖∆O‖2

(21)

Through Equations (13)–(21), a more accurate mass-center location will be obtained,
which provide a more accurate location point for the identification of the normalized
angular momentum and de-tumbling operation. The algorithm for mass recognition is also
simple, highly accurate and has a high level of real time performance, which meets the
requirements of the de-tumbling and capture operation.

Figure 3. Process of mass-center estimation.
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3.3. Estimation of Normalized Angular Momentum

The purpose of this section is to find out normalized angular momentum LC, which
is the key to determine the direction of the de-tumbling moment. According to Poinsot’s
geometric interpretation of the Euler–Poinsot motion, it is known that the projection of
angular velocity in the frame C should be on a plane, and the angular momentum is in the
vertical direction from the mass-center to the plane. Since the vectors solved in the above
section are the projection of the body frame of space debris, RSktoC(i) needs to be solved
first. Angle–axis vectors mentioned in Section 2.1 are used in there to describe ωcam,C(i),
cam indicates that the vector is obtained from visual data. In Section 2.1, ω∗Sk(i)

, is obtained,

and the rotation angle i+1
i−1θT is calculated:

i+1
i−1θT =

∣∣∣∣12(ω∗k,Sk(i−1) + ω∗k,Sk(i+1)

)
∆t
∣∣∣∣ (22)

∆t is the interval time. Using i+1
i−1θT, the rotation matrix i+1

i−1NT,C illustrated in Section 2.2
becomes a 3-parameters matrix, and the least square optimization equation is established:

ε6

{
i+1
i−1dT,C

}
= arg min

i+1
i−1dT,C

N

∑
k=1

∥∥∥rk,cam,C(i+1) − i+1
i−1NT,Crk,cam,C(i−1)

∥∥∥2
(23)

where,
rk,cam,C(i+1) = O∗T,C − pk,C(i+1), (k = 1, ..., 3) (24)

rk,cam,C(i−1) = O∗T,C − pk,C(i−1), (k = 1, ..., 3) (25)

i+1
i−1dT,C is the rotation axis vector, rk,cam,C is the mass center-to-kth marker vector. The

angular velocity ωcam,C(i) is obtained by i+1
i−1dT,C and i+1

i−1θT, and the angular acceleration
ak,cam,C(i) can be calculated by differential derivation. The linear acceleration can be
also acquired:

ak,cam,C(i) =
(pk,C(i+∆t) − pk,C(i))− (pk,C(i) − pk,C(i−∆t))

∆t2
(26)

Using these vectors in the coordinate system C, the RSktoC(i) can be estimated:

f1

(
RSktoC(i)

)
= ωcam,C(i) − RSktoC(i)ω

∗
k,Sk(i)

(27)

f2

(
RSktoC(i)

)
= ω̇∗cam,C(i) − RSktoC(i)ω̇

∗
k,Sk(i)

(28)

fL+2

(
RSktoC(i)

)
= rk,cam,C(i) − rL(L = 1, 2, 3) (29)

fL+5

(
RSktoC(i)

)
= ak,cam,C(i) − aL(L = 1, 2, 3) (30)

ε7

{
R∗SktoC(i)

}
= arg min

R∗SktoC(i)

8

∑
k=1

fk (31)

where,
rL = RSktoC(i)RSLtoSk(i)r

∗
SL(i)

(L = 1, 2, 3) (32)

aL = RSktoC(i)RSLtoSk(i)a
∗
L,SL(i)

(L = 1, 2, 3) (33)

Using R∗SktoC(i), the angular velocity vectors can be projected to frame C:

ωC(i) = R∗SktoC(i)ω
∗
k,Sk(i)

=
[
ωx,C(i), ωy,C(i), ωz,C(i)

]T
(34)
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Based on the characteristic of Euler–Poinsot motion, when the three-axis angular
velocity is used as the coordinate axis, ωC(i) at multiple moments will form a plane.
Furthermore, the normal vector of this plane can be estimated by the following:

H(i) = n∗x,Cωx,C(i) + n∗y,Cωy,C(i) + n∗z,Cωz,C(i) + W (35)

ε8

{
n∗x,C, n∗y,C, n∗z,C

}
= arg min

n∗x,C ,n∗y,C ,n∗z,C

m

∑
i=1

∥∥∥H(i)

∥∥∥2
(36)

Furthermore, the unit vector nnorm
C can be obtained:

|nC| =
√
(nx,C)

2 + (ny,C)
2 + (nz,C)

2 (37)

nnorm
C =

[
nx,C

|nx,C|
,

ny,C∣∣ny,C
∣∣ , nz,C

|nz,C|

]
=
[
nnorm

x,C , nnorm
y,C , nnorm

z,C

]T
(38)

Furthermore, the normalized angular momentum in C can be calculated:

L∗Sk
=

1
m

m

∑
i=1

∣∣∣J∗Sk
ω∗Sk(i)

∣∣∣ (39)

L∗C=
[

L∗Sk
nnorm

x,C , L∗Sk
nnorm

y,C , L∗Sk
nnorm

z,C

]T
(40)

Finally, ADR parameters’ set is established:

I =
[
iω∗k,Sk(i)

, ω̇∗k,Sk(i)
, a∗k,Sk(i)

, r∗k,Sk(i)
, L∗C(i), O∗T,C, J∗M, R∗

MtoSk
, R∗SktoC(i), pk,C(i)

]
(41)

Thus, all dynamic parameters of space debris can be obtained and calculated from
I, which can guide the tracking satellite to de-tumbling and capture space debris. In the
next section, numerical simulations will be carried out to verify the high real-time and
high accuracy of the proposed redundant inertial denoising algorithm, mass center and
normalized angular momentum identification algorithm.

4. Simulations of Dynamic Parameters’ Identification

To reduce the processing difficulty of experimental equipment, realize the synchro-
nization of simulations and experiments, we set a large space debris’ simulation model of
2 m × 2 m × 2 m, and attach masses to change the model’s mass distribution (the normal-
ized principal moments of inertia are 2.6, 2, 1). The mass center of the debris is located at
(−1, 1, 4) m in frame C. The initial poits are random from (0, 0, 0) m to (−0.9, 0.9, 2.9) m.
In simulations and experiments, there are 3 inertial units attached to the space debris, the
angle between Sk and M is known, and the distances from IMUs to mass center are 1.5 m,
1.6 m, and 1.6 m, respectively. The luminous markers are attached to IMUs’ surface.

Refer to Pesce’s related work [13], we set zero-mean Gaussian to measurement of
vision and IMUs. Considering the extreme lighting environment, the visual noise is set
as Gaussian distribution with a standard deviation of 2.2 pixels, its value is larger than
1 pixel in reference [13]. Refer to the binocular camera and IMUs used in experiments,
the sampling frequency of vision and IMUs are set to 20 Hz and 200 Hz, respectively.
Considering the actual measured value and the influence of the space environment, the
standard deviation of IMUs’ noise is tripled to factory calibration value. The variance of the
angular velocity’s noise is 0.0087 rad/s, the angular acceleration’s noise is 0.01744 rad/s2,
and the error variance of linear acceleration’s noise is 0.9801 m/s2. The initial angular
velocity is set to [1, 10, 2] r/min. Iteration is set at per 5 sample points, and the maximum
number of iterations is set to 10. The simulation parameters are shown in Tables 1 and 2.
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Table 1. Simulation parameters of large space debris model.

Size of
Model (m)

JM
(Dimensionless) OT (m)

Distance
from IMU to

OT (m)

The Maximum
Number of
Iterations

Initial Poits
of Iterations (m)

Initial
ω (r/min)

2 × 2 × 2
1, 2, 2.6

(use attached
mass block)

(−1, 1, 4) 1.5, 1.6, 1.6
(three IMUs)

10
(per 5 points)

Random from
(0, 0, 0) to

(−0.9, 0.9, 2.9)
[1, 10, 2]

Table 2. Simulation parameters of sensors.

Angular
Velocity

Noise (rad/s)

Angular
Acceleration

Noise (rad/s2)

Linear
Acceleration
Noise (m/s2)

Visual Noise
(Pixel)

Sampling Frequency
of IMU (Hz)

Sampling Frequency
of Vision (Hz)

0.0087 0.01744 0.9801 2 200 20

In order to prove the validity and reliability of the L-M algorithm for the estimation
in this paper, we used Monte Carlo analysis to compare the results of the L-M algorithm
and the EKF (extended Kalman filter) algorithm on Ja,k. One hundred simulations were set,
and the results are shown in Table 3.

Table 3. Comparison of L-M algorithm and EKF algorithm.

Algorithm Number of Simulations Number of Convergences Mean Error Time (s)

L-M 100 100 0.029 2.09
EKF 100 87 0.025 4.01

Shown as Table 3, the L-M algorithm achieved all convergence, while the EKF only
converged 87 times. This is due to the fact that the initial value of the 13 non-convergent
iterations is far from the true value, and the error of the observation equation is large,
which led to the non-convergence of the EKF. While the LM algorithm is less affected by the
initial conditions, so full convergence was achieved. In the simulation of convergence, the
accuracy of both algorithms could achieve about 0.025. However, the LM algorithm con-
verged faster than EKF due to the good local convergence. Therefore, for the unconstrained
optimization in this article, the L-M algorithm with better stability and faster convergence
was selected.The simulation results are shown in the figures and tables below.

For the measurement of the moment of inertia, the conversion between the normalized
5-parameter inertia tensor and the normalized 2-parameter principal moment of inertia
matrix is obtained by Equation (6). Furthermore, the error of principal moment of inertia is
positively related to RMtoSk . To make the figures clearer, this section use the normalized
2-parameter principal moment of inertia to measure the model’s solution effect on the
inertia tensor and direction cosine matrix. Two non-uniform normalized principal moments
of inertia Ja,k,M and Jb,k,M are considered. As shown in Figure 4, when the calculating to
2.09 s, the Ja,k,M and Jb,k,M converged to below 0.03 (dimensionless), which proves that the
model has good computational efficiency and a good calculation accuracy. The accuracy
meets the subsequent calculation requirements, which will significantly reduce the error of
inertial data after denoising. Moreover, because the amount of data required is small, the
calculation time is short, which can reduce the impact of random interference.



Actuators 2021, 10, 149 13 of 21

1.50 1.75 2.00 2.25 2.50
0.0

0.1

0.2

0.3

Er
ro

r o
f J

1|
M

(d
im

en
sio

nl
es

s)

Time(s)

1.97s
0.021

 Error of Ja,1|M

 Error of Jb,1|M

(a) Error of J2,M

1.50 1.75 2.00 2.25 2.50
0.0

0.1

0.2

0.3  Error of Ja,2|M

 Error of Jb,2|M

1.82s

Er
ro

r o
f J

2|
M

(d
im

en
sio

nl
es

s)

Time(s)

0.023

(b) Error of J2,M

1.50 1.75 2.00 2.25 2.50
0.0

0.5

1.0

1.5

2.0
 Error of Ja,3|M

 Error of Jb,3|M

Er
ro

r o
f J

3|
M

(d
im

en
sio

nl
es

s)

Time(s)

2.09s
0.03

(c) Error of J3,M

Figure 4. Simulation results: Error of principal moment of inertia.

The real-time denoising results are shown in Figures 5–7, and Table 4. The triaxial
average relative errors of ω were all less than 0.9008%, the triaxial average relative errors
of ω̇ were less than 0.9641%, and the triaxial average relative errors of a were less than
0.9209%, it can be seen that the error was reduced to less than 1% after the denoising of the
inertial data, which achieves a better real-time denoising effect and provides good data
support for the subsequent calculation.

(a) Error of ωx,S1 (b) Error of ωy,S1 (c) Error of ωz,S1

Figure 5. Simulation results: Error of angular velocity (ωS1 ).

(a) Error of ω̇x,S1 (b) Error of ω̇y,S1 (c) Error of ω̇z,S1

Figure 6. Simulation results: Error of angular acceleration (ω̇S1 ).

(a) Error of ax,1,S1 (b) Error of ay,1,S1 (c) Error of az,1,S1

Figure 7. Simulation results: Error of angular acceleration (a1,S1 ).
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Table 4. Simulations results: error of redundant IMUs data’ denoising.

Type of Data Axis Average Relative Error (%)

x 0.9008
Angular velocity y 0.7631

z 0.6487

x 0.9641
Angular acceleration y 0.6619

z 0.4576

x 0.8216
Angular velocity y 0.7254

z 0.9209

Figure 8 shows the simulation error of the vectors from the mass center OT to the
origin of Sk. It can be seen that the vectors’ triaxial average error converged below 0.98 mm
after 2.55 s. As the process of our algorithm for identifying the mass center is different from
existing methods, the comparison for this vector is not given in the paper. However, from
the subsequent results of the mass center solution, the accuracy and real-time performance
are also in line with the requirements of the de-tumbling and capture operations.
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Figure 8. Simulation results: Error of rk,Sk
.

Figure 9 shows the mass-center identification error. When the calculation time reached
6.83 s, the triaxial errors of the mass center converged to less than 0.47 mm. This is an
accurate estimation, which can provide a good data benchmark for normalized angular
momentum orientation and de-tumbling force positioning.

5.0 5.5 6.0 6.5 7.0 7.5 8.0

6.83s

0

5

10

15

20

25

 Error of Ox,T,C

 Error of Oy,T,C

 Error of Oz,T,C

Er
ro

r o
f O

T,
C
(m

m
)

Time(s)

0.47mm

Figure 9. Simulation results: the error of mass-center location.

The Average relative error of RSktoC(i) is shown in Table 5. The mk,l (k, l = 1, 2, 3) are
the elements in RSktoC(i), and the maximum error was 0.711%, which can provide the good
basis for calculating normalized angular momentum.
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Table 5. Simulation results: average relative error of RSktoC(i).

m11 m12 m13 m21 m22 m23 m31 m32 m33

Average relative error (%) 0.561 0.711 0.689 0.660 0.694 0.605 0.682 0.623 0.674

As shown in Figure 10 and Table 6, the normalized angular momentums were esti-
mated, and the relative error of solved LC was less than 0.25%, and the convergence time
was less than 7.53 s, which can guide the de-tumbling operation and Improve the efficiency
and success rate of de-tumbling.

Figure 10. Identification of normalized angular moment.

Table 6. Simulation results: average relative error of RSktoC(i).

Axis Direction of Solved LC (rad) Direction of True LC (rad) Convergence Time (s)

x 1.7292 1.7267 7.26
y 0.1584 0.1559 6.95
z 1.5705 1.5709 7.53

5. Experiments of Dynamic Parameters’ Identification

To verify the effectiveness and reliability of our method, experiments in the controlled
laboratory scenario are carried out in this section. The designed experiment system is
shown in Figure 11, in which the three IMUs are WT-901, with a sampling frequency of
200 Hz and communicate with the host computer through CSMA/CA protocol, and the
distance between IMUs and mass center is 0.3 m, 0.32 m, and 0.32 m, respectively. The
surface of every IMU is pasted with different color markers to simulate the luminous
marker points in the space environment; the binocular vision is MYNTAI-S2110 with a
sampling frequency of 20 Hz and a resolution of 720 × 480. The ‘debris’ is a proportionally
reduced size model relative to the simulation, with a size of 0.4 m × 0.4 m× 0.4 m, and
the center of mass is located at (−0.2 m, 0.2 m, 0.8 m) in frame C. The universal ball is
selected as the rotating part to realize the triaxial rotation of the ‘debris’. According to the
spacecraft mass adjustment mechanism described in [30], a combined device of slide and
metal block is designed as a mechanism for adjusting the mass center. The mass blocks are
aluminum alloy block and stainless-steel block which are symmetrically fixed to equipment,
and realize different principal moments of inertia in this way, the normalized principal
moments of inertia are also 2.6, 2 and 1. The initial angular velocity of experiments is set to
correspond to the simulation, and both are [1, 10, 2] r/min. The experimental parameters
are shown in Tables 7–9.

The experimental data are shown in Figure 12. The periodicity decreasing of angular
velocity is caused by gravity torque causing the error of mass adjustment, friction of the
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universal ball and air resistance. To eliminate the influence of the external moment, the
influence of the gravitational moment is fitted by the change of the angle ∆θ(i) between
the IMU’s axis and the direction of gravity measured by the IMU. The friction and air
resistance are, respectively, the constant unknown moment f and s. The distance between
the mass center and the rotation center is set to constant unknown quantity l, and the initial
angle between the center of mass and the gravity axis is set to θini. The mass m of ‘debris’
is known, and the torque-free Euler equation is changed to the following form:

Jω̇+ω× (Jω) = mgl sin
(

θini + ∆θ(i)

)
+ f + s (42)

Table 7. Parameters of experimental equipment.

Size of
Model

(m)

JM
(Dimensionless) OT (m)

Distance from
IMU to

Mass Center (m)

Initial Poits of
Iterations (m)

The Maximum
Number of
Iterations

0.4 × 0.4 × 0.4
1, 2, 2.6

(use attached
mass block)

(−0.2, 0.2, 0.8) 0.3, 0.32, 0.32
(three IMUs)

Random from
(0, 0, 0) to

(−0.9, 0.9, 2.9)

10
(per 5 points)

Table 8. Parameters of Binocular vision.

Binocular Camera Resolution of Camera Initial Angular Velocity (r/min) Sampling Frequency
(Hz)

MYNTAI-S2110 720 × 480 [1, 10, 2] 20

Table 9. Parameters of IMUs.

IMUs Sampling Frequency (Hz) Error of Gyroscope on
Nameplate Marking (rad/s)

Error of Accelerometer
on Nameplate Marking (m/s2)

WT-901 200 0.00087 0.09801

Figure 11. Experimental device.
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Figure 12. Experimental data.
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Figure 13. Simulation results: Error of principal moment of inertia.

The Ja,k,M and Jb,k,M’s experimental results are shown as Figure 13. When the calcula-
tion reaches 5.42 s, Jk,M converges to 0.027 (dimensionless). Compared with the simulation,
the convergence time of the algorithm is longer, which is mainly affected by the added
solution quantity in Equation (40) and leads to the need for more data points for estimation.
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Figure 14. Simulation results: Error of rk,Sk
.

As shown in Figure 14, when the calculation reaches 5.89 s, the triaxial error of the rk,Sk
decreased to 0.86 mm as reported in Figure 14. Using this error to measure the denoising
result, it is known that the average relative error of the measured data of the inertial
unit after denoising is less than 1.1%, which proves that this method can achieve a better
denoising effect under actual working conditions.

Since the motions of experimental equipment and the Euler–Poinsot motion are the
same, they are both fixed-point motion, the identify mass center is replaced by identifying
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the rotation center. As shown in Figure 15, at 9.21 s, the three-axis error of the mass center
location converged below 0.49 mm. Compared with the simulation, the convergence time
of the algorithm in the experiment is longer, which is mainly affected by the low resolution
of binocular vision.
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Figure 15. Experiment results: the error of mass-center location.

The experiments’ results of normalized angular moment are shown in Figure 16 and
Table 10, Error of LC is less than 0.0081 rad, and the convergence time is less than 10.31 s.
Limited by the experimental conditions, the experimental error is slightly larger than the
simulation error. However, our method can still provide better guidance for de-tumbling
mission.

Table 11 shows the comparison of the simulation and experimental results of our
method with the Pesce’s simulation results and the Tweddle’s experimental results (they
are all binocular vision method). Because binocular vision is affected by complex spatial
lighting conditions, so the convergence time of visial method is more than this method;
Tweddle’s method identifies the object as a geometric symmetrical object, so it identifies
the geometric center of the fragment feature point as the debris’ mass center, but it has
a certain offset when it is used in normal debris, so our recognition error of this method
is less than Tweddle’s algorithm. At the same time, this method increases the estimation
of the angular momentum’s direction in the de-tumbling frame. The above comparison
proves that our method is more in line with the actual needs of de-tumbling and capture
mission.

Figure 16. Identification of normalized angular moment.
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Table 10. Experiment results: average relative error of RSktoC(i).

Axis Direction of Solved LC (rad) Direction of True LC (rad) Convergence Time (s)

x 0.5758 0.5711 9.53
y 1.2692 1.2611 9.77
z 1.4310 1.4358 10.31

Table 11. Comparison of the algorithm in this paper with existing binocular vision methods.

Type Error of JM Error of Sensors’ Data (%) Error of OT,C (mm) Error of LC (rad) Time

Simulations 0.03 1.0 0.47 0.0025 7.53
Experiments 0.024 1.1 0.49 0.0081 10.31

Pesce [13] 0.043 6.9 - - 34.6
Tweddle [7] 0.0208 6.1 4.34 - 15.6

6. Conclusions

In this paper, aiming at identifying dynamic parameters of large space debris such as
final stage rockets and failed satellites, a method based on visual and inertial data fusion
is proposed, and a binocular camera and IMUs are used to acquire data. The real-time
performance of IMU and the positioning advantage of stereo vision is used to improve
the identification accuracy of dynamic parameters. Using unconstrained optimization
and space debris’ dynamic characteristics, this method reduces the noise of the IMU’s
data, and on this basis, the normalized principal moment of inertia, the mass-center
location in the ADR coordinate system and the normalized angular momentum of the space
debris are better estimated, and a set of active-debris-removal parameters is established.
Simulations are carried out with Gaussian white noise. The simulations showed that the
normalized principal moment of inertia’s error converges below 0.03 (dimensionless) after
2.09 s. A laboratory experimental system was built. The experiment showed that the
normalized principal moment of inertia’s error converged below 0.024 (dimensionless)
when the calculation reached 5.42 s. In the simulation, the errors of angular velocity,
angular acceleration and linear acceleration were all less than 1%, and the triaxial error of
the distance from mass center to IMUs converged below 0.98 mm when the calculation
reached 2.55 s. In the experiments, the triaxial errors of the distance from the center of
mass to IMU were less than 0.86 mm after 5.89 s, and using this error, we can know the
good effect of IMU data’s denoising. For the mass-center location estimations, when the
simulation time was more than 6.83 s, the triaxial error of mass-center location converged
below 0.47 m, and when the experimental time was more than 9.21 s, the triaxial error
of centroid position converged below 0.49 m. In simulations, the transformation matrix
from IMUs’ frame to ADR frame was calculated, and the maximum error of the elements
in the matrix was 0.711%. The normalized angular moment’s relative error was less than
0.0025 rad after 7.53 s. In the experiments, the normalized angular moment’s relative
error was less than 0.0081 rad after 10.31 s, which proves the great calculation effect of
the transformation matrix from the IMUs’ frame to ADR frame. The simulations and
experiments’ results prove the robustness, high precision and real-time of our method.
This method is suitable for space debris de-tumbling and capture missions in LEO, and is
also useful for real-time, high accuracy in-orbit missions.

An IMU is used in our method, which is essential to reduce spatial light interference
and improve computational efficiency. In addition, the short calculation time proves that
the amount of data required by this method is small, which is beneficial to reduce the
calculation cost of the on-board computer. To calculate the optimization equation, the L-M
algorithm is used. In fact, the L-M algorithm can be further improved to better adapt to
this method and increase computational efficiency. In the future, we can use the inertia
parameters obtained for 3D reconstruction of space debris, and find the optimal impact
location. Moreover, in the next step, using the dynamic parameters estimated in this paper
and the impact location, the ADR mission can be carried out.
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